
Expression quan.ta.ve trait loci mapping. 
 
Introduc*on 

Expression Quantitative Trait loci (eQTL) are genetic loci (single nucleotide polymorphisms, SNP) 
whose alleles are associated with different expression levels of a specific gene. Different alleles can be 
associated with a decrease or increase in gene expression. Figure 1 highlights how a SNP (in red) can 
be associated with gene expression.  

In this example, an A allele increases gene 
expression in a dose-response manner, with A 
homozygotes displaying higher levels of 
expression of a gene compared to G 
homozygotes. Additionally, alleles are not 
expressed uniformly, with some variants rarer 
than others, as represented by the relative 
frequency of different genotypes on the y-axis.  

Most eQTLs are found outside of coding 
regions1 and can be divided into two categories: 

 

• Cis-eQTLs are found on the same chromosome as the gene they influence, usually within a 
100,000 base pair window around it. Cis eQTLs are thought to act on the gene directly through 
the regulation of enhancers, silencers, promoter regions or other regulatory elements of the gene.   

• Trans-eQTLs can be found anywhere in the genome, further away from the gene they influence 
or even on other chromosomes. They are thought to influence gene expression through 
regulation of biological pathways. 

During this practical, we will investigate how to identify eQTLs. To better understand eQTL 
analysis, we will start by simulating both genotype and expression data. This simulation 
approach will allow us to understand the structure of the data used for eQTL mapping as well 
as investigate information relevant to QTL mapping. After performing the simulation, we will 
investigate the GTEx website and see how eQTL can be used to investigate genome-wide 
association study (GWAS) results in real life.  

  

Figure 1. Representa0on of an eQTL effect on a gene. Figure taken 
from Nica, A. C. & Dermitzakis, E. T. Expression quan>ta>ve trait loci: present 
and future. Philos. Trans. R. Soc. London. Ser. B, Biol.  Sci. 368, 20120362 
(2013). 
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Part 1: eQTL simula*on 
eQTL mapping. 
During the lecture, we saw that QTL mapping can be performed using a simple linear 
regression of the following form: 

𝑦 = 𝛽! + 𝛽"𝑥	 + 𝜀 
With: 
𝑦 = gene expression for the different individuals measured. 
𝛽! = intercept (mean effect). 
𝛽" = effect of an allele on the gene expression. 
𝑥 = genotype value of the different individuals measured. 
𝜀 = error term of the model  
 
To perform a QTL mapping, we will therefore have to simulate the gene expression 𝑦 as well 
as the genotype 𝑥 with the other parameters 𝛽! and 𝛽"being inferred. 
 
Gene.c data: 
Before simulaAng geneAc data, we should first gain an understanding of how genotype data 
are represented. 

 
GeneAc expression is usually represented based on the number of alleles an individual 
carries at a specific locus. However, the allele used as a reference is arbitrary. For the 
previous example, we can represent the individuals based on the number of A alleles they 
carry: [2	1	1	0] or based on the number of T: [0	1	1	2].  
 
To simulate geneAc data, we, therefore, have to create several vectors containing 0, 1 or 2 
represenAng the genotype of a single individual at different loci. Those vectors can then be 
arranged into a matrix of the following form: 

,
2 1
1 0

1 0
0 0

1 2
1 2

1 2
1 0

- 

 
With the columns represenAng different individuals and the rows a specific geneAc locus. 
  

QuesAon 1:  
Think about a single geneAc locus where the allele can either be A or T. 
How would you represent four individuals whose genotypes at a specific locus are 
respecAvely: 

• A/A 
• A/T 
• T/A 
• T/T 



 
Connec&on to the cluster: 
 
To simulate the data, we will need to connect to the High-Performance CompuAng (HPC) 
cluster set up for this class. You should have been given the credenAals necessary to connect 
to the cluster. Follow the informaAon presented in the introductory guide to connect to the 
HPC cluster.  
You can alterna=vely use your local machine. The simula=ons might, however, take a while. 
 
Simula.on of genotypes: 
First, we will set up the HPC folders to keep your analyses organised. The following bash script 
allows you to create three folders: 

 
Files created will be stored in those folders.  
Note: While the prac/cal were designed to be run on the cluster, they can be run locally on your laptop. 
 
The following R code can be used to simulate geneAc data. Start your R session and, copy, and 
paste it within the R interpreter. 

Note: The set.seed func/on allows the code to be reproducible by fixing the random processes. A 
different seed would change the results. 

