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What is SEM?

A statistical framework for analyzing the relationship between observed and latent variables

Used mostly in social and behavioural sciences and also genetic epidemiology

Causal and correlational relationships between variables are modelled explicitly

Involves constructing a statistical (structural) model, seeing how well this model fits some 
data, and obtaining estimates of parameters

Also known as “Confirmatory Factor Analysis” / “Analysis of covariance structure” / “Path 
analysis”



Why SEM?

Flexibility- almost any linear model 
can be written as a SEM

SEM makes it easy to create new 
models/methods

Useful for deriving expected 
variances/covariances in genetics

SEM means that you can think about a 
problem multiple ways

Advantages for modelling human genetic 
data:

•Latent variables
•Multivariate phenotypes
•Feedback loops
•Assortative mating
•Vertical transmission
•Gene-environment 
covariance
•Non-linear constraints
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How does SEM Work?

(1) START OF 
WITH A THEORY

(2) EXPRESS 
THIS THEORY AS 
A MODEL USING 

A SERIES OF 
STRUCTURAL 

EQUATIONS OR 
AS A PATH 

DIAGRAM (I.E. A 
“STRUCTURAL 

EQUATION 
MODEL”)

(3) COLLECT THE 
DATA

(4) FIT THE 
MODEL TO THE 
DATA. OBTAIN 
PARAMETER 

ESTIMATES AND 
A MEASURE OF 
HOW WELL THE 

MODEL FITS 
THE DATA.

(5) REVISE THE 
THEORY/MODEL



How does SEM Work?

THEORY

BUILD 
MODEL FIT 

TO DATA

Expected
covariance
structure

𝚺(𝛉)

𝚺

REVISE or REFINE
 MODEL/THEORY

OBTAIN PARAMETER 
ESTIMATES

 AND CIs

Observed
covariance
structure



“All Models and Wrong – Some Models are 
Useful”

George Box

• This adage is true for all models, not just SEMs!
• Sometimes different models give exactly the same fit
• In genetic epidemiology, our SEMs are constructed based on 

biometrical genetics principles increasing their validity
• SEM and parameter estimation and confidence intervals
• SEM and model falsification

Which model is 
“correct”?

Y = bx X + e bx = cov(X,Y) / sd(X)
X = by Y + e by = cov(X,Y) / sd(Y)



SEM- 
Assumptions

Linearity

Multivariate normality 
(normality of residuals)
• Binary/ordinal variables can be 

modelled assuming an underlying 
normal distribution of liability

• Methods exist for combining binary 
and continuous variables



Identifiability

• Means that all parameters in a model can be estimated given the data

• A necessary (but not sufficient condition) for identifiability is that you have 
the same (or more) observed statistics than parameters you want to 
estimate

• If all parameters in a model are identifiable, then the model is identifiable

• Even though the model as a whole may be unidentifiable you may be able 
to estimate some of the parameters (partial identifiability) or locate them 
in the parameter space (set identifiability)



Identifiable or Not ?

Y = u + b X + e
X in {0,1}
Y continuous

Y continuous outcome (e.g. 
response to treatment)
X dose of treatment

u effect of no treatment
b effect attributable to 
treatment



Identifiable or Not ?

Y = u + b X + e
X in {0,1}
Y continuous



Identifiable or Not ?

Y = u + b X / (X + c) 
+ e
X in {0,1}

EMAX model:
Y continuous outcome (e.g. 
response to treatment)
X dose of treatment
u effect of no treatment
b maximal effect attributable to 
treatment

c exposure that produces half of b



Identifiable or Not ?

