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custodianship of the lands on which we meet.
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Australian and global society.
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Recap

» Mendelian randomization is a technique that uses genetically informative observational data to inform
causality

* Three core assumptions:
(1) Relevance assumption: SNP is associated with the exposure
(2) Independence assumption: SNP is NOT associated with confounding variables
(3) Exclusion restriction: SNP ONLY associated outcome through the exposure

* Pleiotropy: Genetic variant influences more than one trait

* One-sample MR is where the SNP, exposure and outcome are all available in the same study

« Two-sample MR is where the SNP-exposure association is measured in one study and the SNP
outcome association is measured in a second study
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Recap

Assumption 1: Relevance assumption

 Weak instruments:

Confounders

- Loss of power

&

Genetic Variant Risk factor Outcome
1. Genetic variantis
N associated with the A
\\ risk factor

Typically, SNPs which pass genome-wide
significance (P<5x10-®) and have been replicated
in independent samples are used as IV’s

- Bias due to violations of the other
assumptions will be amplified

- Bias towards outcome-risk factor association
in one-sample MR or towards the null in two-
sample MR — precision is also
underestimated.

Weak instruments can be detected using an
F-statistic in one-sample MR (F-statistic > 10)

Fowt = R2* (N-1)
(1-R?)

stat

Burgess S et al. Int J Epidemiol. (2011) 40(3):755-764
Burgess S and Thompson SG. Stat Med (2011) 30(11):1312-1323
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Recap

Assumption 2: Independence assumption

« Technically impossible to prove this assumption
holds as we can’t test for association with
unobserved confounders (need to rely on good
knowledge of the science)

2. Genetic variantis

independent of any Confounders

measured or unmeasured

confounders . . .

» May be possible to disprove by checking that the
genetic variant is independent of measured
Genetic Variant Risk factor Outcome Confpunde_rs Of the eXpOSUFG-OUtCOme
relationship
14
T 9 - Factors that could influence the genetic

variants and outcome include population
stratification or structure, intergenerational
(dynastic) effects and assortative mating.

Carter & Anderson (2024) International Journal of Epidemiology .
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Recap

Assumption 3: Exclusion restriction

» Again, is difficult to prove this assumption

Confounders
holds
| » Horizontal pleiotropy = SNP is associated with
GoneticVariant ek factor Outcome mulltlple traits independently of the exposure
. . of interest

T - Extensions to the basic MR design can be
"""""" - used to detect horizontal pleiotropy and

3. Genetic variant only

influences the outcome via a estimate causal effect in its presence

causal effect on the risk factor



Outline

Inverse variance weighted MR

Heterogeneity tests

Multivariable MR

MR Egger

MR Weighted Median

Steiger Filtering
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Two-sample MR

Single variants Confounders
C\B/:::gf . Risk factor . Outcome
(2) :BASNP—Exposure - BZX (X) IBAExposure—Outcome = BXY (¥)
J

\ f
,BSNP—Outcome - IBZY

2] . ESNP—O t
Causal effect (Byy) by Wald estimator: = LEcOme
BSNP—Exposure . R )
BSNP—Outcome = IBSNP—Exposure X ,BExposure—Outcome

Standard error (6yy) by Delta method: ISNP—Outcome \/
BSNP—Exposure

Can be estimated in different samples (e.g. two-sample MRy
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Delta method to estimate SE of Wald ratio

VaT(Bxy) — Var (@SNP—Outcome)

SNP—Exposure

2

%) Bsnp-o0 %) R
4> Var(,BSNp_Exposure) — 2 ( 2 utcomes) COU(ﬁSNP—Exposure: ﬂSNP—Outcome)

BSNP—Exposure

~ Var(.BSNP—Outcome) + (ﬁSNP—Outcome
~ 2

BSNP—Exposure ,BSNP—Exposure

- VaT‘(ESNP—Outcome)

~ 2

.BSNP—Exp osure

A R var(Bsnp_
SE(Byy) = Gyy ~ aAr(ﬁSNP Outcorzne)

,BSNP—Exposure

OSNP—-Outcome

~

BSNP—Exposure

11
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Two-sample MR

Multiple variants

Confounders

\C/;aer?aer:!cg Risk factor . Outcome
(Zk) BSNPk—Exposure - BZkX (X) BExposure—Outcome = BXY (Y)

(

J

Causal effect by Wald estimator:

A . ﬁSNPk—Outcome

ﬁXYk

Bsnp k—Exposure

IBSNPk—Outcome — ,BZkY

[

Inverse variance weighted (IVW) average causal effect:

IBIVW

K o~

K

—~ 2
1 1 _ BsSNP—Exposure

var(ﬁxyk) a\'XYi B a.%NP—Outcome
is the inverse variance of the causal effect

estimated from the ki genetic variant
12

Where w;, =
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Two-sample MR

Multiple variants

Confounders

\C/;aer?aer:!cg Risk factor . Outcome
(Zk) BSNPk—Exposure - BZkX (X) BExposure—Outcome = BXY (Y)