# Load all libraries needed for the practical: 
library(tidyverse) 
library(MASS) 
library(cowplot) 
library(MetBrewer) 
 
set.seed(6543456) 
frequency <- 0.5 
SNP <- rbinom(5000, size = 2, frequency)  
SNP_number <- 1000 
indv_number <- 500 
p <- runif(SNP_number, min = 0, max = 1) 
genotypes <- replicate(indv_number, rbinom(SNP_number, 2, p))  
rownames(genotypes) <- paste0('SNP', seq(1, nrow(genotypes))) 
colnames(genotypes) <- paste0('Indv', seq(1, ncol(genotypes))) 
print(nrow(genotypes)) 
print(ncol(genotypes)) 
print(genotypes[1:10,1:10]) 

cd ~  
mkdir eQTLPrac 
cd eQTLPrac 
mkdir Genotype 
mkdir Expression 
mkdir eQTL 
 



Explora.on of allele frequency: 
 
Now that we simulated genotype data, we can calculate the frequency of the alleles simulated 
with the following code:  
  
 
 
 
 
 
 
 
You can download the plot that you created by using the following command on your local 
machine:  

scp <username>@203.101.xxx.xxx: ~/eQTLPrac/Genotype/HistogramMAFsimulated.jpeg . 

 
Allele frequency is an important parameter during eQTL analysis due to the possible lack of 
representaAon of some genotypes. For QTL analyses to be possible, they need to ideally 
include individuals with all genotype groups or to have at least two genotype groups present 
(0,1 or 1,2).  

 

QuesAon 2:  
• How many SNPs were simulated? 
• How many individuals were simulated? 
• Given that the SNP3 reference allele is G and the alternate allele C, what is the 

genotype of individual 5? 

maf = rowMeans(genotypes)/2 
maf <- pmin(maf, 1-maf) 
 
jpeg('~/eQTLPrac/Genotype/HistogramMAFsimulated.jpeg',width = 21, height = 12, res = 300, units = 
'cm') 
truehist(maf, main = "Histogram of minor allele frequency", col = "light grey", nbins=100) 
lines(density(maf), lty = 2, col = "dark red", lwd = 3) 
dev.off() 

QuesAon 3:  
Look at the allele frequency of the genotype data you simulated. 

• What is the allele frequency occurring the most? 
• Why is allele frequency important for eQTL analysis? 
• What does the x-axis represent? 

o Why is it limited at 0.5? 
o  

QuesAon 4:  
Fill the table below using the genotype frequency derived from the Hardy-Weinberg 
principle for an allele A with a frequency p of 99%: 

• What is the property of a linear regression that allows us to perform eQTL 
mapping when only 2 genotypes are present? 

• Out of the three different populaAons in the table, which one(s) could be used 
to perform an eQTL mapping for alleles with a frequency of 1%? 



Table 1. Propor0on of the possible genotypes for a gene0c loci with a minor allele frequency q of 0.01 (Calcula0on based on 
the Hardy–Weinberg principle) 

 Popula*on genotype 
frequency: 

1,000 
individuals 

10,000 
individuals 

100,000 
individuals 

AA 
Frequency: 𝑝2 

    

AT 
Frequency: 2𝑝𝑞 

    

TT: 
Frequency: 𝑞2 

    

 
To idenAfy eQTL with a minor allele frequency of 1%, we would, therefore, need a populaAon 
larger than 10,000 individuals to have access to two genotypes. With 198 heterozygous 
individuals expected in the populaAon, we can perform eQTL mapping. Given that the eQTL 
effect is expected to be addiAve (the effect of two alleles is twice the effect of one allele), eQTL 
mapping can be performed with only 2 genotype groups available. 
 
Currently large eQTL studies such as the eQTLgen consorAum2 contain 31,684 individuals, 
showing that eQTL mapping for rare variant (MAF < 1%) is currently not feasible.  
Allele frequency needs to be kept in mind when performing eQTL mapping; exclusion of rare 
variants is oeen performed. 
 
Simula.on of gene expression data: 
 
Now that we simulated geneAc data, we need to create matching gene expression data. 
While gene expression is not normally distributed (RNA-sequencing and read-based 
sequencing technology generate discrete data that usually follow a nega=ve binomial or 
Poisson distribu=on), most analyses will start by normalising the data. SimulaAng gene 
expression data can be performed either at the discrete level or at the normalised level.  
 
