

GWAS Summary Statistics

Genetics & Genomics Winter School

Module 1

Alesha Hatton

8/7/2025

Outline

- Why use GWAS summary statistics (SumStats)?
- Where to download?
- What should we check?
 - About the study?
 - About the data?
- What can we do with them?

Sharing of GWAS summary statistics

There is a consensus within the human genetics research community that it is standard to publicly share the summary-level data when publishing a GWAS study.

genetics

Asking for more

Because of the usefulness of genome-wide association study (GWAS) data for mapping regulatory variation in the human genome, the journal now asks authors to report the co-location of trait-associated variants with gene regulatory elements identified by epigenetic, functional and conservation criteria. We also ask that authors publish or database the genotype frequencies or association *P* values for all SNPs investigated, whether or not they reached genome-wide significance.

—Nat Genet editorial, July 2012

What are GWAS SumStats?

The aggregate association data for every SNP analysed in a GWAS

CellPress OPEN ACCESS

SNP A1 A2 freq b se p N
rs1001 A G 0.8493 0.0024 0.0055 0.6653 129850
rs1002 C G 0.0306 0.0034 0.0115 0.7659 129799
rs1003 A C 0.5128 0.0045 0.0038 0.2319 129830

Cell Genomics

Perspective

Workshop proceedings: GWAS summary statistics standards and sharing

Jacqueline A.L. MacArthur,^{1,2,*} Annalisa Buniello,¹ Laura W. Harris,¹ James Hayhurst,¹ Aoife McMahon,¹ Elliot Sollis,¹ Maria Cerezo,¹ Peggy Hall,³ Elizabeth Lewis,¹ Patricia L. Whetzel,¹ Orli G. Bahcall,⁴ Inês Barroso,⁵ Robert J. Carroll,⁶ Michael Inouye,^{7,8,9} Teri A. Manolio,³ Stephen S. Rich,¹⁰ Lucia A. Hindorff,³ Ken Wiley,³ and Helen Parkinson^{1,*}

Data element	Column header	Mandatory/Optional		
variant id	variant_id	One form of variant ID		
chromosome	chromosome	is mandatory, either rsID		
base pair location	base_pair_ location	or chromosome, base pair location, and genome build ^a		
p value	p_value	Mandatory		
effect allele	effect_allele	Mandatory		
other allele	other_allele	Mandatory		
effect allele frequency	effect_allele_ frequency	Mandatory		
effect (odds ratio or beta)	odds_ratio or beta	Mandatory		
standard error	standard_error	Mandatory		
upper confidence interval	ci_upper	Optional		
lower confidence interval	ci_lower	Optional		

Why use GWAS SumStats?

- Access to a large sample of individual level data can be rare (and expensive) but <u>publishing the</u> <u>summary statistics is a standard</u>
- Unless your phenotype is novel, it is likely a GWAS has already been performed
- Allows us to harness much larger sample sizes

Where to download GWAS SumStats?

Genome-wide association studies

Emil Uffelmann¹, Qin Qin Huang², Nchangwi Syntia Munung³, Jantina de Vries³, Yukinori Okada^{4,5}, Alicia R. Martin^{6,7,8}, Hilary C. Martin², Tuuli Lappalainen^{9,10,12} and Danielle Posthuma^{1,11}

Database	Content
GWAS Catalog https://www.ebi.ac.uk/gwas/	GWAS summary statistics and GWAS lead SNPs reported in GWAS papers
dbGAP https://www.ncbi.nlm.nih.gov/gap/	Public depository of National Institutes of Health-funded genomics data including GWAS summary statistics
GWAS Atlas https://atlas.ctglab.nl/	Collection of publicly available GWAS summary statistics with follow-up in silico analysis
OpenGWAS database https://gwas.mrcieu.ac.uk/	GWAS summary data sets
GeneAtlas http://geneatlas.roslin.ed.ac.uk/	UK Biobank GWAS summary statistics
Pan UKBB https://pan.ukbb.broadinstitute.org/	UK Biobank GWAS summary statistics
<u>FinnGen results</u> https://www.finngen.fi/en/access_results	GWAS summary statistics released from FinnGen, a project that collected biological samples from many sources in Finland
Pheweb.jp https://pheweb.jp/	GWAS summary statistics of Biobank Japan and cross-population meta-analyses

Large GWAS Consortia

There are lots of consortia..

PGC (https://pgc.unc.edu)

• Psychiatric disorders

GIANT (https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files)

• Anthropometric traits

ENIGMA (http://enigma.ini.usc.edu/research/download-enigma-gwas-results/)

- Subcortical brain and hippocampal volumes
- GLGC (http://lipidgenetics.org/)
 - Global lipids genetics consortium

SSGAC (https://www.thessgac.org/data)

• Social Sciences Genetic Association Consortium - social and psychological traits

EGG (https://egg-consortium.org/)

• Traits related to early growth.