(

J

Causal effect by Wald estimator:

A . ﬁSNPk—Outcome

ﬁXYk

Bsnp k—Exposure

f
IBSNPk—Outcome — ,BZkY

Inverse variance weighted (IVW) average causal effect:

vw — Zlk{=1 Wi

—~ 2
1 1 _ BsSNP—Exposure

var(Eka) a\'XYi B O-.%NP—Outcome
is the inverse variance of the causal effect

estimated from the ki genetic variant
13

Where w;, =
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Two-sample MR

Multiple variants

Confounders
Genetic :
: ~ Risk factor ~ QOutcome
Variants - — (X) ) > Y)
(Zy) IBSNPk—Exposure - ,BZkX IBExposure—Outcome = Pxy
| J
Y
IBSNPk—Outcome — ,BZkY
Causal effect by Wald estimator: Inverse variance weighted (IVW) average causal effect:
—~ 2
A 1 1 Bsnp-
A ﬁSNPk—Outcome 5 XYka Where wy, = = — = e
ﬁXY = — IBIVW Se—— ”ar(ﬁxyk) OXYk OSNP-Outcome
“ Bsnpy—Exposure Zk=1Wk is the inverse variance of the causal effect

estimated from the ki genetic variant
14
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Two-sample MR

Multiple variants

Confounders

\C/;aer?aer:!cg Risk factor . Outcome
(Zk) BSNPk—Exposure - BZkX (X) BExposure—Outcome = BXY (Y)

(

J

Causal effect by Wald estimator:

A . ﬁSNPk—Outcome

ﬁXYk

Bsnp k—Exposure

f
IBSNPk—Outcome — ,BZkY

Inverse variance weighted (IVW) average causal effect:

K —
A _ Yk=1 Bxy, Wk
o S

—~ 2
1 1 _ BsSNP—Exposure

var(ﬁxyk) a\'XYi B a.%NP—Outcome
is the inverse variance of the causal effect

estimated from the ki genetic variant
15

Where w;, =
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Fixed effects IVW-MR and weighted linear regression

e * IVW is equivalent to a weighted regression of
SNP-outcome effects on SNP-exposure effects
passing through the origin

+ The weights are —
OZ Y

o
)
h

» The slope is the estimate of the causal effect

SNP effect on Coronary heart disease || id:7
o

Confounders

SNP1.

SNP 2 IpL——CHD

SNP effect on LDL cholesterol || id:300 S N P 4

o
o
|
al =
.'-‘.i:.-l.‘. T s
o

16
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Assumptions for two-sample MR

« Using summarized data for two-sample MR analyses is convenient when sharing individual level data is
impractical

o If:
- The K genetic variants are perfectly uncorrelated (not in LD) and do not interact
- The two samples are homogenous (same underlying populations)
- Constant causal effect at each level of the exposure

Then two-sample MR can consistently estimate the true causal effect

« Two-sample MR is still vulnerable to weak instrument bias
- Bias towards the null effect, not the observational estimate

- If approximate F-statistic (,E’%kx/azzkx) is greater than 10, then the expected dilution of [?ka towards zero is
less than 10%

17
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Performing MR with summary statistics

Obtain instruments from 5
exposure GWAS ' Q o9

LD Proxies \
If an exposure instrument

is not available in the

outcome GWAS then look

for LD proxies in 1000
genomes

Extract SNP effects from

outcome GWAS O—Target SNP

(O——Best LD proxy

/

18
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The issue of strand

S Tzo-AY S T---p ¥ Glossary
| | | | = Alldes: vanant farms that a loous may present.
T=== T=== = Fnrward or positee strand: the MA sirand fat iz read from the 5 1o he 5 end
Lacus & = = | | | | (eq, the 5 1 TAG. T 2 strand inihe figure).
Azzz Mooz
| | | | = Clengtic varant: Incus with rare han one alzls na papulatiaon,

G=:z= G-z

= Genatepe: compination of alleles hat an individual presents @ a given kos.

