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• How to measure PGS prediction in quantitative traits? 

• How to measure PGS prediction in diseases? 

• What parameters determine the accuracy of PGS prediction?

• What are the pitfalls in the prediction analysis?
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PGS evaluation in quantitative traits

Squared correlation between phenotype and PGS in the validation sample

• The proportion of phenotypic variance explained by PGS (prediction 𝑅2)

• The SNP-based heritability is its upper bound

It’s common to adjust for covariates (sex, age, top 10 PCs, etc)

• Null model:  y = covariates + e

• Full model:   y = covariates + PGS + e

• Incremental 𝑅2: 𝑅𝐹𝑢𝑙𝑙
2 − 𝑅𝑁𝑢𝑙𝑙
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Prediction accuracy
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PGS evaluation in quantitative traits

Prediction accuracy

R2 = 0 R2 = 0.5 R2 = 0.9
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PGS evaluation in quantitative traits

The slope of regression of phenotypes on PGS in the validation sample is 
expected to be 1.

• 1 unit increase in PGS leads to 1 unit increase in phenotype

• The PGS are unbiased

If the slope > 1, then

• 1 unit increase in PGS leads to >1 unit increase in phenotype

• The PGS are downward biased

If the slope < 1, then

• The PGS are upward biased

Prediction bias
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PGS evaluation in quantitative traits

Prediction bias

Unbiased Upward biased Downward biased
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PGS evaluation in diseases (binary traits)

Polygenic risk score
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Control Case
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PGS evaluation in diseases (binary traits)

- Pseudo 𝑅2 from logistic regression

- AUC (area under the ROC curve)

- Variance explained on liability scale

- Decile odds ratio (OR)

- Risk stratification

Statistics to measure prediction accuracy
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Pseudo 𝑹𝟐

this link

Logistic regression: 

• Null model:  y = logistic(covariates + e)

•   Full model:   y = logistic(covariates + PGS + e)

Many pseudo 𝑅2 statistics available for logistic regression

e.g., Nagelkerke’s 𝑅2

1−
𝐿𝑁𝑢𝑙𝑙
𝐿𝐹𝑢𝑙𝑙

2
𝑁

1− 𝐿𝑁𝑢𝑙𝑙

2
𝑁

 ∈  [0, 1]

For a review of pseudo 𝑅2 statistics, check this link

https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds


Problem: Nagelkerke’s 𝑅2 depends on case proportion in the sample
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Property of pseudo 𝑹𝟐



AUC = Probability that a randomly 
selected case has a higher test score 

than a randomly selected control

AUC (area under the ROC curve)
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- Nice property - independent to proportion 
of cases and controls in sample

- Can be used to compare results 
between case-control studies

- Max AUC depends on heritability and 
disease prevalence

- Use caution when comparing 
populations with difference prevalence

Property of AUC
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Prediction R2 on liability scale 

Liability threshold model

Falconer 1965; Lee et al 2011 AJHG; Lee, 2012, Genet Epidemiol

Map variance explained on observed probability 0-1 scale (𝑅𝑜
2)

To underlying unobserved continuous liability scale (𝑅𝑙
2).

D
e

n
s
it
y

Liability t = threshold

K = Proportion of the population 

       that are diseased
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Linear regression; Y are 0s and 1s

Null: Y= covariates + e

Full:  Y= covariates + PGS + e

Lee, 2012, Genet Epidemiol

𝑅𝑜
2 = 1 − (

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑛𝑢𝑙𝑙

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑓𝑢𝑙𝑙
)2/𝑁 

Prediction R2 on liability scale 
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Liability t = threshold

z = density at t

K = Proportion of the population 

       that are diseased

R2 on the observed scale

𝑅𝑙
2 = 𝑅𝑜

2
𝐾(1 − 𝐾)

𝑧2

R2 on the liability scale
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Prediction R2 on liability scale 

𝑅𝑙
2 = 𝑅𝑜

2
𝐾(1 − 𝐾)

𝑧2

Ascertainment in case-control studies
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Prediction R2 on liability scale 

Ascertainment in case-control studies

Lee, 2012, Genet Epidemiol

𝑅𝑙_𝑐𝑐
2 =

𝑅𝑜_𝑐𝑐
2 ∗ 𝐶

1 + 𝑅𝑜_𝑐𝑐
2 ∗ 𝜃 ∗ 𝐶

𝐶 =
𝐾(1−𝐾)

