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Data Agreement

To maximize your learning experience, we will be working with genuine human 

genetic data, during this module.

Access to this data requires agreement to the following in to comply with human 

genetic data ethics regulations

If you haven’t done so, please email <ctr-pdg-admin@imb.uq.edu.au> with your 

name and the below statement to confirm that you agree with the following:

“I agree that access to data is provided for educational purposes only and that I 

will not make any copy of the data outside the provided computing accounts.”



Learning materials

Instructions to access WiFi/desktop/server:

https://suave-pillow-de4.notion.site/Instruction-to-Computing-Resources-

dcba658c9a584e6d80a443c5d64042d8?pvs=4

Slides and practical notes:

https://cnsgenomics.com/data/teaching/GNGWS25/module4
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•Understand the issues of observational epidemiology. 

•Understand how Mendelian randomization (MR) works, 

what its core assumptions and how to calculate causal 

effect estimates. 

•Understand what directed acyclic graphs (DAGs) are and 

how they can be used to inform study design. 

•Cover the basic limitations to Mendelian randomization.

Learning Objectives
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Vitamin E supplement use and risk of 
Coronary Heart Disease
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Vitamin E supplement use and risk of 
Coronary Heart Disease
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Vitamin E supplement use and risk of 
Coronary Heart Disease
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Inferring causality using observational data
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•Results from observational studies can give the wrong 

answer.



Inferring causality using observational data
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•Results from observational studies can give the wrong 

answer.



Classic limitations to observational science
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Confounding

Bias

Reverse Causation



Randomised Control Trials (RCTs)
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RANDOMIZATION METHOD

RANDOMISED 

CONTROLLED TRIAL

CONFOUNDERS 

EQUAL BETWEEN 

GROUPS

EXPOSED: 

INTERVENTION

CONTROL: 

NO INTERVENTION

OUTCOMES COMPARED BETWEEN GROUPS

•The gold standard in inferring 

causality!



Mendelian randomization!
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• A technique based on the idea that genetics can tell us about 

non-genetic factors and their effects on health and disease.

• MR uses genetic information as a proxy for non-genetic 

information. 

• The modifiable exposure on the outcome will be the same 

whether the exposure is influenced by the environment or 

genetics. 



Mendel’s Laws of inheritance
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1. Segregation: alleles separate at meiosis and a randomly 

selected allele is transmitted to offspring.

2. Independent assortment: alleles at different genetic loci (for 
different traits) are transmitted independently of one another.Gregor Mendel in 1862



Mendel’s Laws of inheritance
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RANDOMIZATION METHOD

RANDOMISED 

CONTROLLED TRIAL

CONFOUNDERS 

EQUAL BETWEEN 

GROUPS

MENDELIAN 

RANDOMIZATION

RANDOM SEGREGATION 

OF ALLELES

CONFOUNDERS 

EQUAL BETWEEN 

GROUPS

EXPOSED: 

FUNCTIONAL  

ALLELLES 

EXPOSED: 
INTERVENTION

CONTROL: 

NULL 

ALLELLES

CONTROL: 

NO INTERVENTION

OUTCOMES COMPARED BETWEEN GROUPS OUTCOMES COMPARED BETWEEN GROUPS

+ independent assortment



Mendel’s Laws of inheritance
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RANDOMIZATION METHOD

RANDOMISED 

CONTROLLED TRIAL

CONFOUNDERS 

EQUAL BETWEEN 

GROUPS

MENDELIAN 

RANDOMIZATION

RANDOM SEGREGATION 

OF ALLELES

CONFOUNDERS 

EQUAL BETWEEN 

GROUPS

Heavy Smokers: 

C/C

EXPOSED: 

SMOKERS

Light/Non 

Smokers:

C/T or T/T

CONTROL: 

NON SMOKERS

LUNG CANCER COMPARED 

BETWEEN GROUPS

LUNG CANCER COMPARED 

BETWEEN GROUPS

+ independent assortment

CHRNA5 gene 

(rs16969968)



What is a DAG
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• Directed Acyclic Graph.

• Systematic representation of causal relationships.

• Displays assumptions about the relationship between 

variables.

• Clarify study design.



What is a DAG
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SNP

(Z)

Exposure

(X)

Outcome

(Y)

Confounders

✕

✕



The DAG game
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DAG Rules

• They have to be directed.

• They have to be acyclic.