= Leaus dplural ey @ speciic locabon in a DNA senuence

Cantrormare . : : ) = Bl acdrammic: BMP BMPs whose allales cormespond o nuclkealides thal pair with
LocusB — — g T==zAg aT==zA o each olher in @ deukie siranded [IHA malacsie. BMES with AT or G0 (as in
Incus B below) alleles are palindromisz BNPs
Aans T pair = Rearse or neqative sirand) the DA slrang Lhal is read kom e 3 o he
tagsthar forrming g glrand peg, e 3 AATC A S shrand in Lhe Tigure
twn hydrogen Soreds
= Hirgle nuclenlide pohrrarphism (SEMP) A Lips ol ganalic waraal hal meoles
) 5 end: enz parion of the DHA melecul wilh &
Pair af homolagaus

Girggle Dage pain dangas
plasphiase graup baund i a single deceeibioss 4 " A

chromosomas

3 end: anz parbon of the DA madecuk wiha Csnd G pEr
decyribose beund 108 eingle phesshale greup I'u__el_“:': !
'.'.'.thi-n; thirce

hydragen zords

Hartwig FP et al. Int J Epidemiol. (2016) 45(6):1717-1726
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The issue of strand

S Tooopa Y S T---p ¥ Glossary
| | | | > Alledes: vanant Tomns that & [ooUs may present.
T:-== Tzz= ) n . L .
= Farward or positive sirana: the LXNA sirand Bat & read from the §' 1o 1he 53 end
Lacus & = = | | | | (eq, the 5 1 TAG T 3 atrand Inthe figues).
Ac-c= FL et
| | | | = Genshic vanant: Incus with mare han one allzle na papulatan,
G=:z= G-z = Chenahepe: combination of alleles that an indivicual presents 31 a given kos.
= Letis dplural lecil @ speciic locabon inoa DA sequence
Cantrormare - : : : = Palndimie NP SNPS whose alleles cormespand 1o nuckealices hal pair witn
Locus B — — g Tz A T2z A g BAch alher in & doukée stranded A malacss, SMPS with AT or U0 (A5 in
Incus B below) alleles are palindromisz BNPs
Aans T pair = Rewarss or nealive sirand; the DRA slind [hal s read rom [me 3 0 he
tagsthar forrming g glrand peg, e 3 AATC A S shrand in Lhe Tigure
twn hydrogen Soreds
5 and s AT — = Hingle nueleolids pobmarphism (ERP)  bps of ganalic warzol hal nvolees
) B eng: ans partion of tha melecule wilh & sinale Bage pair chandgss
Pair af homolagows phasphaie praup baund i s single deceiboss " pair chaneg
chromosomes
3 end: anc porbon of tha DRA molecukz wiha A
’ C ani G pai
deceyibose baurd 10 single phasehale greup st
'.'.'.thi-n; thirce
hydrzgen zords
Locus A
Locus A
Twpe of genstic Single nuclacdi
valiatian palyrmephism
5o LW g o Alleles (5" o 31 Aand G
. . . . Alleles (3'to & Tand C
};‘ T .G' . C Gerolype (5 10 3] AG
] ) - Cenciype (3105 TC
Falindromi
alindromic My
5 - o 5 C g waiznt

Hartwig FP et al. Int J Epidemiol. (2016) 45(6):1717-1726
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The issue of strand

5T---aAd 5T---p Glossary
| | | | > Alledes: vanant Tomns that & [ooUs may present.
-lr_ T | -I—" - | = Farward af positive stranc: e BHA sfrand B iz read from the §' 1o the 3 end
(g, the 5 1 TAG.T 2 strand inihe figure).
Lacus & = = . . e HHrE
Azz= A==z _
| | | | = Genshic vanant: Incus with mare han one allzle na papulatan,
CEEE Go== = Chenatepe: combination of alleles that an indivicdual presents 31 a given kos
= Lesstis dplural el a spaciic Incaban in a DA senuense
Cantramare i : ' ) = Bl ndrarmic BN P BMPs whose allales cormespond 1 nuclkealices hal pair it
Locus B — — g Tz A T2z A g BAch alher in & doukée stranded A malacss, SMPS with AT or U0 (A5 in
Incus B below) alleles are palindromic BNPs
Soang T pair = Rewarss or nealive sirand; the DRA slind [hal s read rom [me 3 0 he
tagsthar forrming g glrand peg, e 3 AATC A S shrand in Lhe Tigure
twn hydrogen Soreds
& and o of {he DMA melecwe will = Hinge nuclenlids polmarphism GENEY A beps ol ganalic varazol hal nvclees
) _ eng: ans partion of tha melecule wilh & sinale Bage pair chandgss
Pair af homolagows phasphaie praup baund i s single deceiboss " pair chaneg
chromosomes
3 end: anc porbon of tha DRA molecukz wiha T andl G per
deceyibose baurd 10 single phasehale greup st
"::-1'ni-n; thirce
hydrzgen zords
Locus A Locue B
Locus A Locus B
Twpe of genstic Single nuclecdids  Single nucleotide
valiatian palyrmephism palyrmarphism
L - =) L ¥ g .3 kY Alleles (5 1o ) Aanc G Cang G
Alleles (3 1o &1 Tand T Sand T
L o N Genolype (5 0 3 AG oG
AT GIIiC CiIiG GIIiC S
] . _ _ Genoiype {3't0 & TC GC
Falindromi
e e =
3 =) 3 ) ) =)