For simplicity, this pracAcal will simulate data normally distributed data. 



 
 
  

genesTotal <- 1000 
geneswithQTL <- 50 
geneswithoutQTL <- genesTotal - geneswithQTL 
# Select the SNPs associated with each of the gene: 
SNPs <- rownames(genotypes) 
SNPswithQTL <- sample(SNPs, size = geneswithQTL) 
SNPswithoutQTL <- SNPs[-which(SNPs %in% SNPswithQTL)] 
 
expMatrixAssociated <- do.call(cbind, lapply(SNPswithQTL,  
                                                        function(i) { 
                    #Simulate expression of three different cellTypes: 
                     meanCT1 <- c(rnorm(mean = rnorm(mean = 3, n = 1), n = 1, ),  
                                  rnorm(mean = rnorm(mean = 5, n = 1), n = 1),  
                                  rnorm(mean = rnorm(mean = 7, n = 1), n = 1)) 
                     meanCT2 <- c(rnorm(mean = 3, n = 1),  
                                  rnorm(mean = 3, n = 1),  
                                  rnorm(mean = 3, n = 1)) 
                     meanCT3 <- c(rnorm(mean = rnorm(mean = 4, n = 1), n = 1),  
                                  rnorm(mean = rnorm(mean = 2, n = 1), n = 1),  
                                  rnorm(mean = rnorm(mean = 0, n = 1), n = 1)) 
      yWithQTLCT1 <- rnorm(indv_number, meanCT1[factor(genotypes[i,])]) 
      yWithQTLCT2 <- rnorm(indv_number, meanCT2[factor(genotypes[i,])]) 
      yWithQTLCT3 <- rnorm(indv_number, meanCT3[factor(genotypes[i,])]) 
      df <- data.frame(ct1 = yWithQTLCT1, 
                       ct2 = yWithQTLCT2, 
                       ct3 = yWithQTLCT3) 
# Create a bulk dataframe as the sum of the expression of the three cell types: 
      df$bulk <- rowSums(df, na.rm = T)  
 return(df) 
})) 
# Add columns to the matrix: 
colnames(expMatrixAssociated) <- paste0('Gene',  
                                        rep(1:geneswithQTL, each = 4), 
                                        '_', 
                                        colnames(expMatrixAssociated)) 
# Simulate genes without QTLs: 
expMatrixNotAssociated <- do.call(cbind, lapply(SNPswithoutQTL,  
                       function(i) { 
                        meanForAlleles  <- c(rnorm(1,10)) 
      yWithQTLCT1 <- rnorm(indv_number, meanForAlleles) 
      yWithQTLCT2 <- rnorm(indv_number, meanForAlleles) 
      yWithQTLCT3 <- rnorm(indv_number, meanForAlleles) 
      df <- data.frame(ct1 = yWithQTLCT1, 
                       ct2 = yWithQTLCT2, 
                       ct3 = yWithQTLCT3) 
      df$bulk <- rowSums(df, na.rm = T) 
  return(df) 
})) 
# Add colunms to the matrix: 
colnames(expMatrixNotAssociated) <- paste0('Gene',  
                                    rep(1:geneswithoutQTL, each = 4), 
                                    '_', 
                                    colnames(expMatrixNotAssociated)) 



 

 
The following code will generate plots showing the associaAon between SNPs and genotypes. 
You can change the code (by changing the name of the SNPs and gene in red) to visually 
inspect the associaAon between different SNPs and genes.  

 
 
Download the plot created using the following command: 

scp <username>@203.101.xxx.xxx:~/eQTLPrac/Expression/AssociaIonPlot.jpeg . 
 

 

QuesAon 6:  
Based on the plot that you generated answer the following quesAons: 
• What is the mean expression of the gene you simulated? 

o What is the unit of gene expression?  
• Which SNP (if any) is associated with the expression of Gene 5 ? 

o How would you idenAfy SNP staAsAcally associated with gene expression? 

expMatrix <- cbind(expMatrixNotAssociated %>% dplyr::select(contains('bulk')), 
              expMatrixAssociated %>% dplyr::select(contains('bulk'))) 
colnames(expMatrix) <- paste0('Gene', 1:ncol(expMatrix)) 
 
 
 
