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Introduction to linear models: Outline

• Definition, terminology

• LS estimation of regression parameters

• Diagnostics



Simple linear regression
In most cases,

linear model ≈ linear regression

• describes the relationship between two 
variables

• We want to find ’the best’ line to describe 
the relationship, i.e.

" = $ + &'

Today we will: 
• show how to obtain ‘best fitting’ line using 

OLS (ordinary least squares)
• review the metrics that describe ‘model fit’
• generalize the the basic model to matrix form
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How to find the ‘best’ line to describe the 
data?



Simple linear regression

!! = #" + ##%! + &!
' = 1 … *

!# = #" + ##%# + &#
!$ = #" + ##%$ + &$

....
!% = #" + ##%% + &%

#" +*, ## are unknown population parameters
-#" +*, -## (ie ‘beta-hat’) are the population estimates

The ‘predicted’ value of y (ie y-hat) is:
.!! = -#" +-##%!

The residual (an estimate of the error) is:
̂&! = ! − .!!
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How good is the regression?

SSQ in y:

1(! − 3!)$

SSQ explained by the regression:

1(.! − 3!)$

residual SSQ:

1(! − .!)$

Thus, 
Total SSQ = regression SSQ + residual SSQ

∑(! − 3!)$=   ∑(.! − 3!)$+   ∑(! − .!)$

3!

.!

residual SSQ 
∑(! − .!)$

regression SSQ
∑(.! − 3!)$

R2 = variance explained by the regression

=
()*()++,-. //0

1-1$2 //0
=
∑(5" − 7")!

∑(" − 7")!

= 1 −
∑(" − 5")!

∑(" − 7")!



How good is the regression?

• R2 = variance explained by the regression

• A value that ranges from 
• 0 (regression explains no variation)

• 1 (perfect fit)

Ø“93.5% of the variation in tree volume can be 

explained by tree girth”

Ø“7.5% of the variation in a height of children 

can be explained by their father’s height”

6$ =
78978::';* <<=

>;>+? <<=
=
∑(.! − 3!)$

∑(! − 3!)$

R2 = 0.075

R2 = 0.935



How do we determine !! and !"?
We can use a grid-search,

1. take our data

2. guess values :" and :#
3. calculate 5"

4. calculate SSQ

5. chose model with ‘best fit’

x y
76.0 61.2
72.6 57.9
74.6 59.2
75.8 60.6
74.5 62.0
74.9 58.7
74.4 59.1
75.7 59.5
73.4 60.1
75.5 62.3

#"

##

1
(!
−
.!)
$

Not an ideal approach! -> do not do this

‘best fit’ minimizes SSQ residuals

(or maximizes R2)



How do we determine !! and !"?
• Briefly, take partial derivatives of ∑(# − %#); (w.r.t. '< and then '=), 

set to zero and solve.

• Result,
• slope:

('= =
∑(# − *#)(+ − +̅)

∑(+ − +̅);
=
--.>?
--.>

• intercept:

('< = *# − ('=+̅



Other scalar forms for estimating !"
('= =

@@A!"
@@A!

= 
∑(?B 7?)(>B>̅)
∑(>B>̅)#

('= =
/01(+, #)
134(+)

('= = 4
5?
5>

=
@@A!"
@@A!@@A"

@@A"
DB=

DB=

@@A!
=

@@A!"
@@A!

NB:
1. Variance = SSQ / ‘n’
2. R2 (variance explained by model) 

= r2 (sq. correlation) in SLR

SD of x and y

correlation



Simple linear regression

! % %! %$

6.0 1.5 9.0 2.3
1.4 4.8 6.7 23.0
1.5 5.8 8.7 33.6
5.5 3.4 18.7 11.6
3.2 5.4 17.3 29.2

17.6 20.9 60.4 99.6

!! = #" + ##%! + &!
' = 1 …*

Recall: ∑(! − 3!)(% − %̅) = *∑%! − ∑% ∑!
∑ % − %̅ $ = *∑%$ − (∑%)2

!

-## =
5%60.4 − 17.6%20.9
5%99.6 − (20.9)$

= −1.07

-#" =
17.6
5

+
1.07%20.9

5
= 7.99

y = -1.07x + 7.99
R² = 0.75
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Hypothesis testing for ‘overall fit’

• H0: All regression coefficients = 0

• Use an F-test to determine the support for H0

6 =
134738/9 9+:;3789< =# 49>4955708

134738/9 80? 9+:;3789< =# 49>4955708

6 =
--.EFG/(:EFG − 1)
--.H/(8 − :EFG)

6$ =
78978::';* <<=

>;>+? <<=

Variance = SSQ / ‘n’

Number of parameters in our model 
(i.e. = 2; #" and ##) 

Always  = 1 as we compared 
regression to a model with only 

intercept (or mean #") 

Sample size



Scalar	form:
"$ = :" + :#'$ + S$

, = 1 ….