Hartwig FP et al

. Int J Epidemiol. (2016) 45(6):1717-1726
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Exposure GWAS Outcome GWAS
Effect Other |Effect allele Effect Other |Effect allele
SNP Effect allele allele frequency | Effect allele allele frequency
rs12345 0.132(A G 0.28 0.022(A G 0.26
rs23456 -0.485(G T 0.41 0.056|T G 0.61
rs34567 0.203(G C 0.11 -0.046(G C 0.88
Exposure GWAS Outcome GWAS
Effect Other Effect allele Effect Other Effect allele
SNP Effect allele allele frequency |Effect allele allele frequency
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Harmonise exposure and outcome effects
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Exposure GWAS Outcome GWAS
Effect Other |Effect allele Effect Other |Effect allele
SNP Effect allele allele frequency | Effect allele allele frequency
rs12345 0.132(A G 0.28 0.022(A G 0.26
rs23456 -0.485|G [ 0.41 0.056|T G 0.61
rs34567 0.203(G £ 0.11 -0.046(G C 0.88
Exposure GWAS Outcome GWAS
Effect Other Effect allele Effect Other Effect allele
SNP Effect allele allele frequency |Effect allele allele frequency
rs12345 0.132(A G 0.28 0.022(A G 0.26
rs23456 -0.485|G i} 0.41 -0.056(G T 0.39
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Harmonise exposure and outcome effects
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Exposure GWAS Outcome GWAS
Effect Other |Effect allele Effect Other |Effect allele
SNP Effect allele allele frequency | Effect allele allele frequency
rs12345 0.132(A G 0.28 0.022(A G 0.26
rs23456 -0.485|G T 0.41 0.056 (T G 0.61
rs34567 0.203(G £ 0.11 -0.046(G C 0.88
Exposure GWAS Outcome GWAS
Effect Other Effect allele Effect Other Effect allele
SNP Effect allele allele frequency |Effect allele allele frequency
rs12345 0.132(A G 0.28 0.022(A G 0.26
rs23456 -0.485|G T 0.41 -0.056|G T 0.39
rs34567 0.203|G C 0.11 0.046 (G C 0.12

25



Strand issue exercise

Study 1 alleles | Study 1 allele | Study 2 alleles | Study 2 allele | Verdict?
freq freq
rs1 A/G 0.2 A/G 0.2

rs2
rs3
rs4
rsd
rs6

G/T
G/C
AT
AT
AIG

0.3
0.65
0.49
0.12
0.4

T/G
G/C
AT
AT
AT

0.72
0.62
0.5
0.89
0.4

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA
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MR methods for handling horizontal
pleiotropy

Many methods now exist!
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Extensions to MR

* MR uses genetic variants to test for causal relationships between phenotypic exposures and disease-
related outcomes

* Due to the proliferation of GWAS, it is increasingly common for MR analyses to use large numbers of
genetic variants

* Increased power but greater potential for pleiotropy

» Pleiotropic variants affect biological pathways other than the exposure under investigation and therefore
can lead to biased causal estimates and false positives under the null

28
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Two-sample MR

. Confounders
L
SNP » Exposure »  Outcome
N e
____________________________ é

(1) Relevance assumption: SNP is associated with the exposure
& (2) Independence assumption: SNP is NOT associated with confounding variables
& (3) Exclusion restriction: SNP ONLY associated outcome through the exposure

29



Two-sample MR
No direct pleiotropy
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. Confounders
//’///’X///
SNP, - > Exposure N > Qutcome
. ZpX Bxy <
____________________________ é

:BSNP—Outcome = ﬁSNP—Exposure X .BExposure—Outcome

Causal effect by Wald estimator:

. IBSNPk—Outcome

~

,BSNPk—Exposure

Byv,

Inverse variance weighted
(IVW) average causal effect:
_ V=1 Bxy, Wk

Zlk{=1 Wk

BIVW

30



Two-sample MR
With direct pleiotropy («;)

,BSNP—Outcome = ﬁSNP—Exposure X .BExposure—Outcome

Causal effect by Wald estimator:

,BSNPk—Outcome ak

=ﬁXYk+ A

BSNP k—Exposure BSNP k—Exposure

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

__.— Confounders

v

Outcome

Inverse variance weighted
(IVW) average causal effect:

Kk 3
Dik=1 .BXYka

K
Zk=1Wk

= Byw + Bias(a, :BSNPk—Exposure)

31
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e SNPs are valid instruments

H ete rog e n e ity « SNPs associated with outcome via an independent pathway.

