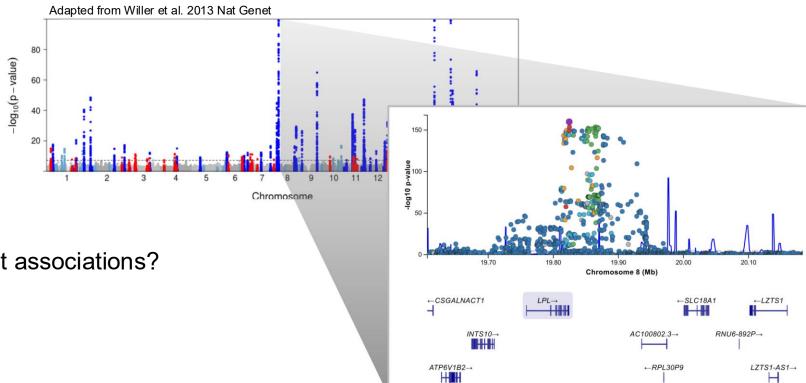


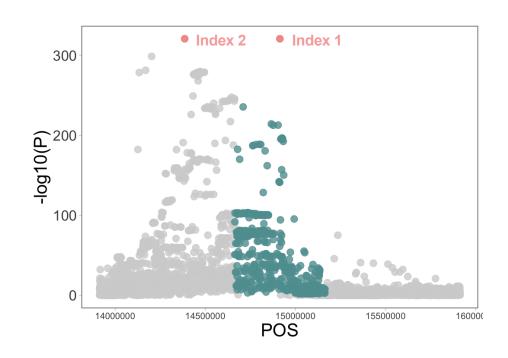
MODULE 1 | GENETIC MAPPING Session 8. Independent GWAS associations


8th July 2025

Independent loci | Background

- GWAS associations are typically clustered along the chromosome
- These clusters typically represent several variants in LD with each other

- How can we identify independent associations?
 - LD-based clumping
 - Conditional analyses
- Why is it important to assess the number of independent associations?
 - Better understanding of the true genetic architecture of the trait
 - Inform functional follow-up studies
 - Out-of-sample prediction



What is LD clumping?

- A method to restrict GWAS summary statistics to a subset of variants that are uncorrelated with each other.
- This method is implemented in PLINK

How does it work?

- The SNP with lowest P-value is defined as an index SNP
- 2. Variants are assigned to the same cluster as the index SNP if:
 - in LD with the index SNP, based on a given LD r² and associated at a given *P*-value threshold
 - within a certain distance from the index SNP
- 3. Start again by assigning next (non-clumped) lowest P-value SNP as an index SNP

What is LD clumping?

- A method to restrict GWAS summary statistics to a subset of variants that are uncorrelated with each other.
- This method is implemented in PLINK

How does it work?

- 1. The SNP with lowest P-value is defined as an index SNP
- 2. Variants are assigned to the same cluster as the index SNP if:
 - in LD with the index SNP, based on a given LD r² and associated at a given P-value threshold
 - within a certain distance from the index SNP
- 3. Start again by assigning next (non-clumped) lowest P-value SNP as an index SNP

PLINK example:

```
plink --bfile $ld_ref \
    --clump $sumstats_file \
    --clump-p1 5e-8 \
    --clump-p2 0.01 \
    --clump-r2 0.5 \
    --clump-kb 250 \
    --out $output_file
```

Needs individual-level data from the GWAS or a reference dataset to estimate LD

What is LD clumping?