### Test for SNPs: 
SNPassociationPlot <- function(expMatrix, SNPID, GeneID) { 
  ggplot(data.frame(snp = genotypes[SNPID,], y = expMatrix[,GeneID]), 
         aes(x = factor(snp), y = y)) + 
    ggtitle(paste0('Association between ', GeneID, ' and ', SNPID)) + 
    geom_boxplot(fill = 'dark red') + geom_point(col = 'dark grey') +  
    xlab("Reference allele count") + 
    theme_minimal() +  theme(plot.title = element_text(hjust = 0.5)) 
} 
 
p1 <- SNPassociationPlot(expMatrix, SNPID = 'SNP182', GeneID = 'Gene5') 
p2 <- SNPassociationPlot(expMatrix, SNPID = 'SNP243', GeneID = 'Gene2') 
p3 <- SNPassociationPlot(expMatrix, SNPID = 'SNP921', GeneID = 'Gene2') 
p4 <- SNPassociationPlot(expMatrix, SNPID = 'SNP564', GeneID = 'Gene2') 
p <- cowplot::plot_grid(p1,p2,p3,p4) 
 ggsave(p, filename = '~/eQTLPrac/Expression/Associa/onPlot.jpeg', width = 14, height=14, dpi = 
300) 
 

QuesAon 5:  
Run the code above and answer the following quesAons: 
• How many genes were simulated? 

o How many of those genes were associated with SNPs? 
• How many cell types were simulated? 
• How was the bulk expression created? 

o What omics technology does the bulk data corresponds? Cell type data? 



While idenAfying SNP and gene expression pairs visually is already Ame-consuming, the 
human genome is composed of 3.2 billion base pairs and roughly 20,000 genes, rendering it 
impossible. We need to use the linear regression that we previously described and filter the 
results based on significance. 
 
eQTL mapping, simple linear regression: 
 
Now that we have simulated both gene expression and genotype, we will use linear regression 
to idenAfy significant eQTL: 

 
The associaAon test between the gene and 1000 SNPs for 500 individuals that we just 
performed took only a few seconds. However, this toy example does not represent the scale 
of the human genome with its more than 3 billion base pairs. eQTL analyses quickly result in 
prohibiAve computaAon Ame as we increase the number of SNPs and individuals tested.  
 
Soeware such as matrixeQTL3 and fastQTL4 have been developed to decrease the 
computaAonal resources and Ame necessary for eQTL analyses. While we will not go into 
details on their inner working here, the underlying mechanisms of that soeware remain 
similar to the analysis performed within this pracAcal. Methodology used to improve 
computaAonal efficiency ranges from limiAng the SNPs tested for a gene to the closest SNPs 
to developing mathemaAcal approximaAons to computaAonally heavy calculaAons.   

# Expression: 
GeneID='Gene1' 
# Set the first test: 
AssociaIon <- summary(lm(expMatrix[,GeneID]~genotypes['SNP1',])) 
AssociaIon <- as.data.frame(AssociaIon$coefficients)[2,] 
rownames(AssociaIon) <- 'SNP1' 
 
AssociaIon <- data.frame() 
for(SNPID in rownames(genotypes)){ 
  test <- summary(lm(expMatrix[,GeneID]~genotypes[SNPID,])) 
  test <- as.data.frame(test$coefficients)[2,] 
  rownames(test) <- SNPID 
  AssociaIon <- rbind(AssociaIon, test) 
} 
colnames(AssociaIon) <- c("EsImate", "Std.Error", "t_value", "P") 
AssociaIon %>% arrange(P) %>% head() %>% print() 
# Change the SNP in the following code: 
signifQTL <- SNPassociaIonPlot(expMatrix, SNPID = 'ChangeSNP', GeneID = 'Gene1') 
ggsave(signifQTL,  
       filename = '~/eQTLPrac/Expression/SignificantQTL.jpeg', width = 7, height=7, dpi = 300) 

QuesAon 7:  
• What SNP (if any) is significantly associated with Gene 1? 

o Fill the gap in the code with the significantly associated SNP and invesAgate 
visually the associaAon. 

• Modify the previous code to invesAgate associaAons with Gene 982. 



 
QTL mapping with interac.on: 
 
Our simulaAon of gene expression data was based on the presence of three different cell 
types measured. This simulaAon represents the working of bulk-RNA sequencing. We will 
now see what those QTLs look like when we decompose them across cell type. 
 

 
As we can see, the eQTL observed previously was produced by a different expression in gene 
between the different cell types. We do not observe any significant eQTL when the cell type 
informaAon is known.  
 