* . Biased effect
We expect that each SNP represents an independent study, and 5 , 1 . o b True effoct
each should give an unbiased (if imprecise) estimate of the causal 1 .° . o rueetec
effect of Xon Y. ) T .
By Br ] ¢ ° .
. ® ®
Heterogeneity, where effect estimates are more different than . o« °
expected, arises because at least some of the instruments are . o
InV8|Id LI B B B P T
I Bx
Cochran’s Q statistic (heterogeneity test): A "
K 1 . A 2 —— .
Q= z - (.Bxyk - ﬁIVW) — ——;
k=1Vk - RO S
P ' _—
Where v, is the variance of the causal estimate at SNP k — ——
—— i
—¢— ——
. D etviias g .
If MR model is correct, Q follows a x? distribution with expected - % 0 10 " 1 10
value K-1.
If Qis larger than K-1, then it's plausible that there are one or more | N=6 instruments
genetic variants that have pleiotropic effects. (A): No heterogeneity; all variants estimating the same quantity: Q =5
(B): Heterogeneity; variants estimating different quantities: Q >>5

Bowden et al. Am J Epidemiol. (2018) 187(12):2681-2685
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Accounting for heterogeneity

Option 1: Remove outliers

Some SNPs might contribute to the majority of the heterogeneity

If we assume these are the invalid instruments, then the IVW estimate excluding them should be less
biased

However — beware of:
Cherry picking — removing outliers will artificially provide a more precise estimate
What if the outlier is the only valid instrument, and all the others are invalid?

- E.g. cis-variants for gene expression, DNA methylation, protein levels.
- CRP levels are best instrumented by variants within the CRP gene region.
Most other variants that come up in CRP GWAS are upstream effects

c

SNP - outcome effect

related to inflammation

SNP - exposure effect
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Accounting for heterogeneity
Option 2: Multivariable MR

We are testing for whether X, has an influence on Y

We know that some instruments for X, also have influences on X,

This opens up the possibility of horizontal pleiotropy biasing our estimate
What is the X,-Y association adjusting for X,?

Does increasing HDL levels

(HDL-ChoIef% U1 reduce the risk of CVD?

o ’).(IN

I
| Y (Cardiovascular disease)
I

Xz/ﬁ/

2

SNP,

(LDL-Cholesterol) U,
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Accounting for heterogeneity

Option 3: Fit a model that is robust to some model of horizontal pleiotropy

IVW fixed effects estimate assumes all SNPs are valid instruments, and averages across them all

Additive random effects estimate:

- Estimate the between IV estimate of heterogeneity (denoted by 12), then calculate and update IVW estimate
by replacing v, with v, + 12

- Point estimate and variance different from B,y

Multiplicative random effects model

- Replace v, with g, where ¢ = -

- Point estimate equals B,y, but variance is inflated

Additive random effects model popular in meta-analysis, but can perform poorly in the presence of pleiotropy
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Heterogeneity and pleiotropy

VW assumes all variants are valid instrumental variables

- Clear trend in estimates increasing with ,E’ZkX from origin
- Cochran’s Q = K- 1 (no heterogeneity)

» If there is an indication that these don’t hold in the data, invalid “pleiotropic” variants could be the cause
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Investigating heterogeneity and pleiotropy

* The IVW method assumes the underlying SNP-outcome model is

Brk = BvwBxk + vk (eyx independent of fyy)
Bxr replaced with ,[?kahen fitting the model
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Investigating heterogeneity and pleiotropy

* The IVW method assumes the underlying SNP-outcome model is

By = BvwBxk + €vk (eyx independent of fyy)

By replaced with By, when fitting the model
» A more realistic model to account for heterogeneity might be:

Byk = ai + BvwBxk + Evk

Where «a; is the pleiotropic effect of variant k
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Investigating heterogeneity and pleiotropy

* The IVW method assumes the underlying SNP-outcome model is

By = BvwBxk + €vk (eyx independent of fyy)

Bxr replaced with ,[;’kahen fitting the model

» A more realistic model to account for heterogeneity might be:
Bri = ax + BrvwBxk + vk

Where «a; is the pleiotropic effect of variant k

« Can the IVW method still estimate the causal effect without bias even when all variants have pleiotropic
effects? Yes, if:

- a4 is independent of Sy, across K SNPs (InSIDE assumption)
- The mean value of «a;, is zero
- If satisfied, pleiotropy is said to be balanced

Bowden et al. Int J Epidemiol. (2015) 44(2):542-25
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Balanced or directional pleiotropy

« Trend towards origin + heterogeneity Trend away from origin + heterogeneity

« Pleiotropy potentially causing heterogeneity -> Pleiotropy potentially causing heterogeneity and
IVW appears to be a good fit bias

- IVW does not appear to be good fit
- Zero-intercept condition unreasonable
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MR-Egger regression: Central concept

We could therefore regress the SNP-outcome X B
associations on the SNP-exposure associations,
but allow for a non-zero intercept in the regression

B

1 1 1 1
®
[ ]
\
[ ]
[
e
=
<
3
try
Q
Q
o
<

MR-Egger allows for a non-zero intercept in the ]
regression. A A
When multiple SNPs are used as instruments, - Confounders
MR-Egger can:
» ldentify the presence of “directional” pleiotropy ><

(biasing the causal estimate in IVW)
* Provide a less biased causal estimate (in the//;/” )

presence of pleiotropy) ] IBSNPk—Exposure = ,BZkX BExposure—Outcome = ’BAXY

SNP, > Exposure »  Qutcome

MR-Egger lacks power. o

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25
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MR-Egger regression

MR-Egger regression replies on the InSIDE (INstrument
Strength Independent of Direct Effect) assumption, which
states that the pleiotropic effects of SNPs must be
independent of their strength as instruments.