Critical information from the study

- What is the phenotype?
 - How was it measured?
 - How was it treated e.g. transformed?
- What QC has been done? Covariates?
- What sample was this performed in?
 - Sample size
 - Age/sex
 - Genetic ancestry of participants
- If you plan to use sumstats from more than one study, is there sample overlap?

Critical information from GWAS SumStats

Is there a ReadMe?

- SNP name/position
- Effect allele and alternate allele (A1 and A2)
- Effect allele frequency
- Marginal SNP effect
- Standard error
- P-value
- (Per-SNP) GWAS sample size

SNP A1 A2 freq b se p N
rs1001 A G 0.8493 0.0024 0.0055 0.6653 129850
rs1002 C G 0.0306 0.0034 0.0115 0.7659 129799
rs1003 A C 0.5128 0.0045 0.0038 0.2319 129830

Item	What could be wrong?	How to fix?
------	----------------------	-------------

Item	What could be wrong?	How to fix?
Genome build	Inconsistent coordinates among GWAS summary data and LD reference.	Lift up to the same genome build using <i>liftover</i>

rs7747636 [Homo sapiens]

1.

Variant type:	SNV
Alleles:	G>A [Show Flanks]
Chromosome:	6:153265914 (GRCh38)
	6:153587049 (GRCh37)

summary data and LD reference.	ltem		What o	could be	wrong	J?		How	to fix'	?		
SNP SNP brief SNP pos Other Allee Effect Allee MAF Beta SE P 1:900730_G,A 1 900730 G A 0.1070 -0.5229 0.0598 2.31e-18 1:846808_C,T 1 846078 C T 0.1970 0.0542 0.0542 3.88e-304 1:846804_G,C 1 846078 C T 0.1970 1.1873 0.0327 4.09e-288 1:901023_T,C 1 901023 T C 0.0635 0.3909 0.0677 7.96e-9 1:845635_C,T 1 845635 C T 0.1880 0.0505 0.0445 2.39e-304 1:845232_A,G 1 845635 C T 0.0635 0.0405 2.39e-304	Genome build			6				Lift up to the same genome build using <i>liftover</i>				
1:900730_G_A 1 900730 G A 0.1070 -0.5229 0.0598 2.31e-18 1:846808_C_T 1 846808 C T 0.1980 1.1701 0.0424 7.41e-168 1:846078_C_T 1 846078 C T 0.1900 1.2671 0.0340 3.88e-304 1:846864_G_C 1 846804 G C 0.1970 1.1873 0.0327 4.09e-288 1:901023_T_C 1 901023 T C 0.0635 0.3909 0.0677 7.96e-9 1:845635_C_T 1 845635 C T 0.1880 -0.5095 0.0445 2.39e-30 1:853239_A_G 1 853239 A G 0.1970 -0.8584 0.0435 1.48e-86	SNP ID		rsID not	provided.						me and	position	informatic
1:846808_C_T1846808CT0.19801.17010.04247.41e-1681:846078_C_T1846078CT0.19001.26710.03403.88e-3041:846864_G_C1846864GC0.19701.18730.03274.09e-2881:901023_T_C1901023TC0.06350.39090.06777.96e-91:845635_C_T1845635CT0.1880-0.50950.04452.39e-301:853239_A_G1853239AG0.1970-0.85840.04351.48e-86		SNP	÷	SNP chr 🔶	SNP pos	Other Allele	Effect	Allele	MAF	Beta	SE 🔶	P +
1:846078_C_T 1 846078 C T 0.1900 1.2671 0.0340 3.88e-304 1:846864_G_C 1 846864 G C 0.1970 1.1873 0.0327 4.09e-288 1:901023_T_C 1 901023 T C 0.0635 0.3909 0.0677 7.96e-9 1:845635_C_T 1 845635 C T 0.1880 -0.5095 0.0445 2.39e-30 1:853239_A_G 1 853239 A G 0.1970 -0.8584 0.0435 1.48e-86		1:9007	730_G_A	1	900730	G	А		0.1070	-0.5229	0.0598	2.31e-18
1:846864_G_C 1 846864 G C 0.1970 1.1873 0.0327 4.09e-288 1:901023_T_C 1 901023 T C 0.0635 0.3909 0.0677 7.96e-9 1:845635_C_T 1 845635 C T 0.1880 -0.5095 0.0445 2.39e-30 1:853239_A_G 1 853239 A G 0.1970 -0.8584 0.0435 1.48e-86		1:8468	308_C_T	1	846808	С	Т		0.1980	1.1701	0.0424	7.41e-168
1:901023_T_C 1 901023 T C 0.0635 0.3909 0.0677 7.96e-9 1:845635_C_T 1 845635 C T 0.1880 -0.5095 0.0445 2.39e-30 1:853239_A_G 1 853239 A G 0.1970 -0.8584 0.0435 1.48e-86		1:8460	078_C_T	1	846078	С	Т		0.1900	1.2671	0.0340	3.88e-304
1:845635_C_T 1 845635 C T 0.1880 -0.5095 0.0445 2.39e-30 1:853239_A_G 1 853239 A G 0.1970 -0.8584 0.0435 1.48e-86		1:8468	364_G_C	1	846864	G	С		0.1970	1.1873	0.0327	4.09e-288
1:853239_A_G 1 853239 A G 0.1970 -0.8584 0.0435 1.48e-86		1:9010	023_T_C	1	901023	т	С		0.0635	0.3909	0.0677	7.96e-9
		1:8456	635_C_T	1	845635	С	Т		0.1880	-0.5095	0.0445	2.39e-30
1:848456_A_G 1 848456 A G 0.2050 -0.6497 0.0431 2.90e-51		1:8532	239_A_G	1	853239	А	G		0.1970	-0.8584	0.0435	1.48e-86
		1:8484	456_A_G	1	848456	А	G		0.2050	-0.6497	0.0431	2.90e-51

