
GWAS Experimental Design:
statistical tests



Outline

• Types of tests, quantitative & binary traits

• Power to detect loci

• depends on LD, effect size, allele frequency, sample size

• Manhattan plots

• Other diagnostics

• QQ plot, genomic inflation and FDR

• Replication



Quantitative traits – linear regression

𝐲 = 𝟏𝛼 + 𝐱β + 𝛆

𝐲 = vector of (corrected) phenotypes

1 = vector of 1’s

𝛼 = intercept

𝐱 = vector of SNP genotypes, encoded as 0, 1 or 2 
copies of ‘a’ allele for AA, Aa or aa genotypes

β = SNP effect

𝛆 = vector of errors

Null hypothesis, H0: 𝛽 = 0

Alternative hypothesis, H1: 𝛽 ≠ 0

Balding (2006) Nat Rev Genetics



Binary traits

• Various options: chi-squared test, Armitage test, 
logistic regression etc.

• Make different assumptions about the mode-of-action 
of the allele -- this impacts power

e.g. chi-squared test; 2x2 contingency table 

H0: genotypes & case/control status are independent

H1: genotypes & case/control status are dependent

• Use logistic model if need to correct for covariates



Power to detect loci

• Statistical power is the probability to correctly rejecting the null 

hypothesis when it is true

• H0 : there is no association between loci & trait

• H1 : this is a true association between the loci & trait



Power to detect loci

Power is a function of:

• LD between SNP and causal variant

• Proportion of phenotypic variance explained by causal variant

• Sample size

• Significance threshold (𝛼)



Power – LD between SNP and causal variant

Usually, we don’t expect the most significant GWAS variant in a region to 

be causal/functional

• i.e. tested SNP in LD with an ungenotyped ‘causal variant’

• this reduces statistical power

• Sample size must increase by 1/r2 to detect an ungenotyped variant, 

compared to sample size required for testing causal variant itself

• Hence increased SNP density (i.e. imputation, WGS) to maximise LD 

between causal variants & genotyped SNP



Power – LD between SNP and causal variant

Example: 

• The variance explained by a ‘causal variant’ is 1% of 𝜎𝑃
2

• How much variance does a genotyped SNP explain when the LD 

between the causal variant and SNP is 0.2 or 0.8 ?

• r2 = 0.2 ; variance explained by SNP = 0.2 x 0.01 = 0.002 𝜎𝑃
2

• r2 = 0.8 ; variance explained by SNP = 0.8 x 0.01 = 0.008 𝜎𝑃
2

The r2 between a SNP and a ‘causal variant’ is the proportion of the 

phenotypic variance which can be observed at the SNP



Power – effect size

How much of 𝜎𝑃
2 is a marker 

expected to explain?

It is trait dependent

Moser et al. (2015) PLOS Genetics



Power – effect size

How much of 𝜎𝑃
2 is a marker 

expected to explain?

It is trait dependent

For human height, the first detected 

(i.e. largest) effect explained 0.3% 𝜎𝑃
2



Power – effect size

How much of 𝜎𝑃
2 is a marker 

expected to explain?

It is trait dependent

For human height, the first detected 

(i.e. largest) effect explained 0.3% 𝜎𝑃
2

Yengo et al. (2022) detected 12,111 

SNP collectively explaining ~ 0.5 𝜎𝑃
2

i.e. 0.004 % 𝜎𝑃
2 per SNP



Power – sample size

How big do sample sizes need to be?