IVW model: By = Brvw Bxi + + €y
%—J

Slope

Byk = Bo + BeggerBxk + Evk
%—J

Slope
* [, is the intercept term. B, can be interpreted as the

average pleiotropic effect across all genetic variants. A
non-zero f, indicates directional pleiotropy.

*  Prgger is the causal estimate adjusted for directional
pleiotropy

MR-Egger model:

B

A _l

° ° - : ® Biased Eager

.. . Buun-sgger . o - - iased Byr-ggg
e @ ° -4. A ] L _4. ﬁMR—Egger
° Br T
[ L4 ° * ¢ * T ) L4 ° * *
° ] * ° [ ]

0 T T T IBXI T T T 0 T T T T IBXI T T T

InSIDE Violation of InSIDE

Pr
o

* SNP not associated with outcome via an independent pathway
* SNP associated with outcome via an independent pathway

Bow
[ ]
e [ ]
® o Be
B gger
e
b [
[ ) - P !
[ ] ._ -_._ JE— Tue slope
—-— -
p—
1 T T 1. 1 | I B B
bx

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25
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Funnel plot: balanced versus directional pleiotropy

1/s.e(p)
04 06 08 10 12

0.2

— VW .
—— MR-Egger *
-
[
T T T T T
-10 -5 0 5 10

A
Causal estimate. [,

1/s.e

06

1.2

P 1o

0

04

02

— W

1 — MR-Egger

-10 ]

T T T
0 5 10

A
Causal estimate. f;

Funnel is asymmetric -> pleiotropy appears to be
directional so IVW is not okay

Funnel is symmetric -> pleiotropy appears to be
balanced so IVW is okay

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25
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MR-Egger regression

Example: height and lung function

31— ww ' | ' IVW = 0.59 (95% CI: 0.50, 0.67 )
2 - : MR-Egger = 0.58 (95% CI: 0.50, 0.67);
i . ; intercept = -0.001 p=0.5
—0‘.10 —0105 U.:]U %.05 0.|10 U.|15 0.‘20 =10 ll) 10 ﬁj 20 30 40

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25
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MR-Egger regression

Example: BP and Coronary Heart Disease

Systolic BP Diastolic BP
g _
[=]
— VW ¢ . ¢ — VW

o | — Egger ® e o —— Egger
@ | L ] ® 8_ — ®
o ® [ ] =] ° LY
© [ ]
& ® [ ]
o o ® ®

) w0 * %
g — g n [ ] o ‘
o

[ ]
s s % .
g B 3 e o
o ‘o
2
8 —B—
o wn
o 4
T T T T T T T T T
-0.2 -0.1 0.0 0.1 0.2 0.0 0.2 0.4 06
A A
By By

Bowden et al. Int J Epidemiol. (2015) 44(2):512-25



MR-Egger regression

Example: BP and Coronary Heart Disease

A

By (SNP-CHD association)

Systolic BP

— Egger ° ]

0.03
|

0.02

0.00

-0.01

0.00 0.05 0.10 0.15 0.20

Bx (SNP-SBP association)

VW= 0.054 logOR/mmHg p=4x10-%
Egger =0.015 logOR/mmHg p=0.6

0.25 0.30 0.35

P

By (SNP-CHD association)

Diastolic BP
[
8 _ . .
e °
o
o
o
-5
o
(=]
=
[=]
®
S |
?
— VW
— Egger °
T T | T T
0.00 0.05 0.10 0.15 0.20

Bx (SNP-DBP association)

VW= 0.083 logOR/mmHg p=1x10-°
Egger =-0.024 logOR/mmHg p=0.7
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Median based methods (Median Estimator)

Order causal estimates (Wald ratio) and take the median.