Y = u + b X / (X + c) 
+ e
X in {0,1}

EMAX model:
Y continuous outcome (e.g. 
response to treatment)
X dose of treatment
u effect of no treatment
b maximal effect attributable to 
treatment

c exposure that produces half of b



Identifiable or Not ?
Y = u + b X / (X + c) 
+ e
X in {0,0.2,1}

EMAX model:
Y continuous outcome (e.g. 
response to treatment)
X dose of treatment

u effect of no treatment: 0.21
b maximal effect attributable to 
treatment: 0.62
c exposure that produces half of 
b: 0.05



Building 
Models With 
Path Diagrams



Path diagrams 
pictorially represent 

“causal” models. 
They aid in deriving 
the variances and 

covariances implied 
by the model.

Latent variables are variables that can only be inferred indirectly through a mathematical model from other 
observable variables that can be directly observed or measured



Linear regression

• Y = b X + e
• b is represented as a path 
coefficient
• b quantifies the expected 
change in Y for every unit 
change in X

X Y eb 1
var(e)var(X)



Linear regression - 
assumptions

• Y = bX + e (explicit)
• Measurement error (e) in Y (explicit)
• No measurement error in X (explicit)
• No covariance between X and epsilon 

(explicit)
• Covariance between X and Y is b*var(X) 

(explicit)
• Linear relationships between the variables 

(implicit)
• Multivariate normality (implicit)

X Y eb 1
var(e)var(X)



Back to Identifiability

Y = bX + eX Y eb 1
var(e)φ1

t ≤  n(n+1)/2
t number of parameters to estimate
n number of observed variables

General rule

Number of estimated parameters: 3
φ1, b, var(e)

Number of observed variables: 2
 2*3/2 =3

NB: Intercept does not count/matter towards indentifiability



Why n(n+1)/2 ?

Y = bX + eX Y eb 1
var(e)φ1

VAR(X) COV(X,Y)

COV(X,Y) VAR(Y)
Σ =

Observed Covariance Matrix:
Number of observed statistics: 3

3

Expected/Implied Covariance Matrix:
Number of estimated parameters: 3 (φ1, b, var(e))

φ1 bφ1

bφ1 b2φ1+var(e)
Σ(θ) =



A more complex model

X1

Ye
b1

1

φ11

var(e)

X2

X3

φ22

φ33

b2

b3

φ12

φ23

φ13



Multivariable (or multiple) Regression

X1

Ye
b1

1

φ11

var(e)

X2

X3

φ22

φ33

b2

b3

φ12

φ23

φ13

Structural Equation:

Y = b1X1 + b2X2 + b3X3+ e



X1

Ye
b1

1

φ11

var(e)

X2

X3

φ22

φ33

b2

b3

VAR(X1) COV(X1,X2) COV(X1,X3) COV(X1,Y)

COV(X2,X1) VAR(X2) COV(X2,X3) COV(X2,Y)

COV(X3,X1) COV(X3,X2) VAR(X3) COV(X3,Y)

COV(Y,X1) COV(Y,X2) COV(Y, X3) VAR(Y)

Σ =

φ12

φ23

φ13

Structural Equation:

Observed Covariance Matrix:

Multivariable (or multiple) Regression

Y = b1X1 + b2X2 + b3X3+ e



Y = b1X1 + b2X2 + b3X3+ e
X1

Ye
b1

1

φ11

var(e)

X2

X3

φ22

φ33

b2

b3

VAR(X1) COV(X1,X2) COV(X1,X3) COV(X1,Y)

COV(X2,X1) VAR(X2) COV(X2,X3) COV(X2,Y)

COV(X3,X1) COV(X3,X2) VAR(X3) COV(X3,Y)

COV(Y,X1) COV(Y,X2) COV(Y, X3) VAR(Y)

Σ =

φ12

φ23

φ13

Structural Equation:

Observed Covariance Matrix:

Number of observed statistics: 4*5/2=10
Number of estimated parameters: 10

b1,b2,b3,φ11,φ12,φ13,φ22, φ23,φ33, var(e)

Multivariable (or multiple) Regression



X1

Ye
b1

1

φ11

var(e)

X2

X3

φ22

φ33

b2

b3

VAR(X1) COV(X1,X2) COV(X1,X3) COV(X1,Y)