ltem	What could be wrong?	How to fix?
Genome build	Inconsistent coordinates among GWAS summary data and LD reference.	Lift up to the same genome build using <i>liftover</i>
SNP ID	rsID not provided.	Use chromosome and position information to find the rsID (from reference file)
Alleles	Lower/upper case. Unknown effect allele (A1/A2, REF/ALT).	Check ReadMe file. Check if the predictor is negatively correlated with the phenotype.
Effect allele frequency (p)	Missing data. Provided data are minor allele frequency (MAF). Separate values in cases and controls.	Use data from LD reference. Impute by summary data $2pq = 1/(N * SE + N * b^2)$ $p = \frac{(N_{case}p_{case} + Nctrl p_{ctrl})}{N_{case} + N_{ctrl}}$

Item	What could be wrong?	How to fix?
Genome build	Inconsistent coordinates among GWAS summary data and LD reference.	Lift up to the same genome build using <i>liftover</i>
SNP ID	rsID not provided.	Use chromosome and position information to find the rsID (from reference file)
Alleles	Lower/upper case. Unknown effect allele (A1/A2, REF/ALT).	Check ReadMe file. Check if the predictor is negatively correlated with the phenotype.
Effect allele frequency (p)	Missing data. Provided data are minor allele frequency (MAF). Separate values in cases and controls.	Use data from LD reference. Impute by summary data $2pq = 1/(N * SE + N * b^2)$ $p = \frac{(N_{case}p_{case} + Nctrlpctrl)}{N_{case} + N_{ctrl}}$
Marginal effect (b)	Provided data are Z-score or odds ratio (OR).	$b = Z / SE$ if SE is provided or $b = Z / \sqrt{2p(1-p)(N+Z^2)}$ given unit variance b = log(OR)

ltem	What could be wrong?	How to fix?
Missing data	Some SNPs have missing data.	Impute the missing data or remove SNPs.
Mismatched SNPs	SNPs in GWAS are missing in the LD reference, or in reverse.	For applications requiring a perfect match, filter SNPs or impute their marginal effects (e.g., <i>ImpG</i>).
Allele discordance	Discordant alleles between data sets, e.g., A/T in GWAS but T/A in LD reference.	Flip the alleles in GWAS and take the opposite sign of the marginal effect size.
Allele frequency differences	Large differences between GWAS and LD reference data.	Remove SNPs with large difference, e.g., > 0.2.
LD differences	LD reference does not match LD in the GWAS sample.	Choose a better LD reference. Remove SNPs with LD heterogeneity (<i>DENTIST</i>).
Variable per-SNP sample sizes	Dispersed/skewed/multimodal distribution. Only overall sample size provided in meta- analysis.	Visualise the distribution. Remove long tail/minor mode/ outliers, e.g., > 3*SD. Impute N = 1/(2pq(SE+b ²)) if necessary.
Sample size for disease	Total sample size (N _{case} + N _{ctrl}) or effective sample size - which one to use?	For <i>SBayes</i> , we recommend using the total sample size.
Standard error (SE)	Missing data.	SE = b/Z if b is provided, or $SE = 1/\sqrt{2p(1-p)(N+Z^2)}$ given unit variance.
Sample size (N)	Missing data. Separate values in cases and controls.	Check publication/ReadMe file. Some methods require total sample size, while some requires effective sample size.
Incorrect data field format.	Some data field has NA and is non-numeric.	Convert to correct format and filter/impute missing data.