A Y S = Assumption: >50% of the
a— ) Valid IV . () valid Iv ’ ' -
T @ nvaid v : | | @ mvaiav instrumental variables are valid.
= 7 VW s
% | estimate '::E:jni:{; E" i . nslt:.rr"nln;te
i ¢ o " . 3 0" No restrictions need to be placed
3 . [ ] -7 o Truth 2 . = M ) ) .
5 | Y 3 @ Medan on the invalid IVs:
g o - .00 g e AT and Truth . .
. e iR o » |InSIDE assumption not required
LRy ° H  Violations of #2 and #3 MR
v{)ﬁ I T R e DD I R A U assumptions are allowed

Crenetic association with exposure |y ) Genetic association with exposure (¥

Figure 2. Fictional example of a Mendelian randomization analysis with 10 genetic variants—six valid instrumental variables (hollow circles)
and four invalid instrumental variables (solid circles) for finite sample size (left) and infinite sample size (right) showing IVW (solid line) and simple
median {dashed line) estimates compared with the true causal effect (dotted line). The ratio estimate for each genetic variant is the gradient of the
line connecting the relevant datapoint for that variant to the origin; the simple median estimate is the median of these ratio estimates.

Bowden et al. Genet Epidemiol. (2016) 40(4):304-314
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Median based methods

Simple median estimation

« Simple median estimator:
- Odd number of genetic variants: middle ratio estimate
- Even number of genetic variants: median is interpolated between the two middle estimates
1,/ 4 ~
(5 (B + ,Bk+1))

- Inefficient when the precision of individual variants varies considerably

b1 ) B3 B4 Fs 6 b P Bo Bio

Simple median
T S S S T S T S . -
Percentile (o) | 5 15 25 35 45 55 65 75 85 05 S'mF)Je mgdlan =
Weighting 1 :85 + :86
Weight (1/v) | 35 4 - s > 2 4 2 2 L ——

Percentile 1.67 6.67 1500 26.67 4167/ 5833 7333 8500 9333 98.33
Weighting 2

- 2 3 10 8 5 3 2 1 1 1
Weight (1/w) | 35 3 3 3 3 3 3 3 3 3
Percentile (px) | 278 9.72 27.78 5278 70.83 8194 88389 9306 9583 98.61

Bowden et al. Genet Epidemiol. (2016) 40(4):304-314
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Median based methods

Weighted median estimation

« Weighted median estimator takes into account the differing precisions

. . A ~ A A 50-27.78
. = — X
Weighted median: Sy = fi3 + (B — B3) X o=
. . . . . I} E%kX
* Suggested weights: inverse of the variance of the ratio estimate: w;, = —
OZY
Simple median
Weight (1/ve) | ¢ % 1 ® % 1 1 1 1 10
Percentile (p) | 5 15 25 35 45 55 65 75 85 95
Weighting 1 50 — 41.67
Weight (L/we) | 30 3 % % m o %o % %o B % f= Bt (B — fe) X e
Percentile | 1.67 6.67 1500 26.67 41.67 5833 7333 8500 0333 0833 PWM 5 6 P5) " cg33 4167
Weighting 2 c )
weieht (L)) | 5 %5 s w3 3% 3 % s % o By (R, — fl) x 0= 27.78
Percentile (pc) | 278 9.72 27.78 52.78 70.83 81.94 8889 03.06 0583 0861 PwWM 3 47 P3) 2ty 7g 27173

Bowden et al. Genet Epidemiol. (2016) 40(4):304-314



Summary of robust estimators

SNP effect on outcome

1.0

00 02 04 06 08

1.0

00 02 04 06 08

IVW
No horizontal pleiotropy

T T T T T T
00 02 04 06 08 10

SNP effect on exposure

Egger regression
Directional horizontal pleiotropy

7~

00 02 04 06 08 1.0

SNP effect on outcome

(o

1.0

00 02 04 06 08

1.0

00 02 04 06 08

Random effects
Balanced horizontal pleiotropy

T T T T T T
00 02 04 06 08 1.0

SNP effect on exposure

Median-based estimator
Minority horizontal pleiotropy

| — Median-based
— VW
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@ SNPs associated with outcome via an

independent pathway.

Hemani et al. eLife (2018)
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Reverse causal instruments

Problem: MR of type 2 diabetes on BMI

GWAS of T2D reveals FTO variant
o Loci satnblshed previously - Famously associated with BMI
* Loci identified by current study - Areverse causal instrument?

180 5

FTO —— 72D — BMI

100 —

72D «<— BMI «— FTO

-log1d p-valus

i FTO may be associated with T2D
through its effect on BMI
>> Not a good instrument for T2D

30

'
. ll l h llllli I l
— od [ =t (T3] L) e r] L) — od L]
=R =

-

Chromosomea
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Can we avoid including reverse-causal SNPs as instruments?