COV(X2,X1) VAR(X2) COV(X2,X3) COV(X2,Y)

COV(X3,X1) COV(X3,X2) VAR(X3) COV(X3,Y)

COV(Y,X1) COV(Y,X2) COV(Y, X3) VAR(Y)

Σ =

φ12

φ23

φ13

Observed Covariance Matrix:

Expected Covariance Matrix:

φ11 φ12 φ13
b1φ11+b2φ12

+b3φ13

φ12 φ22 φ23
b2φ22+b1φ12

+b3φ23

φ13 φ23 φ33
b3φ33+b1φ13

+b2φ23

b1φ11+b2φ12
+b3φ13

b2φ22+b1φ12
+b3φ23

b3φ33+b1φ13
+b2φ23

b1
2φ11+b2

2φ22
+b3

2φ33+2b1b2φ12+ 
2b1b3φ13+2b2b3φ23+ 

var(e)

Σ(θ) =

Multivariable (or multiple) Regression



A multivariate model

1

V1 V2 V3 V4

E1

VE1

E2

VE2

E3

VE3

E4

VE4

C

1 1 1

λ1 λ2 λ3 λ4

Structural Equations:

Observed Covariance Matrix:

Number of observed statistics:
Number of estimated parameters: 

1



Common Factor Model

1

V1 V2 V3 V4

E1

VE1

E2

VE2

E3

VE3

E4

VE4

C

1 1 1

λ1 λ2 λ3 λ4

V1 = λ1C + E1

Structural Equations:

Observed Covariance Matrix:

Number of observed statistics:
Number of estimated parameters: 

V2 = λ2C + E2

V3 = λ3C + E3

V4 = λ4C + E4

1



Common Factor Model

1

V1 V2 V3 V4

E1

VE1

E2

VE2

E3

VE3

E4

VE4

C

1 1 1

λ1 λ2 λ3 λ4

V1 = λ1C + E1

VAR(V1) COV(V1,V2) COV(V1,V3) COV(V1,V4)

COV(V2,V1) VAR(V2) COV(V2,V3) COV(V2,V4)

COV(V3,V1) COV(V3,V2) VAR(V3) COV(V3,V4)

COV(V4,V1) COV(V4,V2) COV(V4, V3) VAR(V4)

Σ =

Structural Equations:

Observed Covariance Matrix:

Number of observed statistics: 4*5/2=10
Number of estimated parameters: 

V2 = λ2C + E2

V3 = λ3C + E3

V4 = λ4C + E4

1



Common Factor Model

1

V1 V2 V3 V4

E1

VE1

E2

VE2

E3

VE3

E4

VE4

C

1 1 1

λ1 λ2 λ3 λ4

V1 = λ1C + E1

VAR(V1) COV(V1,V2) COV(V1,V3) COV(V1,V4)

COV(V2,V1) VAR(V2) COV(V2,V3) COV(V2,V4)

COV(V3,V1) COV(V3,V2) VAR(V3) COV(V3,V4)

COV(V4,V1) COV(V4,V2) COV(V4, V3) VAR(V4)

Σ =

Structural Equations:

Observed Covariance Matrix:

Number of observed statistics: 10
Number of estimated parameters: 8

(λ1, λ2, λ3, λ4, VE1, VE2, VE3, VE4)

V2 = λ2C + E2

V3 = λ3C + E3

V4 = λ4C + E4

1



Common Factor Model

1

V1 V2 V3 V4

E1

VE1

E2

VE2

E3

VE3

E4

VE4

C

1 1 1

λ1 λ2 λ3 λ4

VAR(V1) COV(V1,V2) COV(V1,V3) COV(V1,V4)

COV(V2,V1) VAR(V2) COV(V2,V3) COV(V2,V4)

COV(V3,V1) COV(V3,V2) VAR(V3) COV(V3,V4)

COV(V4,V1) COV(V4,V2) COV(V4, V3) VAR(V4)