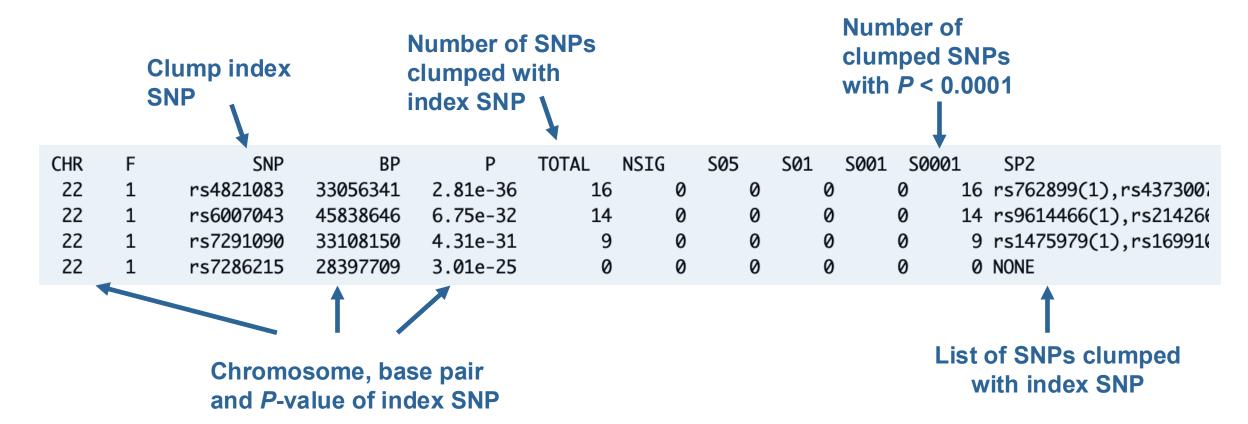
- A method to restrict GWAS summary statistics to a subset of variants that are uncorrelated with each other.
- This method is implemented in PLINK

How does it work?

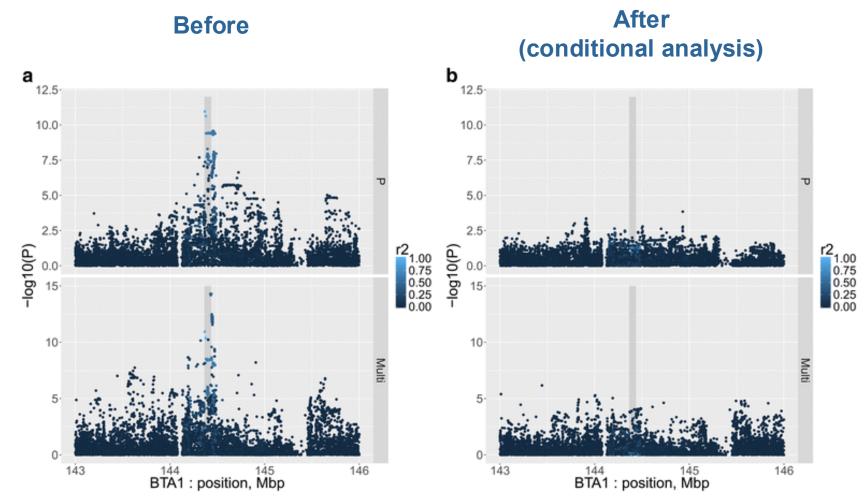
- The SNP with lowest P-value is defined as an index SNP.
- 2. Variants are assigned to the same cluster as the index SNP if:
 - in LD with the index SNP, based on a given LD r² and associated at a given P-value threshold
 - within a certain distance from the index SNP
- 3. Start again by assigning next (non-clumped) lowest P-value SNP as an index SNP

PLINK example:

```
plink --bfile $ld_ref \
    --clump $sumstats_file \
    --clump-p1 5e-8 \
    --clump-p2 0.01 \
    --clump-r2 0.5 \
    --clump-kb 250 \
    --out $output_file
```


User can specify:

- Maximum P-value of index (p1)
- Maximum P-value for clumping (p2)
- LD r² threshold for clumping
- Distance from index for clumping



Example output file

Each line represents one clump.

Kemper et al. 2016 BMC Genomics

What do you conclude?

In some cases, we may have variants that are in close proximity and in LD with each other, but that represent independent associations. Here is an example:

							Conditiona	Conditional on rs12794714		on rs116970203
Chr	SNP	Position	EA	EAF	beta	<i>P</i> -value	bC	pC	bC	pC
11	rs61883501	13882754	Α	0.97	0.002	0.7492	-0.012	0.0373	0.006	0.2683
11	rs116970203	14876718	G	0.97	0.377	0.0E+00	0.415	0.0E+00	NA	NA
11	rs117576073	14912573	G	0.99	0.147	5.9E-62	0.182	1.1E-93	0.159	2.8E-72
11	rs12794714	14913575	G	0.58	0.088	0.0E+00	NA	NA	0.105	0.0E+00
11	rs61891388 660	66079818	T	0.54	-0.013	4.1E-10	-0.013	4.1E-10	-0.013	4.1E-10
11	rs78168201	70971149	С	0.99	-0.089	5.2E-25	-0.089	5.3E-25	-0.089	5.3E-25
11	rs1660839	71094232	G	0.75	-0.029	6.4E-37	-0.029	6.6E-37	-0.029	6.6E-37
11	rs12803256	71132868	Α	0.22	-0.104	0.0E+00	-0.104	0.0E+00	-0.104	0.0E+00