Steiger filtering test
» If SNP causes A and A causes B
» The effect of SNP on A should be larger than the effect of SNP on B

SNP A B Expect that
r2(SNP,B) = r?(SNP,A) X 1%(4,B)
%{—)

This term is <1

r2(SNP, A) r2(4, B)

« Steiger test used to evaluate if r’(SNP,A) > r’(SNP,B)
 If this is not satisfied, infer that this instrument is not influencing the exposure primarily.
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ldeal instruments are genetic variants with a known biological
function related to the exposure

Bitter taste +/-

U receptors — Bg:i;t?isgre] ——— Bitter beverage intake  (Ong et al. 2018 Sci Rep)
(TAS2Rs) percep
Caffemg Maternal coffee X Children’s birth weight/  (Brito Nunes et al.

ﬁ metabolism genes  ———— intake ~ 777" Perinatal outcomes 2023 Int J Epidemiol)
(AHR/CYP1A2) P
Aldehyde x

@ dehydrogenase Alcohol intake Breast/Ovarian cancer (Ong et al. 2020 Int J
(ALDH?2) Cancer)

7y Lactase - Mikintake — — > 18 diseases (Yuan et al. 2022 BMC

(LCT) Med)
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TwoSampleMR R Package

TwoSampleMR 0.6.4 Cuide ¥ Functions Changelog Search for Source

Links

Mendelian randomization with GWAS summary data

Browse source code

Report a bug

A package For performing Mendelian randomization using GWAS summary data. It uses the IEU CWAS database to License
obtain data automatically, and a wide range of methods to run the analysis. You can use the MR-Base web app to try Full license
out a limited range of the functionality in this package, but For any serious work we strongly recommend using this R MIT + file LICENSE
package.
Citation

January 2020 major update

We have made substantial changes to the package, database and reference panels. For full details of the changes,
please visit https://mrcieu.github.io/TwoSampleMR/articles/gwas2020.html

Citing TwoSampleMR

Developers

Gibran Hemani

Installation Author, maintainer
Users running Windows and macOS, to install the latest version of TwoSampleMR please install from our MRC IEU r- Philip Haycock
universe Author 60
Jie Zheng
install.packages("TwoSampleMR", repos = c("https://mrcieu.r-universe.dev", "https://cloud.r-project.o Author
Tom Gaunt 401 '
Users running Linux or WebR please see the following instructions. Author :

To update the package run the same command again. Ben Elsworth

New PubMed Entries per week

Author
Installing from source Tom Palmer 204
install.packages(" remotes") Author
remotes::install_github("MRCIEU/TwoSampleMR")
Dev status
To update the package just run the remotes::install_github("MRCIEU/TwoSampleMR") command again. 0 A
:
Docker 2009 2010 Bote 2020 aE
ate
A docker image containing R with the TwoSampleMR package pre-installed is available here:
https://hub.docker.com/r/mrcieu/twosamplemr r-universe RIEE
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STROBE-MR MR Dictionary

M., MR Dictionary Home Abeut Contribute Contact

¢ STROBE-MR

Transparent reporting of Mendelian randomization studies

The definitive list of terms for Mendelian randomization Recently added/updated:
research OneSampleMR

Learn more about the project Inverse variance weighted (IVW)
fixed effects estimate

debiased IVW
Search... Q Cis- and trans-variants

Powerad by Algolia MR for drug targets

Home Contributors Links Contact

Welcome to the STROBE-MR website!

About: STROBE-MR stands for "Strengthening the Reporting of Observational Studies in Epidemiology
using Mendelian Randomization”. Inspired by the original STROBE checklist, the STROBE-MR guidelines
were developed to assist researchers in reporting their Mendelian randomization studies clearly and

Browse All
View all terms in the Dictionary in an A-Z list

Genetic terms

transparently. Adopting STROBE-MR should help readers, reviewers, and journal editors evaluate the quality Daiiniticn Ralateclapproaches

of published MR studies.

Biases and limitations One-sample methods

The STROBE-MR checklist contains 20 items recommended to address in reports of Mendelian

randomization studies.

Weak instrument-robust one-sample methods Pleiotropy-robust one-sample methods

The Statement document describes the process of developing the checklist and the complementary

Explanation and Elaborations document. Two-sample methods Weak instrument-robust two-sample methods

The Explanation and Elaboration document explains the items of the STROBE-MR checklist, along with

. ] . Pleiotropy-robust two-sample methods
their rationale and examples of transparent reporting.

Model selection and averaging approaches

Heterogeneity and outlier detection Resources and software

All documents and publications produced by the STROBE-MR Initiative are open-access and available for

download on this website.

Copyright ® 2021-2024 University of Bristol University of MIRG Integrative
B BRISTOL da
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Summary

* MR uses natural randomization to mimic an RCT

It is useful, data is abundant, but it is not a panacea for causal inference

Often valuable for proving that a hypothesized association is not causal

Horizontal pleiotropy is one of the main threats to the validity of MR studies
- Multiple methods developed to detect and adjust for horizontal pleiotropy

Crucial to perform sensitivity analyses and obtain metrics regarding the likely reliability of the MR
estimates

Consistency of results across methods is key to reliable causal inference
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