Σ =

Observed Covariance Matrix:
1

Expected Covariance Matrix:

λ1
2+VE1 λ1λ2 λ1λ3 λ1λ4

λ2λ1 λ2
2+VE2 λ2λ3 λ2λ4

λ3λ1 λ3λ2 λ3
2+VE3 λ3λ4

λ4λ1 λ4λ2 λ4λ3 λ4
2+VE4

Σ(θ) =



Classical Twin Design

C1E1 A1

T1MZ

A2 E2

T2MZ

VA VAVA VE

C2

VE VC VC

VC

C1E1 A1

T1DZ

A2 E2

T2DZ

VA VA½VA VE

C2

VE VC VC

VC

Monozygotic Twins Dizygotic Twins

11 1111 11 1111

Structural Equations:

T1MZ = A1 + C1 + E1

T2MZ = A2 + C2 + E2

T1DZ = A1 + C1 + E1

T2DZ = A2 + C2 + E2

Cov(A1,A2)=VA if MZ pair; 1/2VA if DZ
Cov(C1, C2)=VC



Classical Twin Design

C1E1 A1

T1MZ

A2 E2

T2MZ

VA VAVA VE

C2

VE VC VC

VC

C1E1 A1

T1DZ

A2 E2

T2DZ

VA VA½VA VE

C2

VE VC VC

VC

Monozygotic Twins Dizygotic Twins

11 1111 11 1111

Expected Covariance Matrices: 

VA+VC+VE VA+VC

VA+VC VA+VC+VE

ΣMZ = ΣDZ =
VA+VC+VE ½VA+VC

½VA+VC VA+VC+VE



Latent variables are random effects
Structural Equations:

T1MZ = A1 + C1 + E1

T2MZ = A2 + C2 + E2

T1DZ = A1 + C1 + E1

T2DZ = A2 + C2 + E2

Cov(A1,A2)=VA if MZ pair; 1/2VA if DZ
Cov(C1, C2)=VC

Model reformulation 

T1 T2

T
T = A + C + E
A ~ N(0, GRM. VA)
C ~ N(0, CRM. VC)
E ~ N(0, I. VE)

T1MZ T2MZ T1DZ T2DZ

T1 = A1 + C1 + E1

T2 = A2 + C2 + E2

Cov(A1,A2)=VA if MZ pair; 1/2VA if DZ
Cov(C1, C2)=VC

Model reformulation as a “classical” random effect model 

GRM and CRM – matrices of variance – covariances 
of individuals for A and C. 



Latent variables are random effects

Cov(A1,A2)=VA if MZ pair; 1/2VA if DZ
Cov(C1, C2)=VC

Covariance of A between individuals is 0 
unless they are a twin pair, in which case 
it is Va or 1/2Va depending on zygosity. 

GRM = 

1

1 1

0 0 1

0 0 1/2 1

T = A + C + E
A ~ N(0, GRM. VA)
C ~ N(0, CRM. VC)
E ~ N(0, I. VE)



Latent variables are random effects

Cov(A1,A2)=VA if MZ pair; 1/2VA if DZ
Cov(C1, C2)=VC

Covariance of C between individuals is 0 
unless they are a twin pair, in which case 
it is VC. 

CRM = 

1

1 1

0 0 1

0 0 1 1

T = A + C + E
A ~ N(0, GRM. VA)
C ~ N(0, CRM. VC)
E ~ N(0, I. VE)



Latent variables are random effects

GRM = 

1

0.01 1

-0.02 0.007 1

0.009 -0.006 0.01 1

T = A + E
A ~ N(0, GRM. VA)
E ~ N(0, I. VE)

Replace pedigree information (expected relatedness coefficients between related 
individuals) with observed cryptic relatedness in general population

“GREML 
Or GCTA model”

VA additive 
variance 
attributable to 
common SNPs
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Extended Twin Design – multi generational