For human height, 

5K individuals to detect loci 0.3% 𝜎𝑃
2

5M to detect loci explaining ~ 0.004 % 𝜎𝑃
2



Power - significance threshold

• GWAS performs millions of tests... many will be ‘significant’ (P < 0.05) by chance

• Easiest way to account for all these tests is to correct the significance threshold 

(𝛼) for number of independent tests 

• correcting for the total number of tests is overly conservative due to the LD

• LD varies between populations, thus

• EUR: 1 million independent tests (0.05/1x106) → sig. threshold p = 5x10-8

• AFR: 2 million independent tests (0.05/2x106) → sig. threshold p = 2.5x10-8

Pe’er et al. (2008) Genetic Epidemiology



Power to detect loci

Power is a function of:

• LD between SNP and causal variant (dense SNPs to maximise LD)

• Proportion of phenotypic variance explained by SNP

• Typically: < 0.005 𝜎𝑃
2 for quantitative traits, OR 1.1-1.2 binary traits

• Can’t change genetic architecture

• Sample size (bigger is more powerful)

• Significance threshold (𝛼)



• GWAS results are typically represented using a ‘Manhattan plot’

− genomic locations/order along the X-axis

− negative logarithm (base 10) of the p-value along the Y-axis

− each point is the result from a single SNP 

Manhattan Plots
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• The SNPs with the strongest associations 

will have the greatest negative logarithms, 

and will tower over the background of 

unassociated SNPs 

• like skyscrapers in Manhattan →



• A good Manhattan plot

• Wellcome Trust Case Control Consortium, Crohn's disease, Nature 2007

• Shows signals supported by many neighboring SNPs

Manhattan Plots
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• A bad Manhattan plot

• Sebastiani et al. “Genetic signatures of  exceptional longevity in humans” 

Science July 2010

• Retracted July 2011 because of poor QC

Manhattan Plots
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Regional Association Plots
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Interpreting GWAS 

signals & making 

biological insights is 

tricky, more on this 

tomorrow



• A QQ plot is a common way to demonstrate the lack of confounding effects

• The ordered observed negative logarithm of the p-values are plotted against 

the expected distribution under the null hypothesis of no association

• Ideally, the points in the plot should align along the X = Y line, with deviation at 

the end for the significant associations

Diagnostics (1) -- QQ Plot
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Diagnostics (1) -- QQ Plot

20

WTCCC (2007) Nature



• One way to quantify the lack of global inflation in the QQ plot is the genomic inflation factor (λGC) 

• This is calculated by:

− determining the median p-value of GWAS test statistics

− calculating the quantile in a chi-squared distribution with 

one degree of freedom that would give this p-value

− divide this by the median of a chi-squared distribution with

one degree of freedom (0.4549)

• Deviations of this value away from 1.0 indicate genome-wide confounding in the data.

Diagnostics (2) -- Genomic Inflation
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Diagnostics (2) -- Genomic Inflation
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Diagnostics (3) -- FDR

Non-human species might use a False Discovery Rate (FDR), thus 
at a given significant threshold (𝛼) the FDR is

FDR = # expected ‘significant’ SNP / # observed ‘significant’ SNP

e.g. If we test 1M loci with 𝛼 = 0.0001, we expect 1x106 X 0.0001 = 100 sig. loci by chance

Say we observe 150 sig. loci at 𝛼 = 0.0001

FDR = expected/observed = 100/150 = 0.67



Replication

• GWAS potentially have many false-
positives

• Replication in an independent cohort 
is required

• Be mindful of sample size (is there 

enough power to replicate?)

• Replicate size and direction of effect

• Question: What does ‘Winner’s 

curse’ refer to in GWAS? Levy et al. (2009) Nature Genetics

discovery replication



Replication

• GWAS potentially have many false-
positives

• Replication in an independent cohort 
is required

• Be mindful of sample size (is there 

enough power to replicate?)

• Replicate size and direction of effect

• ‘Winner’s curse’ -> effect size 

overestimated in discovery phase Levy et al. (2009) Nature Genetics

discovery replication



Summary

• Different types of statistical tests, but all generate P-value per SNP

• Linear model is the most common for quantitative traits

• Power considerations...

• How many individuals? As many as you can

• How many SNP? As many (good quality) SNP as you can

• Diagnostics (QQ-plots and genomic inflation) important but not perfect

• Replication is essential why?



Practical Session

Choose either Part 1, or Parts 2a & 2b

Part 1: power to detect loci
Part 2a: conduct a small GWAS in R
Part 2b: make a QQ-plot
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