  

set.seed(58944) 
 
expMatrixCT <- cbind(expMatrixAssociated %>% dplyr::select(!contains('bulk')), 
      expMatrixNotAssociated %>% dplyr::select(!contains('bulk'))) 
colnames(expMatrixCT) <- paste0('Gene', rep(1:1000, each = 3), '_',  
                                c('ct1', 'ct2', 'ct3')) 
expMatrixCT <- expMatrixCT %>% mutate(Indv = paste0('Indv',  
                                                    seq(1, indv_number))) 
 
expMatrixCTlonger <- expMatrixCT %>% pivot_longer(cols = -Indv,  
                             names_to = 'geneID', 
                             values_to = 'expression') %>% 
  mutate(gene = str_split(geneID, '_', simplify = T)[,1], 
         cellType = str_split(geneID, '_', simplify = T)[,2]) 
 
genotypeToMerge <- t(genotypes) %>% as.data.frame() %>%  
  mutate(Indv = rownames(.)) 
expMatrixCTlonger <- lem_join(expMatrixCTlonger, genotypeToMerge, by = 'Indv') 
# Plot gene 1: 
# Change the code in Red to inspect the gene of interest: 
ggplot(expMatrixCTlonger %>% filter(gene == 'Gene1'), 
       aes(x = factor(SNP1), y = expression, fill = cellType)) + 
  geom_point(posiIon = posiIon_jiperdodge()) + 
  facet_wrap(~cellType) + 
  geom_boxplot() + 
  theme_minimal() + 
  scale_fill_manual(values  = met.brewer( n = 3, 'Hokusai1')) -> interacIonPlot 
ggsave(interacIonPlot,  
       filename = '~/eQTLPrac/Expression/interacIonQTL.jpeg', width = 7, height=7, dpi = 300) 

QuesAon 8:  
• Modify and run the code below to visually inspect Gene 1 with the SNP that you 

previously found to be significantly associated. 
o Does the eQTL idenAfied previously represent a specific cell type? 



We will now invesAgate eQTL when different cell types are included. 
Our previous linear regression can be wriien with interacAon between cell type and 
genotype as follows: 

𝑦 = 𝛽! + 𝛽"𝑥" 	+ 𝛽#𝑥# + 𝛽$𝑥"𝑥# 
With: 
𝑦 = gene expression for the different individuals measured. 
𝛽! = intercept (mean effect). 
𝛽" = effect of an allele on the gene expression. 
𝑥" = genotype value of the different individuals measured. 
𝑥# = cell type of origin 
𝛽# = overall effect of cell type on gene expression 
𝜷𝟑 = Effect of cell type on the observed effect of genotype. 
𝜀 = error term of the model  
 
Using this model, our term of interest will be 𝜷𝟑, represenAng the effect of one cell type 
compared to the overall effect of the genotype.  

QuesAon 9: Run the code below and modify the plolng funcAon to output a significant 
interacAon for gene 999 
 
• What is the interacAon observed between cell type, your significant SNP and gene 

999? 
• What does the bulk QTL data look like for your significant SNP and gene 999, is it a 

significant eQTL? 

interacIonResults <- data.frame() 
for (snp in SNPs) { 
  test <- expMatrixCTlonger %>% filter(gene == 'Gene985') %>%  
    dplyr::select(expression, gene, cellType, snp) %>% mutate(variant = snp) 
  colnames(test) <- c('expression', 'gene', 'cellType', 'genotype', 'variant') 
   
  lmTest <- broom::Idy(summary(lm(expression ~ genotype +  
                                     cellType + genotype*cellType,  
              data = test))) 
  lmTest$SNP <- snp 
  interacIonResults <- rbind(interacIonResults, lmTest) 
} 
 
interacIonResults %>%  
  filter(str_detect(term, ':')) %>%  
  arrange(p.value) %>% head() 
# Change the SNP value in Red to the most significant SNP: 
ggplot(expMatrixCTlonger %>% filter(gene == 'Gene985'), 
       aes(x = factor(SNP), y = expression, fill = cellType)) + 
  geom_point(posiIon = posiIon_jiperdodge()) + 
  facet_wrap(~cellType) + 
  geom_boxplot() + 
  theme_minimal() + 
  scale_fill_manual(values  = met.brewer( n = 3, 'Hokusai1')) -> signifInteracIonQLT 
 
ggsave(signifInterac/onQLT,  
       filename = '~/eQTLPrac/Expression/SignificantQTL.jpeg', width = 7, height=7, dpi = 300) 



eQTL associaAons can be driven by biological factors such as cell type proporAon or 
environmental factors. Accurate mapping of eQTL using interacAon allows for a beier 
invesAgaAon of GWAS results or of causality between phenotypes (see SMR pracAcals). 
 
