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• Mendelian randomization is a technique that uses genetically informative observational data to inform 

causality

• Three core assumptions:

(1) Relevance assumption: SNP is associated with the exposure

(2) Independence assumption: SNP is NOT associated with confounding variables

(3) Exclusion restriction: SNP ONLY associated outcome through the exposure

• Pleiotropy: Genetic variant influences more than one trait

• One-sample MR is where the SNP, exposure and outcome are all available in the same study

• Two-sample MR is where the SNP-exposure association is measured in one study and the SNP 

outcome association is measured in a second study

Recap
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Assumption 1: Relevance assumption

Recap
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Typically, SNPs which pass genome-wide 

significance (P<5x10-8) and have been replicated 

in independent samples are used as IV’s 

• Weak instruments:

- Loss of power

- Bias due to violations of the other 

assumptions will be amplified

- Bias towards outcome-risk factor association 

in one-sample MR or towards the null in two-

sample MR – precision is also 

underestimated.

• Weak instruments can be detected using an 

F-statistic in one-sample MR (F-statistic > 10)

Fstat = R2 * (N-1)

         (1-R2)

Burgess S and Thompson SG. Stat Med (2011) 30(11):1312-1323

Burgess S et al. Int J Epidemiol. (2011) 40(3):755-764



Assumption 2: Independence assumption

Recap

6

• Technically impossible to prove this assumption 
holds as we can’t test for association with 
unobserved confounders (need to rely on good 
knowledge of the science)

• May be possible to disprove by checking that the 
genetic variant is independent of measured 
confounders of the exposure-outcome 
relationship

• Factors that could influence the genetic 
variants and outcome include population 
stratification or structure, intergenerational 
(dynastic) effects and assortative mating. 

Carter & Anderson (2024) International Journal of Epidemiology
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Assumption 3: Exclusion restriction

Recap
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• Again, is difficult to prove this assumption 

holds

• Horizontal pleiotropy = SNP is associated with 

multiple traits independently of the exposure 

of interest

• Extensions to the basic MR design can be 

used to detect horizontal pleiotropy and 

estimate causal effect in its presence



• Inverse variance weighted MR

• Heterogeneity tests

• Multivariable MR

• MR Egger

• MR Weighted Median

• Steiger Filtering

Outline
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Single variants

Two-sample MR

10

Genetic 

Variant

(Z)

Outcome

(Y)

Risk factor

(X)መ𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = መ𝛽𝑍𝑋
መ𝛽𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = መ𝛽𝑋𝑌

መ𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = መ𝛽𝑍𝑌

መ𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = መ𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 x መ𝛽𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 

Can be estimated in different samples (e.g. two-sample MR)

Confounders

Causal effect ( መ𝛽𝑋𝑌) by Wald estimator: 
෡𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

Standard error ( ො𝜎𝑋𝑌) by Delta method: 
𝜎𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒



𝑉𝑎𝑟 መ𝛽𝑥𝑦 = 𝑉𝑎𝑟
መ𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

መ𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

 ≈
𝑉𝑎𝑟 ෡𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
2

 
+

෡𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒
2

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
4 𝑉𝑎𝑟 ෠𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 − 2

෡𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
3 𝐶𝑜𝑣 ෠𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 , ෠𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

 ≈
𝑉𝑎𝑟 ෡𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
2

 
 

SE( መ𝛽𝑋𝑌) = ො𝜎𝑋𝑌 ≈
𝑉𝑎𝑟 ෡𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
2

 

 ≈
𝜎𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

Delta method to estimate SE of Wald ratio
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Multiple variants

Two-sample MR
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Genetic 

Variants

(Zk)

Outcome

(Y)

Risk factor

(X)መ𝛽𝑆𝑁𝑃𝑘−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = መ𝛽𝑍𝑘𝑋
መ𝛽𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = መ𝛽𝑋𝑌

መ𝛽𝑆𝑁𝑃𝑘−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = መ𝛽𝑍𝑘𝑌

Causal effect by Wald estimator: Inverse variance weighted (IVW) average causal effect:

መ𝛽𝑋𝑌𝑘
=

መ𝛽𝑆𝑁𝑃𝑘−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

መ𝛽𝑆𝑁𝑃𝑘−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

መ𝛽𝐼𝑉𝑊 =
σ𝑘=1

𝐾 ෡𝛽𝑋𝑌𝑘
𝑤𝑘

σ𝑘=1
𝐾 𝑤𝑘

Confounders

Where 𝑤𝑘 = 
1

𝒗𝒂𝒓(෡𝛽𝑋𝑌
𝑘
)
 = 

1

ෝ𝜎𝑋𝑌𝑘
2 =

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
2

𝜎𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒
2  

is the inverse variance of the causal effect 

estimated from the kth genetic variant



Multiple variants

Two-sample MR
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Genetic 

Variants

(Zk)

Outcome

(Y)

Risk factor
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Causal effect by Wald estimator: Inverse variance weighted (IVW) average causal effect:

መ𝛽𝑋𝑌𝑘
=

መ𝛽𝑆𝑁𝑃𝑘−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

መ𝛽𝑆𝑁𝑃𝑘−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

Confounders

መ𝛽𝐼𝑉𝑊 =
σ𝑘=1

𝐾 ෡𝛽𝑋𝑌𝑘
𝑤𝑘

σ𝑘=1
𝐾 𝑤𝑘

Where 𝑤𝑘 = 
1

𝒗𝒂𝒓(෡𝛽𝑋𝑌
𝑘
)
 = 

1

ෝ𝜎𝑋𝑌𝑘
2 =

෡𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
2

𝜎𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒
2  

is the inverse variance of the causal effect 

estimated from the kth genetic variant



Multiple variants

Two-sample MR
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Multiple variants

Two-sample MR
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 = 
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is the inverse variance of the causal effect 

estimated from the kth genetic variant



• IVW is equivalent to a weighted regression of 

SNP-outcome effects on SNP-exposure effects 

passing through the origin

• The weights are 
1

𝝈𝒁𝒌𝒀

• The slope is the estimate of the causal effect

Fixed effects IVW-MR and weighted linear regression
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• Using summarized data for two-sample MR analyses is convenient when sharing individual level data is 

impractical

• If:

- The K genetic variants are perfectly uncorrelated (not in LD) and do not interact

- The two samples are homogenous (same underlying populations)

- Constant causal effect at each level of the exposure

Then two-sample MR can consistently estimate the true causal effect

• Two-sample MR is still vulnerable to weak instrument bias

- Bias towards the null effect, not the observational estimate

- If approximate F-statistic ( መ𝛽𝑍𝑘𝑋
2 /𝜎𝑍𝑘𝑋

2 ) is greater than 10, then the expected dilution of መ𝛽𝑋𝑌𝑘
 towards zero is 

less than 10%

Assumptions for two-sample MR
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Performing MR with summary statistics
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The issue of strand

19Hartwig FP et al. Int J Epidemiol. (2016) 45(6):1717-1726



The issue of strand
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The issue of strand
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Harmonise exposure and outcome effects
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Harmonise exposure and outcome effects
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Harmonise exposure and outcome effects
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Harmonise exposure and outcome effects
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SNP Study 1 alleles Study 1 allele 

freq

Study 2 alleles Study 2 allele 

freq

Verdict?

rs1 A/G 0.2 A/G 0.2

rs2 G/T 0.3 T/G 0.72

rs3 G/C 0.65 G/C 0.62

rs4 A/T 0.49 A/T 0.5

rs5 A/T 0.12 A/T 0.89

rs6 A/G 0.4 A/T 0.4

Strand issue exercise
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MR methods for handling horizontal 

pleiotropy

Many methods now exist!
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• MR uses genetic variants to test for causal relationships between phenotypic exposures and disease-

related outcomes

• Due to the proliferation of GWAS, it is increasingly common for MR analyses to use large numbers of 

genetic variants

• Increased power but greater potential for pleiotropy

• Pleiotropic variants affect biological pathways other than the exposure under investigation and therefore 

can lead to biased causal estimates and false positives under the null

Extensions to MR

28



Two-sample MR
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SNP Exposure Outcome