Slide courtesy of Matt Keller



Other Path Models

• Mendelian randomization models

• GREML models

• Multivariate models

• Models involving feedback loops

• Many, many others…



SEM

LMM

GLM

Linear

Logistic
Poisson

Random effects

Linear

Logistic



Model Formula Application In R 

Generalised Linear model Y = Za + e Test association / correlation
Haseman Elston regression

Lm()
Glm()

Random effect model Y = Xb + e
b~N(0,  I. sG2 / 2)

AE or ACE model
Longitudinal model
Model site effect

Lme4()
openMx()
heritability()
qgg()

Linear Mixed Model Y = Za + Xb + e
b~N(0, I . sG2 / p)

ACE with covariates
SNP h2 with covariates
Longitudinal with covariates
Quadratic, interactions
More…

Lme4()
nlme()
openMx()
Umx()
heritability()
qgg()

Structural equation modelling Set of GLM or LMM Complex multivariate LMMs models
Genetic correlation (rG)
Comnnon pathway / independent pathway

lavaan()
openMx()



Summary

SEM and packages are very powerful 
 - extremely general and flexible
 - but for simple(r) models (e.g. GLM, simple LMM) other packages 
may be more straighforward
 - use of SEM is quite field dependent

Path diagram can help visualise and explain model
 - can be complex to get right
 - may not fit on one page
 - often used with incorrect formalism – to improve readability 



Estimating 
parameters of 
the model



Likelihood (function)

The likelihood function (often simply called the likelihood) is the joint 
probability of the observed data viewed as a function of the 
parameters of a statistical model. 

="
!"#

$

𝑃%	(𝑥!)

It is not a probability density over the parameter 
It is not the posterior probability of       given the data 

Assuming 
observations 
are i.i.d



Likelihood (function) - example

="
!"#

$

𝑃% 𝑥! = 𝑃% ℎ𝑒𝑎𝑑 . 𝑃% ℎ𝑒𝑎𝑑 . 𝑃%	(𝑡𝑎𝑖𝑙𝑠)

𝜃: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	ℎ𝑒𝑎𝑑𝑠	

𝑥 ∶ (ℎ𝑒𝑎𝑑, ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠)

= 𝜃 . 𝜃 . (1- 𝜃)



Likelihood (function) – visual example

𝜃: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	ℎ𝑒𝑎𝑑𝑠	

𝑥 ∶ ℎ𝑒𝑎𝑑

= 𝜃



Likelihood (function) – visual example

𝜃: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	ℎ𝑒𝑎𝑑𝑠	

𝑥 ∶ ℎ𝑒𝑎𝑑𝑠, ℎ𝑒𝑎𝑑𝑠

= 𝜃. 𝜃
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Likelihood (function) – visual example

𝜃: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	ℎ𝑒𝑎𝑑𝑠	

= 𝜃. 𝜃. 𝜃. 𝜃. (1 − 𝜃)
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Likelihood (function) – visual example

Evloution of 
Likelihood 
function as you 
add observations 
(1 to 100 coin 
flips)



Likelihood (function) – of linear model



Likelihood (function) – of linear model

Evolution of the likelihood 
function as we add more data 
(from 1 to 30 observations)



Maximum Likelihood 
estimate

• Consistent
• Asymptotically unbiased
• Efficient
• Scale Invariant
• Sampling distribution of 

estimates is asymptotically 
normal

Parameter that maximises 
the probability of the 
observed data

𝜃: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	ℎ𝑒𝑎𝑑𝑠	

= 𝜃. 𝜃. 𝜃. 𝜃	. (1 − 𝜃)

𝑥 ∶ ℎ𝑒𝑎𝑑𝑠, ℎ𝑒𝑎𝑑𝑠, ℎ𝑒𝑎𝑑𝑠, ℎ𝑒𝑎𝑑𝑠,
𝑡𝑎𝑖𝑙𝑠



Maximum Likelihood 
estimate

For each new data point 
The likelihood function gets updated 
And the ML estimate gets updated 