• All common causes must be represented.

• Time flows from left to right.



DAG Rules

19

• They have to be directed.

• They have to be acyclic.

• All common causes must be represented.

• Time flows from left to right.



DAG Rules
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• They have to be directed.

• They have to be acyclic.

• Common causes of two variables must be represented.

• Time flows from left to right.



DAG Rules
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• They have to be directed.

• They have to be acyclic.

• All common causes must be represented

• Time flows from left to right.



Is it a DAG?
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Glossary
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• Parent: a direct cause of a 

particular variable.

• Ancestor: a direct cause or indirect 

cause of a particular variable. 

• Child: The direct effect of a 

particular variable. 

• Descendant: a direct effect or 

indirect effect of a particular 

variable.

• Common cause: A variable that is 

an ancestor of two other variables. 

Exposure Outcome

Z

Confounder

Common cause

Grandparent

Ancestors

Offspring

Descendants

Parent



How to construct a DAG
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• Start with the exposure/treatment and the outcome/endpoint.
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Exposure Outcome



How to construct a DAG
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• Start with the exposure/treatment and the outcome/endpoint.

• Consider variables embedded in the question (e.g. 

mediators/moderators).
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Exposure Outcome

Mediator

Moderator
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Sleep quality Academic achievement

Alertness

Mental health



How to construct a DAG
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• Start with the exposure/treatment and the outcome/endpoint.

• Consider variables embedded in the question (e.g. 

mediators/moderators).

• Consider confounding variables and add to the DAG.  
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Confounders

Sleep quality Academic achievement

Alertness

Mental health
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Unmeasured

confounders

Measured 

confounders

Sleep quality Academic achievement

Alertness

Mental health



How to construct a DAG
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Must be included Not required

All common causes of any 2 variables 

(confounders)

Variables that cause Y but not A 

(moderators)

Unmeasured and unmeasurable 

common causes (use U notation)

Selection variables (i.e. inclusion 

criteria)

Remember:

• Assumptions must be made.

• There are often more than 1 appropriate DAG

• Alternative DAGs can make excellent sensitivity analyses. 



Glossary
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• Back door path: A connection between X and Y that 

does not follow the path of the arrows. 

• Collider: A variable that is a descendant of two other 

variable. The term collider is used because the arrows 

“collide” at the descendant node. 

• Conditioning: Conditioning on a variable means using 

either sample restriction, stratification, adjustment to 

examine the association of X and Y. 



Back door path
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Exposure Outcome

C

• Back door path: A connection 

between X and Y that does not follow 

the path of the arrows. 



Back door path
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Exposure Outcome

C

• Back door path: A connection 

between X and Y that does not follow 

the path of the arrows. 



Collider
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Obesity Mortality

• Collider: A descendant of two other 

variables (where two arrows collide). 

• Collider Bias: A phenomenon 

involving conditioning on common 
effects. 



Collider
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Obesity MortalityCVD

• Collider: A descendant of two other 

variables (where two arrows collide). 

• Collider Bias: A phenomenon 

involving conditioning on common 
effects. Genes



Collider
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Collider
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Collider
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Sporting ability Academic ability

Admittance to school 

Sporting ability and admittance 

to the school are dependent

Academic ability and 

admittance to the school are 
dependent

Sporting ability and academic 

ability are independent

BUT

Sporting ability and academic 

ability are dependen. 

Conditional on the school!



Conditioning
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Draw a box around the conditioned variables. 

1.Conditioning on a variable in an open backdoor path 

removes the non-causal association (controls for 

confounding).

2.Conditioning on a collider opens the path that the collider 

was blocking.

3.Conditioning on a variable in the causal pathway 

(mediator) removes part of the causal effect. 



Conditioning
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Exposure Outcome

C



Conditioning
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Draw a box around the conditioned variables. 

1.Conditioning on a variable in an open backdoor path 

removes the non-causal association (controls for 

confounding).

2.Conditioning on a collider opens the path that the collider 

was blocking.

3.Conditioning on a variable in the causal pathway 

(mediator) removes part of the causal effect. 



Conditioning
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Exposure Outcome

C



Conditioning
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Draw a box around the conditioned variables. 

1.Conditioning on a variable in an open backdoor path 

removes the non-causal association (controls for 

confounding).

2.Conditioning on a collider opens the path that the collider 

was blocking.