Confounders

✕

✕

1

2

3

(1) Relevance assumption: SNP is associated with the exposure

(2) Independence assumption: SNP is NOT associated with confounding variables

(3) Exclusion restriction: SNP ONLY associated outcome through the exposure



No direct pleiotropy

Two-sample MR

30

SNPk Exposure Outcome

Confounders

✕

✕

1

2

3

መ𝛽𝑍𝑘𝑋 መ𝛽𝑋𝑌

30

3

Causal effect by Wald estimator:

መ𝛽𝑋𝑌𝑘
=

መ𝛽𝑆𝑁𝑃𝑘−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

መ𝛽𝑆𝑁𝑃𝑘−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

Inverse variance weighted 

(IVW) average causal effect:

መ𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = መ𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 x መ𝛽𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

መ𝛽𝐼𝑉𝑊 =
σ𝑘=1

𝐾 ෡𝛽𝑋𝑌𝑘
𝑤𝑘

σ𝑘=1
𝐾 𝑤𝑘



With direct pleiotropy (𝛼𝑘)

Two-sample MR

31

SNPk Exposure Outcome

Confounders

✕

✕

1

2

3

መ𝛽𝑍𝑘𝑋

𝛼𝑘

መ𝛽𝑋𝑌

σ𝑘=1
𝐾 መ𝛽𝑋𝑌𝑘

𝑤𝑘

σ𝑘=1
𝐾 𝑤𝑘

= መ𝛽𝐼𝑉𝑊 + Bias(𝛼, መ𝛽𝑆𝑁𝑃𝑘−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒)

31

3

Causal effect by Wald estimator:

መ𝛽𝑆𝑁𝑃𝑘−𝑂𝑢𝑡𝑐𝑜𝑚𝑒

መ𝛽𝑆𝑁𝑃𝑘−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

= መ𝛽𝑋𝑌𝑘
+

𝛼𝑘

መ𝛽𝑆𝑁𝑃𝑘−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

Inverse variance weighted 

(IVW) average causal effect:

መ𝛽𝑆𝑁𝑃−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = መ𝛽𝑆𝑁𝑃−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 x መ𝛽𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒−𝑂𝑢𝑡𝑐𝑜𝑚𝑒



We expect that each SNP represents an independent study, and 
each should give an unbiased (if imprecise) estimate of the causal 
effect of X on Y.

Heterogeneity, where effect estimates are more different than 
expected, arises because at least some of the instruments are 
invalid.

Cochran’s Q statistic (heterogeneity test):

𝑄 = ෍
𝑘=1

𝐾 1

𝑣𝑘

መ𝛽𝑋𝑌𝑘
− መ𝛽𝐼𝑉𝑊

2

 Where vk is the variance of the causal estimate at SNP k

If MR model is correct, Q follows a χ2 distribution with expected 
value K-1.

If Q is larger than K-1, then it’s plausible that there are one or more 
genetic variants that have pleiotropic effects.

Heterogeneity

Bowden et al. Am J Epidemiol. (2018) 187(12):2681-2685

N=6 instruments

(A): No heterogeneity; all variants estimating the same quantity: Q ≈ 5

(B): Heterogeneity; variants estimating different quantities: Q >> 5

True effect

Biased effect

SNPs are valid instruments

SNPs associated with outcome via an independent pathway.



• Some SNPs might contribute to the majority of the heterogeneity

• If we assume these are the invalid instruments, then the IVW estimate excluding them should be less 

biased

• However – beware of: 

• Cherry picking – removing outliers will artificially provide a more precise estimate

• What if the outlier is the only valid instrument, and all the others are invalid?

- E.g. cis-variants for gene expression, DNA methylation, protein levels. 

- CRP levels are best instrumented by variants within the CRP gene region. 

     Most other variants that come up in CRP GWAS are upstream effects 

     related to inflammation

Option 1: Remove outliers

Accounting for heterogeneity

33



• We are testing for whether X1 has an influence on Y

• We know that some instruments for X1 also have influences on X2

• This opens up the possibility of horizontal pleiotropy biasing our estimate

• What is the X1-Y association adjusting for X2?

Option 2: Multivariable MR

Accounting for heterogeneity

34

(HDL-Cholesterol)

(LDL-Cholesterol)

(Cardiovascular disease)

Does increasing HDL levels 

reduce the risk of CVD?