Maximum Likelihood 
estimate

• Asymptotically unbiased
• Consistent
• Efficient
• Scale Invariant
• Sampling distribution of estimates 

is asymptotically normal



Maximum Likelihood 
estimate

Beta

Var(e)



Optimization

Maximum likelihood estimates 
can sometimes be solved in 
closed form

MLE of coin toss =  Number of heads / number 
of toss

MLE of linear regression  : 



Optimization

For more complex models 
solutions can rarely be solved in 
closed form - rather iterative 
optimization procedures are 
commonly needed



Optimization
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Calculate likelihood of 
these parameter 

estimates, as well as 
the first and second 

derivative of the 
likelihood

Adjust 
parameter 

values

Choose starting 
values for 

parameters

Li
ke

lih
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d

+𝜃

+𝜃! +𝜃" +𝜃# +𝜃$
+𝜃%&'

Repeat process until stopping criterion is reached

Optimization



Likelihood ratio test

• Twice the difference in log-likelihood between nested models is 
distributed as chi-square 

e.g. Consider θF = (a, b, c); θR = (a, b, c=0)- twice the difference in log-
likelihoods between the models would be distributed as χ21

Model comparison
e.g. ACE vs. CE => significance test of heritability



Likelihood of 
Genetic 
model(s)



ACE model as path diagram

C1E1 A1

T1MZ

A2 E2

T2MZ

VA VAVA VE

C2

VE VC VC

VC

C1E1 A1

T1DZ

A2 E2

T2DZ

VA VA½VA VE

C2

VE VC VC

VC

Monozygotic Twins Dizygotic Twins

11 1111 11 1111



ACE model

Trait of interest 

Covariates (age, 
sex)

Genetic
Shared 
environment

Residuals (incl. 
environment)

Main parameters of interest: 
Va and Vc

Y =  Xb + a + c + e
a ~ N(0, G . Va)
c ~ N(0, C . Vc)
e ~ N(0, I . Vc)
Var(Y) = Va + Vc +  Ve
Va/(Va+Vc+Ve) : heritability
Vc/(Va+Vc+Ve) : shared E



“Real data” with  500 MZ + 500 DZ 
pairs
covariates

Fitted model in OpenMx 
Estimated likelihood for a range of 
set Va and Vc values

Likelihood as a 
function of Va and 
Vc



Likelihood
(interpolated)

ML estimates :
Va =0.48 
Vc = 0.24

Likelihood can be estimated for 
Va, Vc < 0. But note what 
happens near boudary of 
parameter space



Likelihood 
ratio test

ACE model
AE model
CE model

Test statistic : twice the 
difference of log-likelihoods



Optimization

SLSQP optimizer

Started at 
Vc=Va=0.3

Found ML in 18 
interations



Confidence 
intervals

Start from maximum likelihood

Degrade (lower) the likelihood 
so that difference is significant 
(chi2 test) at 1-CI

For 95% CI : chi2 = 3.84 ó 
pvalue=0.05



ML, FIML, REML

ML: Maximum likelihood 

FIML: Full Information 
Maximum Likelihood

REML: Restricted Maximum 
Likelihood 

Handles missing values

Minimises bias in variance 
estimation of mixed models

Also pseudo likelihood, or quasi-likelihood.. 

Fine for fixed effect models



Genomic SEM 



Genomic SEM – Why Genomic SEM? 

• Human complex traits/diseases are associated with many genes

S. Cichon, S. Ripke, 2016



Traits are highly polygenic, so not simply a matter of identifying ~5 
overlapping genes

Schizophrenia Depression

Genomic SEM – Why Genomic SEM? 