3.Conditioning on a variable in the causal pathway 

(mediator) removes part of the causal effect. 



Conditioning

51

Exposure Outcome

Mediator



DAG elements
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Element Description

Boxed elements indicate that the 

variable is conditioned on.

An arrow with a solid line indicates 

direct association between two 

variables.

An arrow with a dashed line 

indicates indirect association 

between two variables

C Confounders.

U Unmeasured confounders



Assumptions underlying MR
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SNP

(Z)

Exposure

(X)

Outcome

(Y)

Confounders

✕

✕



Assumptions underlying MR
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SNP

(Z)

Exposure

(X)

Outcome

(Y)

Confounders

✕

✕

1

(1) Relevance assumption: SNP is associated with the exposure



Assumptions underlying MR
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SNP

(Z)

Exposure

(X)

Outcome

(Y)

Confounders

✕

✕

1

2

(1) Relevance assumption: SNP is associated with the exposure

(2) Independence assumption: SNP is NOT associated with confounding 

variables



Assumptions underlying MR
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SNP

(Z)

Exposure

(X)

Outcome

(Y)

Confounders

✕

✕

1

2

3

(3) Exclusion restriction: SNP ONLY associated outcome through the exposure

(1) Relevance assumption: SNP is associated with the exposure

(2) Independence assumption: SNP is NOT associated with confounding 

variables



One-Sample MR
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Genotypes, exposure and outcome are available on 

individuals from the same sample.

Confounders 

(C)

Genetic 

variant (Z)

Exposure 

from one 

sample (X)

Outcome from 

the same 

sample (X)



Two sample MR
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SNP-exposure and SNP-
outcome association estimates 
from two independent 
samples from the same 
underlying population.

Confounders 

(C)

Genetic 

variant (Z)

Exposure 

from one 

sample (X)

Outcome 

from 

another 

sample (X)



Generate causal estimate

1. The association of the SNP and the outcome Test for existence of an effect



Generate causal estimate

1. The association of the SNP and the outcome

2. Two-stage least squares

3. The Wald estimator

Test for existence of an effect

Estimate the size of the effect



Calculating causal effect estimates
Two-Stage Least Squares

61

A single sample of individuals with data on the SNP, the exposure 

and the outcome. Also known as “One sample MR”.

Manual calculation:

1. Regress exposure on SNP to get predicted values.
2. Regress outcome on predicted exposure (from 1st stage 

regression).

The regression coefficient from the second stage is the estimate of 

the causal effect of the exposure on the outcome. 



Calculating causal effect estimates
Two-Stage Least Squares

62

A single sample of individuals with data on the SNP, the exposure 

and the outcome. Also known as “One sample MR”.

Manual calculation:

1. Regress exposure on SNP to get predicted values.
2. Regress outcome on predicted exposure (from 1st stage 

regression).

The regression coefficient from the second stage is the estimate of 

the causal effect of the exposure on the outcome. 

This gives you: difference in outcome per unit change in (genetically-predicted) exposure
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SNP Exposure Outcome

Confounders

βSNP-Exposure

βSNP-Outcome

? βCausal Exp-Out

Where there is a linear relationship between 

SNP, exposure and outcome:

βSNP-Outcome = βCausal Exp-Out x βSNP-Exposure

Calculating Causal Effect Estimates
Wald Estimator (Wald Ratio)

βSNP-Outcome

βSNP-Exposure
βCausal effect (Wald estimator) = 
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Calculating Causal Effect Estimates
Wald Estimator (Wald Ratio)

SNP Weight
Blood 

pressure

Confounders

βSNP-Weight

(0.5 kg)

βSNP-Blood Pressure

(0.9 mmHg)

? βCausal Weight-BP

βSNP-Outcome

βSNP-Exposure

Where there is a linear relationship between 

SNP, exposure and outcome:

βSNP-Outcome = βCausal Exp-Out x βSNP-Exposure

βCausal effect (Wald estimator) =

Wald estimator can be used 

in one sample (“One sample 

MR”) as well as different 

samples (“Two sample MR”)

0.9 mmHg/allele

0.5 kg/allele
βCausal effect Weight-BP =                           = 1.8 mmHg/kg  



MR example:  THE GOOD
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BMI 

genotype
BMI

CRP serum 

levels

Confounders



MR example:  THE GOOD
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CRP 

genotype
CRP BMI

Confounders
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Effect estimates