• IVW fixed effects estimate assumes all SNPs are valid instruments, and averages across them all

• Additive random effects estimate:

- Estimate the between IV estimate of heterogeneity (denoted by τ2), then calculate and update IVW estimate 
by replacing vk with vk + τ2

- Point estimate and variance different from መ𝛽𝐼𝑉𝑊

• Multiplicative random effects model

- Replace vk with 𝜙vk, where 𝜙 =
𝑄

𝐾−1

- Point estimate equals መ𝛽𝐼𝑉𝑊, but variance is inflated

• Additive random effects model popular in meta-analysis, but can perform poorly in the presence of pleiotropy

Option 3: Fit a model that is robust to some model of horizontal pleiotropy

Accounting for heterogeneity
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• IVW assumes all variants are valid instrumental variables

- Clear trend in estimates increasing with መ𝛽𝑍𝑘𝑋 from origin 

- Cochran’s Q ≈ K – 1 (no heterogeneity)

• If there is an indication that these don’t hold in the data, invalid “pleiotropic” variants could be the cause

Heterogeneity and pleiotropy

36



Investigating heterogeneity and pleiotropy

37

• The IVW method assumes the underlying SNP-outcome model is

መ𝛽𝑌𝑘 = 𝛽𝐼𝑉𝑊𝛽𝑋𝑘 +  𝜀𝑌𝑘                     (𝜀𝑌𝑘 independent of መ𝛽𝑋𝑘)

𝛽𝑋𝑘 replaced with መ𝛽𝑋𝑘when fitting the model

• A more realistic model to account for heterogeneity might be: 

መ𝛽𝑌𝑘 = 𝛼𝑘 + 𝛽𝐼𝑉𝑊𝛽𝑋𝑘 +  𝜀𝑌𝑘

Where 𝛼𝑘 is the pleiotropic effect of variant k

• Can the IVW method still estimate the causal effect without bias even when all variants have pleiotropic 

effects? Yes, if:

- 𝛼𝑘 is independent of 𝛽𝑋𝑘 across K SNPs (InSIDE assumption)

- The mean value of 𝛼𝑘 is zero

- If satisfied, pleiotropy is said to be balanced

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25



Investigating heterogeneity and pleiotropy
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• The IVW method assumes the underlying SNP-outcome model is

መ𝛽𝑌𝑘 = 𝛽𝐼𝑉𝑊𝛽𝑋𝑘 +  𝜀𝑌𝑘                     (𝜀𝑌𝑘 independent of መ𝛽𝑋𝑘)

𝛽𝑋𝑘 replaced with መ𝛽𝑋𝑘when fitting the model

• A more realistic model to account for heterogeneity might be: 

መ𝛽𝑌𝑘 = 𝛼𝑘 + 𝛽𝐼𝑉𝑊𝛽𝑋𝑘 +  𝜀𝑌𝑘

Where 𝛼𝑘 is the pleiotropic effect of variant k

• Can the IVW method still estimate the causal effect without bias even when all variants have pleiotropic 

effects? Yes, if:

- 𝛼𝑘 is independent of 𝛽𝑋𝑘 across K SNPs (InSIDE assumption)

- The mean value of 𝛼𝑘 is zero

- If satisfied, pleiotropy is said to be balanced

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25



Investigating heterogeneity and pleiotropy
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• The IVW method assumes the underlying SNP-outcome model is

መ𝛽𝑌𝑘 = 𝛽𝐼𝑉𝑊𝛽𝑋𝑘 +  𝜀𝑌𝑘                     (𝜀𝑌𝑘 independent of መ𝛽𝑋𝑘)

𝛽𝑋𝑘 replaced with መ𝛽𝑋𝑘when fitting the model

• A more realistic model to account for heterogeneity might be: 

መ𝛽𝑌𝑘 = 𝛼𝑘 + 𝛽𝐼𝑉𝑊𝛽𝑋𝑘 +  𝜀𝑌𝑘

Where 𝛼𝑘 is the pleiotropic effect of variant k

• Can the IVW method still estimate the causal effect without bias even when all variants have pleiotropic 

effects? Yes, if:

- 𝛼𝑘 is independent of 𝛽𝑋𝑘 across K SNPs (InSIDE assumption)

- The mean value of 𝛼𝑘 is zero

- If satisfied, pleiotropy is said to be balanced

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25



Balanced or directional pleiotropy
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• Trend towards origin + heterogeneity

• Pleiotropy potentially causing heterogeneity -> 

IVW appears to be a good fit

• Trend away from origin + heterogeneity

• Pleiotropy potentially causing heterogeneity and 

bias

- IVW does not appear to be good fit

- Zero-intercept condition unreasonable



MR-Egger regression: Central concept

SNPk Exposure Outcome

Confounders

✕

𝛼𝑘

መ𝛽𝑆𝑁𝑃𝑘−𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = መ𝛽𝑍𝑘𝑋 መ𝛽𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒−𝑂𝑢𝑡𝑐𝑜𝑚𝑒 = መ𝛽𝑋𝑌

𝛽𝑀𝑅−𝐸𝑔𝑔𝑒𝑟

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25

We could therefore regress the SNP-outcome 

associations on the SNP-exposure associations, 

but allow for a non-zero intercept in the regression 

MR-Egger allows for a non-zero intercept in the 

regression.

When multiple SNPs are used as instruments, 

MR-Egger can:

• Identify the presence of “directional” pleiotropy 

(biasing the causal estimate in IVW)

• Provide a less biased causal estimate (in the 

presence of pleiotropy)

MR-Egger lacks power.



MR-Egger regression replies on the InSIDE (INstrument 
Strength Independent of Direct Effect) assumption, which 
states that the pleiotropic effects of SNPs must be 
independent of their strength as instruments.

IVW model: መ𝛽𝑌𝑘 = 𝛽𝐼𝑉𝑊 መ𝛽𝑋𝑘 + + 𝜀𝑌𝑘

MR-Egger model: መ𝛽𝑌𝑘 = 𝛽0 + 𝛽𝐸𝑔𝑔𝑒𝑟
መ𝛽𝑋𝑘 +  𝜀𝑌𝑘

• 𝛽0 is the intercept term. 𝛽0 can be interpreted as the 
average pleiotropic effect across all genetic variants. A 
non-zero 𝛽0 indicates directional pleiotropy.

• 𝛽𝐸𝑔𝑔𝑒𝑟 is the causal estimate adjusted for directional 
pleiotropy

MR-Egger regression

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25

InSIDE Violation of InSIDE

SNP not associated with outcome via an independent pathway

SNP associated with outcome via an independent pathway

𝛽𝑀𝑅−𝐸𝑔𝑔𝑒𝑟

Biased 𝛽𝑀𝑅−𝐸𝑔𝑔𝑒𝑟

𝛽𝑀𝑅−𝐸𝑔𝑔𝑒𝑟

𝛽𝑇𝑟𝑢𝑒 𝑠𝑙𝑜𝑝𝑒

𝛽𝐸𝑔𝑔𝑒𝑟

Slope

Slope



Funnel plot: balanced versus directional pleiotropy
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Funnel is symmetric -> pleiotropy appears to be 

balanced so IVW is okay

Funnel is asymmetric -> pleiotropy appears to be 

directional so IVW is not okay

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25



IVW = 0.59 (95% CI: 0.50, 0.67 )

MR-Egger = 0.58 (95% CI: 0.50, 0.67); 

    intercept = -0.001 p=0.5

Example: height and lung function

MR-Egger regression

44Bowden et al. Int J Epidemiol. (2015) 44(2):512-25



Example: BP and Coronary Heart Disease

MR-Egger regression

45Bowden et al. Int J Epidemiol. (2015) 44(2):512-25



Example: BP and Coronary Heart Disease

MR-Egger regression

46

Egger test for intercept p=0.2 Egger test for intercept p=0.054IVW=   0.054 logOR/mmHg p=4x10-6

Egger =0.015 logOR/mmHg p=0.6

IVW=   0.083 logOR/mmHg p=1x10-5

Egger =-0.024 logOR/mmHg p=0.7

መ𝛽𝑋 (SNP-SBP association) መ𝛽𝑋 (SNP-DBP association)
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Order causal estimates (Wald ratio) and take the median.