"# = :" + :#'# + S#
"! = :" + :#'! + S!

....
"% = :" + :#'% + S%

Matrix	form:
!#
!$
⋮
!%

=

1 %#
1 %$
⋮ ⋮
1 %%

:"
:#

+

S#
S!
⋮
S%

Z = [\ + ]

Why? Convenient & generalizable 

Matrix	form:
Z = [\ + ]

Z is a n x 1 column vector of observations
[ is a n x 2 ‘design’ matrix
\ is a 2 x 1 column vector of parameters
] is a n x 1 column vector of errors
where n is the number of observations

Quick check:
[\, (n x 2) X (2 x 1) = (n x 1) matrix

! =

1 '#
1 '!
⋮ ⋮
1 '%

$J
$K

+

S#
S!
⋮
S%

=

:" + :#'#
:" + :#'!

⋮
:" + :#'%

+

S#
S!
⋮
S%

=

:" + :#'# +S#
:" + :#'! + S!

⋮
:" + :#'% + S%



Estimating parameters in matrix form
B = CD + F

We want to minimize residual SSQ, 

residuals: %F = B − CGD

H %F_ = %F`%F = (B − CGD)`(B − CGD)

Like before, take derivatives w.r.t. D, set to zero and solve.

Final result:
GD = [C`C]BaC`B



Hat matrix for prediction

! = #$ + &

• Parameter estimates: '$ = [#!#]"##!!
• Predicted values: 

!" = $!%
'! = #[#!#]"##!!

'! = )!,
where * = #[#!#]"##!

* is called the ‘hat matrix’ because it turns ! into '!



Estimation of effects for discrete variables 

• So far:

B = CD + F

• This framework can also be used to estimate the effect of discrete 
factors (or levels)

L is a n x 1 column vector of observations
M is a n x p ‘design’ matrix
N is a p x 1 column vector of parameters
O is a n x 1 column vector of errors
where n is the number of observations, &

p is the number of parameters



Estimation of effects for discrete variables 
! = %& + (

& = [%P%]QR%P!
Example: We have measured weight and SNP genotypes (AA, AB, BB) for 7 people, 
2 with AA genotype, 2 with AB and 3 BB. What is the mean effect for each 
genotype?

Need to a new ‘design matrix’ %:

$ =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

, i.e. $ is now a 7 x 3 matrix, then & becomes a 3x1 matrix, & =
'!
'"
'#

mean AA
mean AB 
mean BB

AA genotype
AB genotype
BB genotype



Estimation of effects for discrete variables 
B = CD + F

D = [C`C]BaC`B
Example:

M =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

L =

45
52
63
46
54
65
70

M&M =
2 0 0
0 2 0
0 0 3

(7x1) (7x3) (3x3)

M&L =
97
109
189

∑(## $%&')
∑(#)$%&')
∑())$%&')

N (AA geno)
N (AB geno)
N (BB geno)

(3x1)

then M&L ‘divided by’ M&M will be equal to the average per group....
[M&M]'(M&L = VN =

WX. Y
YW. Y
Z[. \

mean AA
mean AB
mean BB



Setting up the design matrix
Rank = number of independent rows of a matrix
• If # is a p x n matrix, then #!# is p x p
• # must be ‘full rank’ for [#!#]"# to exist
• If [#!#]"# exists, then there is a unique '$

• Previously we estimated a mean for each genotype using ##
(above), equally we could use #( to estimate a mean for AA 
genotypes and deviations for AB and BB genotype classes.

• However, we cannot estimate an overall mean, and 3 genotypes 
deviations as we only have 3 groups. Therefore the 4th number is a 
linear combination of the 3 others

%R =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

%] =

1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1



Estimation of effects for discrete variables 
B = CD + F

D = [C`C]BaC`B

%R =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

3& =
45. 7
74. 7
89. :

! =

45
52
63
46
54
65
70

%] =

1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

3& =
45. 7
8. :
A4. 7

OPTION 1: OPTION 2:



Model diagnostics
Hypothesis testing in OLS (ordinary least squares) 

assumes heteroscedastic, uncorrelated errors, i.e. 

( ~ CDE(0, HI^_)

It’s all about the residuals!
e.g. plot residuals on y or KL

ØShould look ‘stary night’

ØScreen for outliers

Øtest for normality, Q-Q plot or Wilk-Shapiro test

If ( ~ CDE(0, HI^_), then 3& ~CDE(&, [%P%]QKI^_)