Part 2: Real world eQTL: 
 
Genotype-Tissue Expression (GTEx): 
 
We will now invesAgate real-world eQTLs data. For this, we will go to the GTEx website. You 
can access it through this link (hips://gtexportal.org/home/).  
The GTEx consorAum collected post-mortem samples for 948 donors. We know that eQTLs 
are dynamic and evolve over Ame and with exposure to the environment. CharacterisAcs such 
as sex, age or disease status can influence eQTL associaAon and are therefore important.  

 
eQTL are influenced by both age5, sex6 and ancestry7; the observed unbalanced number of 
males and females, as well as a largely white and aging (84.6% white, 68.1% of samples older 
than 50) cohort, therefore, need to be taken into account when performing eQTL analysis. 
AddiAonally, the cohort can be split in half with younger donors succumbing to traumaAc 
injury while older donors displaying non-traumaAc pathologies.  

Sample characteristics, therefore, need to be considered when performing QTL mapping. You 
can read the landmark GTEx publication in 20208 to observe which sample characteristics were 
corrected for when testing for QTL associations. 

Inves.ga.on of GWAS signal: 

We will now investigate a real example of an eQTL association. For this, we will start by 
looking at a genome-wide association study of lipids published in 20139: 

Discovery and refinement of loci associated with lipid levels 
(hJps://www.nature.com/ar=cles/ng.2797) 

This paper aimed to identify the genetic control of blood lipid levels. As such, they identified 
associations between SNP and blood lipid levels. They then mapped those SNPs to the closest 
genes, concluding on their role on blood lipid levels. 

We will investigate how eQTL can give us more information regarding the genetic control of 
blood low-density lipoprotein (LDL) cholesterol. 

QuesAon 10:  
• On the GTEx website, look for the sample characterisAcs that could influence eQTL 

associaAon study. 
o Hint: Navigate to the Tissue & Sample sta=s=cs page 

QuesAon 11:  
• Read the abstract of the GWAS paper, what is the goals of this paper?    

https://gtexportal.org/home/
https://www.nature.com/articles/ng.2797


Open the Supplementary figures from the paper and go to the supplementary table 3. 

 

Let's investigate the effect of rs6511720, the genetic loci associated with the highest decrease 
in LDL blood levels. Search the GTEx website for rs6511720 and answer the following 
question: 

 

We will now look at genetic loci associated with LDL cholesterol levels. rs12916 is associated 
with HMGCR, a gene coding for HMG-CoA reductase an enzyme playing a central role in 
cholesterol synthesis. Let’s investigate eQTL associated with rs12916, search the GTEx 
website for rs12916. 

 

In conclusion, eQTL can help interpreting the functional significance of GWAS signals. They 
can provide biological interpretation of non-coding variants helping to hint at the mechanisms 
underlying complex traits and diseases. 

  

QuesAon 12:  
• Finds the gene with the strongest negaAve effect on LDL blood levels. 

o What is the impact of each alternate allele? 
o If the average person has an LDL blood level of 209.7mg/dL, what would be 

the expected LDL level of an individual with a genotype of GG at locus 
rs6511720? 

QuesAon 13:  
• With which genes is rs6511720 associated? 
• In which Assues are those associaAon located? 
• Do you think that a change in gene expression is responsible for the associaAon 

observed between LDL levels and rs6511720? 

QuesAon 14:  
• In which Assue is rs12916 associated with HMGCR? 
• Where does the SNP fall? (hint: open the IGV browser) 
• Do you think that a change in gene expression is responsible for the associaAon 

observed between LDL levels and rs12916? 
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Extension quesAon:  
 
The code used to generate bulk RNA-seq at the start of this pracAcal assumes an equal 
mixture of all three cell types. This does not represent the biology of most organs or 
Assues and was used as a simplified illustraAon of the interacAon between biological 
factors and genotype.  

• Modify the original code generaAng bulk data to include reads coming from 
different proporAons of cell types.  

• How does this influence the idenAficaAon of QTL at the bulk or single-cell level? 