Median based methods (Median Estimator)

47
Bowden et al. Genet Epidemiol. (2016) 40(4):304-314

Assumption: >50% of the 

instrumental variables are valid.

No restrictions need to be placed 

on the invalid IVs: 

• InSIDE assumption not required

• Violations of #2 and #3 MR 

assumptions are allowed



• Simple median estimator:

- Odd number of genetic variants: middle ratio estimate

- Even number of genetic variants: median is interpolated between the two middle estimates        

1

2
መ𝛽𝑘 + መ𝛽𝑘+1  

- Inefficient when the precision of individual variants varies considerably

Simple median estimation

Median based methods

48

Simple median =
መ𝛽5 + መ𝛽6

2

Bowden et al. Genet Epidemiol. (2016) 40(4):304-314



• Weighted median estimator takes into account the differing precisions

• Weighted median: መ𝛽𝑊𝑀 = መ𝛽3 + መ𝛽4 − መ𝛽3 ×
50−27.78

52.78−27.78
 

• Suggested weights: inverse of the variance of the ratio estimate: 𝑤𝑘
′ =

෡𝛽𝑍𝑘𝑋
2

𝜎𝑍𝑘𝑌
2

Weighted median estimation

Median based methods

49Bowden et al. Genet Epidemiol. (2016) 40(4):304-314

መ𝛽𝑊𝑀 = መ𝛽5 + መ𝛽6 − መ𝛽5 ×
50 − 41.67

58.33 − 41.67

መ𝛽𝑊𝑀 = መ𝛽3 + መ𝛽4 − መ𝛽3 ×
50 − 27.78

52.78 − 27.78



Summary of robust estimators
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IVW

No horizontal pleiotropy

Random effects

IVW

Median-based

SNPs associated with outcome via an 

independent pathway.

Hemani et al. eLife (2018)



Problem: MR of type 2 diabetes on BMI

Reverse causal instruments

51

GWAS of T2D reveals FTO variant

- Famously associated with BMI

- A reverse causal instrument?

FTO T2D BMI

T2D BMI FTO

FTO may be associated with T2D 

through its effect on BMI

>> Not a good instrument for T2D



Steiger filtering test

• If SNP causes A and A causes B

• The effect of SNP on A should be larger than the effect of SNP on B

• Steiger test used to evaluate if r2(SNP,A) > r2(SNP,B)

• If this is not satisfied, infer that this instrument is not influencing the exposure primarily.

Can we avoid including reverse-causal SNPs as instruments?

52

SNP A B

𝑟2(𝑆𝑁𝑃, 𝐴) 𝑟2(𝐴, 𝐵)

Expect that

𝑟2 𝑆𝑁𝑃, 𝐵 = 𝑟2 𝑆𝑁𝑃, 𝐴 ×  𝑟2(𝐴, 𝐵)

This term is <1 
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Ideal instruments are genetic variants with a known biological 
function related to the exposure

Aldehyde 

dehydrogenase 

(ALDH2)

Alcohol intake

Lactase 

(LCT)
Milk intake

Caffeine 

metabolism genes 

(AHR/CYP1A2)

Maternal coffee 

intake

Bitter taste 

receptors 

(TAS2Rs)

Bitter taste 

perception
Bitter beverage intake

Children’s birth weight/

Perinatal outcomes

Breast/Ovarian cancer

(Ong et al. 2018 Sci Rep)

(Brito Nunes et al. 

2023 Int J Epidemiol)

(Ong et al. 2020 Int J 

Cancer)

18 diseases (Yuan et al. 2022 BMC 

Med)

+/-

×

×

*



TwoSampleMR R Package 
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STROBE-MR

55

MR Dictionary



• MR uses natural randomization to mimic an RCT

• It is useful, data is abundant, but it is not a panacea for causal inference

• Often valuable for proving that a hypothesized association is not causal

• Horizontal pleiotropy is one of the main threats to the validity of MR studies

- Multiple methods developed to detect and adjust for horizontal pleiotropy

• Crucial to perform sensitivity analyses and obtain metrics regarding the likely reliability of the MR 

estimates

• Consistency of results across methods is key to reliable causal inference

Summary

56
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