Revez et al. 2020 Nat Commun

- The highlighted SNPs would likely be clumped together because they are:
 - within 36,857 bp of each other and in high LD
- But, conditional analysis shows that the effects are independent
- Ideally we would conduct a conditional analysis within the sample, but COJO offers a
 coinvent way to do this with summary statistics and an LD reference

Stepwise conditional analysis

An alternative to clumping to identify independent associations is through stepwise conditional analysis. This is typically done with individual-level data, but GCTA implements a method (COJO) that can do these analyses based on summary-level data and an LD reference (Yang et al. 2012 Nat Genet).

How does COJO work?

- Identify the most significant GWS SNP in the GWAS
- 2. Calculate the *P*-values of all other SNPs conditional on the SNP above
- 3. Identify the next most significant GWS SNP based on the conditional *P*-values
- 4. Fit all the selected SNPs jointly in a model and drop the SNP with the largest *P*-value that is greater than the cutoff *P*-value.
- 5. Repeat processes (2), (3) and (4) until no SNPs can be added or removed from the model

GCTA example:

User can change specify maximum *P*-value of SNPs selected to condition on

Example output file

Each line is an independent locus identified with COJO

Info about genetic variant tested

Marginal effects (before COJO)

Each variant fitted individually in the model

Joint effects (after COJO)

All variants fitted jointly in the same model

Chr	SNP	bp	refA	freq	b	se	p	n	freq_geno	bJ	bJ_se	рJ	LD_r
22	rs2540653	18973549	G	0.9089	-0.0087	0.0029	0.0029	707907	0.912525	-0.0398	0.003	6.62E-41	0.0034
22	rs1155419	20787850	Т	0.5695	-0.0133	0.0017	6.50E-15	700238	0.536779	-0.0265	0.0017	2.35E-53	0.0487
22	rs5754102	21916272	С	0.8226	0.0121	0.0022	4.77E-08	697485	0.824056	0.0317	0.0022	3.36E-45	-0.0342

Effect allele
Estimates are
relative to this allele

GWAS summary statistics

Some examples with COJO

SNPs in modest LD

SNP					(be	tore CO	130)	(a	iter co.	30)		
	Chr	bp	Gene	refA	freq	b	р	freq_geno	bJ	рЈ	LD_r	
	rs17720281	4	145763226	HHIP	Т	0.406	0.047	1.70E-30	0.437	0.031	9.20E-13	0.389
	rs7689420	4	145787802	HHIP	С	0.837	0.069	1.10E-41	0.836	0.054	2.90E-23	

Marginal effects

marginal SNP effects are overestimated

SNP	Chr	bp	Gene	refA	freq	b	р	freq_geno	bJ	рJ	LD_r
rs1367226	2	55943044	EFEMP1	Α	0.434	-0.005	2.00E-01	0.428	-0.027	5.00E-11	-0.421
rs3791675	2	55964813	EFEMP1	Т	0.234	-0.050	1.10E-28	0.249	-0.063	3.00E-37	

marginal SNP effects are <u>underestimated</u>, a joint analysis is more powerful!

Joint effects

(after CO IO)

Some examples with COJO

Marginal	effects
(before	COJO)

Joint effects (after COJO)

SNP	Chr bp	Gene	refA	freq	b	р	freq_geno	bJ	рJ
s4932429	15 87164536	3 ACAN	С	0.51	-0.025	2.70E-10	0.52	-0.022	2.30E-08
rs16942341	15 87189909	ACAN	Т	0.031	-0.134	2.20E-24	0.027	-0.116	1.80E-18
rs2280470	15 87196630) ACAN	Α	0.334	0.039	1.50E-22	0.33	0.036	6.30E-19

Multiple significant variants within a locus

Links for further information

- PLINK clump
- Yang et al. 2012 Nat Genet
- GCTA COJO