What can we do with them?

- Meta-analysis: METAL, MTAG
- Finding independent association loci: PLINK-clumping, GCTA-COJO
- Fine-mapping causal variants: SuSiE, FINEMAP
- Variant annotation: ANNOVAR

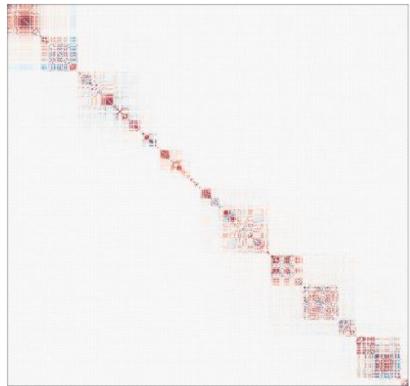
. . .

- Exploring pleiotropic effects (PheWAS)
- Gene-based test: MAGMA, fastBAT, mBAT-combo
- Integrating with functional data: coloc, SMR, TWAS, OPERA ← Module 6
- Inferring trait-relevant tissues/cell types: LDSE-SEG, MAGMA-gene-set, scDRS
- Estimating SNP-based heritability: LDSC, SBayesR
- Estimating genetic correlation: Popcorn, MiXeR
- **Predicting polygenic score (PGS/PRS)**: PRScie, LDpred2, PRScs, SBayesRC ← Module 5

 \leftarrow Module 3

• Inferring causal relationship between traits: twosampleMR, GSMR, LCV ← Module 4

These will be covered this afternoon

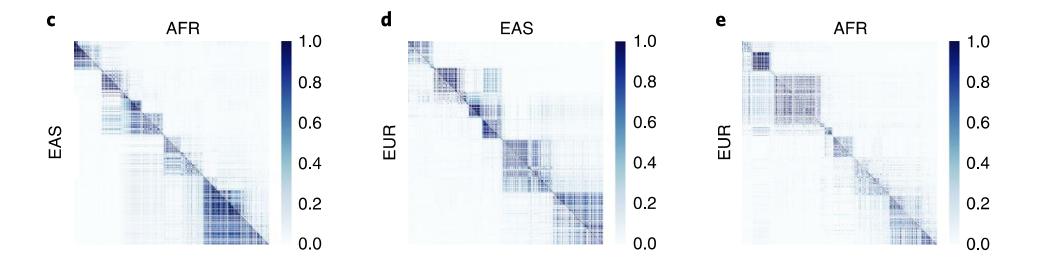


Linkage disequilibrium (LD) correlations

Usually obtained from a reference population LD correlation matrix

$$\mathbf{R} = \frac{1}{n} \mathbf{X}' \mathbf{X}$$

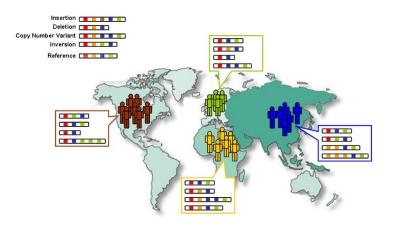
assuming **X** is standardised with mean zero and variance one



Match in ancestry

LD reference needs to match with GWAS sample

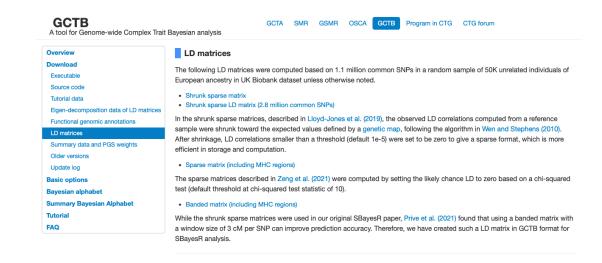
- No systematic differences in LD \rightarrow same ancestry and population structure
- Minimum sampling variance in LD \rightarrow LD ref sample size cannot be too small


Where to find LD reference data?

1000 Genomes Project (1KGP)

Individual sequence data

https://www.internationalgenome.


<u>org</u>

UK Biobank (UKB)

We provide LD matrices computed from a subset of UKB samples

https://cnsgenomics.com/software/gctb/#LDma trices

Summary

- GWAS summary statistics are publicly available for almost every trait you could think of
- Before using publicly available data make sure you understand how it was created and what it is comprised of
 - The checks you will want to do will depend on what you plan to do with the data