Slide courtesy of Andrew Grotzinger



Genomic SEM – LD score regression (LDSC)

Estimates genetic correlations between samples with varying degrees of sample 
overlap using publicly available data

• To estimate SNP Heritability:
• Regress GWAS test statistic against LD Scores 

for all SNPs (not just significant ones)

• To estimate Genetic Correlation:
• Regress product of GWAS test statistics for 

two different phenotypes against LD Scores



Pervasive (Statistical) Pleiotropy Necessitates Methods 
for Analyzing Joint Genetic Architecture

Genomic SEM – Why Genomic SEM? 
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Genomic SEM – Genomic SEM



• Apply structural equation model to estimated genetic covariance matrices
• Allow users to examine traits that could not be measured in the same sample

• Genomic SEM provides a flexible framework for estimating a limitless number of 
structural equation models using multivariate genetic data from GWAS summary 
statistics . 

• Can be applied to summary stats with varying and unknown degrees of overlap

Genomic SEM – Genomic SEM



• Genomic SEM fits structural equation models to genetic covariance matrices derived from GWAS 
summary statistics using 2 Stage Estimation.

• Stage 1: Estimate Genetic Covariance Matrix and associated matrix of standard errors and their co-
dependencies
• We use LD Score Regression, but any method for estimating this matrix (e.g. GREML) and its 

sampling distribution can be used. 

• Stage 2: Fit a Structural Equation Model to the Matrices from Stage 1

Genomic SEM – Genomic SEM



Create a genetic covariance matrix, S: an “atlas of genetic correlations”

Diagonal elements are
(heritabilities hn

2)

Off-diagonal elements are
Coheritabilities (𝜎!",!$)

Genomic SEM – Stage 1 Estimation: Multivariable LDSC



Off-diagonal elements are dependencies between estimation errors used to directly model 
dependencies that occur due to sample overlap from contributing GWASs

Also produced is a second matrix, V, of squared standard errors and the dependencies between estimation 
errors

Genomic SEM – Stage 1 Estimation: Multivariable LDSC

Diagonal elements are
squared standard errors of
genetic variances and covariances



pG
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Genomic SEM – Common factor model

Schizophrenia (SCZ), bipolar disorder (BIP), major depressive disorder (MDD), post-
traumatic stress disorder (PTSD), and anxiety disorder (ANX).
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λ3 λ4
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S =

Observed Covariance Matrix:1

Expected Covariance Matrix:

Σ(θ) =

SEM – Common factor model
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Genomic SEM – GWAS of a Latent Factor



• Asks to what extent the effect of the SNP operates through the common factor

• 𝜒,	distributed test statistic, indexing fit of the common pathways model against 
independent pathways model
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Genomic SEM - Estimates of SNP level heterogeneity (QSNP)



• 128 lead SNPs
• 27 unique loci not previously identified in 

any of the five univariate GWA studies (   )
• 41 previously significant in a univariate 

study, but not for p-factor (      )

• 1 significant QSNP estimate (*)

Genomic SEM - Manhattan Plot (Latent Factor)



• Genetic correlations from GWASs show widespread pleiotropy across various phenotypes.
• GenomicSEM is a multivariate method introduced for analyzing the joint genetic architecture of 

complex traits.
• It utilises genetic correlations and SNP heritabilities from GWAS summary statistics (i.e. LDSC), 

even from samples with unknown or varying overlap.
• It applies structural equation model to estimated genetic covariance matrices, which allow users 

to examine traits that could not be measured in the same sample.

Take home messages – Part II



• Bulik-Sullivan B. et al (2015). LD score regression distinguishes confounding from polygenicity in genome-
wide association studies. Nat Genet, 47(3), 291-295.
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genome-wide summary results data. Nat Commun, 12(1), 5420.

Further Reading
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Deriving Expected 
Variances and 
Covariances Using
Path Tracing Rules



Deriving 
variances & 
covariances

Identify all legitimate chains (a series 
of paths) that connect one variable to 
another (covariances) or connect a 
variable back to itself (variances)

The expected value of a chain is the 
product of all coefficients associated 
with each path making up that chain

The final expected variance or 
covariance equals the sum of the 
values of all legitimate chains



Path 
Tracing 
Rules. 