Exposure ➜ Outcome
Observational 

association

Instrumental 

variable (MR)
PIV Pdiff Ffirst

BMI ➜ CRP
1.075 

(1.073, 1.077)

1.06

(1.02, 1.11)
0.002 0.6 50.2

CRP ➜ BMI
1.58 

(1.53, 1.63)

-0.30

(-0.78, 0.18)
0.2 <0.00001 78.3
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Effect estimates

Exposure ➜ Outcome
Observational 

association

Instrumental 

variable (MR)
PIV Pdiff Ffirst

BMI ➜ CRP
1.075 

(1.073, 1.077)

1.06

(1.02, 1.11)
0.002 0.6 50.2

CRP ➜ BMI
1.58 

(1.53, 1.63)

-0.30

(-0.78, 0.18)
0.2 <0.00001 78.3



MR Example: THE BAD
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MR Example: THE BAD
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MR Example: THE BAD
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MR Example: THE BAD
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MR Example: THE BAD
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Limitations of MR

74
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Reasons for failing to observe a SNP-outcome 
association despite a real causal association existing 

Power and weak instrument bias

Power:

• Genetic variants explain very small amounts of phenotypic variance in a given trait.

• VERY large sample sizes are generally required.

Weak instruments: 

• Genetic variants that are weak proxies for the exposure.

• Results in biased causal estimates from MR.

Different impact of the bias from weak instruments:

• One-Sample MR: to the confounded estimate.

• Two-Sample MR: to the null.
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Reasons for failing to observe a SNP-outcome 
association despite a real causal association existing 

Power
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Using Multiple Genetic Variants as Instruments

Creating allelic scores using multiple genetic variants.

Testing multiple variants individually and then meta-analysing individual SNPs.
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Reasons for detecting a causal SNP-outcome when 
it does not exist

Population Stratification:

• Creates genetic confounding.

• Assumption 2 is violated.

Overlapping discovery GWAS and MR estimation samples.

Pleiotropy

• Multiple phenotypic effects. 

• Assumption 3 is violated.
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Pleiotropy: Genetic variant influences more than one trait

SNP

Exposure

Outcome

Vertical 

pleiotropy

SNP

Outcome

Horizontal 

pleiotropy

Exposure

SNP

(Z)

Exposure

(X)

Outcome

(Y)

Confounders

✕

✕

1

2

3
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Horizontal Pleiotropy

Pleiotropy only violates MR’s assumptions if it involves a pathway 

outside that of the exposure and is a pathway that affects your 

outcome.

Outcome

SNP

Exposure

B1 B2

Exposure

B1

SNP

B2

Outcome

Violation



MR Base
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MR Dictionary

82
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Conclusion
• MR uses genetic variants as proxies of modifiable exposures and can 

overcome some key limitations of observational studies.

• MR can reliably test for causal relationships, provided that three key 

assumptions are met.

• SNPs with known functional consequences increase the value of MR 

studies:

– Less likely to violate the assumptions.

– Increased biological understanding of the SNP -> exposure associations.

• Effect sizes are likely to be small, so sample sizes need to be very large.
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Useful references

George Davey Smith, Gibran Hemani, Mendelian randomization: genetic anchors for causal inference in 

epidemiological studies, Human Molecular Genetics, Volume 23, Issue R1, 15 September 2014, Pages R89–

R98, https://doi.org/10.1093/hmg/ddu328

Brion, Marie-Jo A et al. “Calculating statistical power in Mendelian randomization studies.” International journal of 

epidemiology vol. 42,5 (2013): 1497-501. doi:10.1093/ije/dyt179

Davey-Smith & Ebrahim (2003). "Mendelian randomization": can genetic epidemiology contribute to understanding 

environmental determinants of disease? IJE, 32. 1-22

Davies et al (2018). Reading Mendelian randomization studies: a guide. glossary, and checklist for clinicians. BMJ. 

Jul 12, 362:601

Evans & Davey-Smith (2015). Mendelian randomization: New applications in the coming age of hypothesis free 

causality. Annu Rev Genomics Hum Genet, 16, 327-50

Sanderson, E., Glymour, M.M., Holmes, M.V. et al. Mendelian randomization. Nat Rev Methods Primers 2, 6 

(2022). https://doi.org/10.1038/s43586-021-00092-5

https://doi.org/10.1093/hmg/ddu328
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