Legitimate 
chains:

All chains begin by travelling backwards 
against the direction of a (single or 
double-headed) arrow, head to tail. 

Once a double headed arrow has been 
traversed, the direction reverses such that 
the chain travels forward

All chains must include exactly one 
double-headed arrow. This implies a chain 
must change directions exactly once.

All chains must be counted exactly once 
and each must be unique. However, order 
matters: abc is a distinct chain from cba.



Expected 
covariance
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COV(H,A) = 
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Expected 
covariance

COV(H,A) = g 
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Expected 
covariance

COV(H,A) = g *a * VA



Expected 
covariance

COV(H,A) = g *a * VA + g
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Expected 
covariance

COV(H,A) = g *a * VA + g * b
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Expected 
covariance

COV(H,A) = g *a * VA + g * b * COVAB

A B

G

H

VA

x

covAB

ba

g

VB

A visual/graphical way of deriving 
covariances between variables of a 
model!



Expected 
variance

VAR(G) = x 
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Expected 
variance

VAR(G) = x 

A B

G
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x

covAB
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g
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(Residual variance 
or measurement 
error)

E1



Expected 
variance

VAR(G) = x + 
 b * COVAB * a 

A B

G

H

VA

x

covAB

ba

g

VB



Expected 
variance

VAR(G) = x +
 b * COVAB * a + 
 a * COVAB * b 
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Expected 
variance

VAR(G) = x +
 b * COVAB * a + 
 a * COVAB * b +
 a * VA * a
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VB



Expected 
variance

VAR(G) = x +
 b * COVAB * a + 
 a * COVAB * b +
 a * VA * a +
 b * VB * b

 = x + 2ab COVAB + a2 VA + b2 VB

A B
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x

covAB

ba

g

VB



Expected 
variance

VAR(H) = g * VAR(G) * g

A B

G

H
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x

covAB

ba

g

VB



Deriving Expected 
Variances and 
Covariances Using
Covariance 
Algebra



Rules of Covariance Algebra

• COV(c, X) = 0

• COV(cX1, X2) = cCOV(X1, X2)

• COV(X1 + X2, X3) = COV(X1, X3) + COV(X2, X3)

• VAR(X1) = COV(X1, X1)



SEM model
A B

G

H

VA

x

covAB

ba

g

VB

H = g*G

G = a*A + b*B + eX



Expected 
VarianceA B

G

H

VA

x

covAB

ba

g

VB

H = g*G

G = a*A + b*B + eX

VAR(H) = COV(H, H)
= COV(g*G, g*G)
= g*g*COV(G, G)

= g2*VAR(G)



Expected 
VarianceA B

G

H

VA

x

covAB

ba

g

VB

H = g*G

G = a*A + b*B + eX

VAR(G) = COV(G, G)
= COV(a*A + b*B + e, a*A + b*B + e)
= COV(a*A, a*A) + COV(a*A, b*B) + COV(a*A, e)
+ COV(b*B, a*A) + COV(b*B, b*B) + COV(b*B, e)
+ COV(e, a*A) + COV(e, b*B) + COV(e, e)
= a*a*COV(A, A) + a*b*COV(A, B)
+ b*a*COV(B, A) + b*b*COV(A, B)
+ COV(e, e)
= a2*VA + b2*VB + 2*a*b*COVAB + x



Expected 
covarianceA B

G

H

VA

x

covAB

ba

g

VB

H = g*G

G = a*A + b*B + eX

COV(H,A) = COV(g*G, A)
= COV(g*(a*A + b*B + eX), A)
= COV(g*a*A + g*b*B + g*eX), A)
= COV(g*a*A, A) + COV(g*b*B, A) + 
COV(g*eX, A)

= g*a*COV(A, A) + g*b*COV(B, A) + 
g*COV(eX, A)
= g*a*VAR(A) + g*b*COV(B, A)
= g*a*VA + g*b*COVAB
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