𝑧2

𝐾(1−𝐾)

𝑃(1−𝑃)
 

𝜃 =
𝑧

𝑘

𝑃−𝐾

1−𝐾
 (

𝑧

𝑘

𝑃−𝐾

1−𝐾
− t)



- heritability is independent of disease prevalence

- 𝑅𝑙_𝑐𝑐
2  is on the same sale as heritability estimated from family studies or genotypes

- Provide a direct measure of how well the predictor performs relative to capturing all 
genetic variation
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Property of R2 on liability scale 
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Decile odds ratio
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Decile odds ratio
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𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =
𝑂𝑑𝑑𝑠1

𝑂𝑑𝑑𝑠0
=

ൗ
𝑃1

1−𝑃1

ൗ
𝑃0

1−𝑃0

 

𝑂𝑑𝑑𝑠 =
𝑃

1−𝑝
 

𝑃 = probability of being case

1st decile 

(Bottom 10%)

10th decile 

(Top 10%)

Case 23 83

Control 103 40

Odds being a case in 1st decile 

 = 23/103

Odds being a case in 10th decile 

 = 83/40

Odds ratio between 10th and 1st decile 

 = (23/103) / (83/40) =9.3

Toy example:

Decile odds ratio
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Risk stratification

Khera et al (2018) Genome-wide polygenic scores for common diseases identify 
individuals with risk equivalent to monogenic mutations. Nature Genetics

Torkamani et al, Nat Rev Genetics, 2018

1 in 9Top 1%



Stratification & health economics

For every 1,000 people treated with intervention could “save” 10
Treat only 18% = 180 and “save” 8

Number of people treated to save 1 reduced from 100 to 22.5

Polychronakos & Li NRG (2011) Understanding Type I Diabetes through genetics. Nat Rev Genetics

Population risk  of 1%

80% of cases in 
top 18% of genetic risk

22
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Parameters determining the prediction accuracy

The expected value of prediction accuracy:

𝑅2 =
ℎ𝑚

2

1 + 𝐶
Variance explained by 

the predictor

ℎ𝑚
2  : True variance explained by the predictor 

depends on the SNP set - subscript m. 

C: captures the error in estimation

As C→ 0, 𝑅2 → ℎ𝑚
2  𝐶 ≈

𝑚

𝑁ℎ𝑚
2

- N: discovery sample size

- m: the number of SNPs (assume LD-independent)

- ℎ𝑚
2 : the SNP-heritability captured by m SNPs

Wray et al (2019) Complex trait prediction from genome data. Genetics



What is the maximum prediction accuracy we can get?

𝐶 ≈
𝑚

𝑁ℎ𝑚
2

ℎ𝑚
2  : True variance explained by the predictor 

depends on the SNP set - subscript m. 

C: captures the error in estimation

As C→ 0, 𝑅2 → ℎ𝑚
2  

We want C to be as small as possible:
• C decreases as Discovery sample N  increases

• C decreases as the number of  SNPs in the SNP set m decreases

As m gets smaller, ℎ𝑚
2  also gets smaller

How to optimise m and ℎ𝑚
2  to get max 𝑅2 ?

𝑅2 =
ℎ𝑚

2

1 + 𝐶
Variance explained by 

the predictor

Wray et al (2019) Complex trait prediction from genome data. Genetics 24



How about whole genome sequencing?
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With whole genome sequencing the variance captured by 
all measured SNPs will increase

But the number of SNPs that we have estimate effect sizes 
for increases much more

𝒉𝑴
𝟐

M

?
Wray et al (2019) Complex trait prediction from genome data. Genetics

𝑅2 ≈
ℎ𝑚

2

1 +
𝑚

𝑁ℎ𝑚
2

𝑅2

Maximum depends on 
maximising ℎ𝑚

2

We use GWAS data so the 
maximum ℎ𝑚

2  is the SNP-based 
heritability

Theoretical maximum depends 
on the heritability of the trait

Need MASSIVE discovery sample sizes for WGS associations

Also… rare variants are less likely to be shared across populations

25



Polygenic prediction
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- Discovery/Training/Derivation

• Estimate the effect sizes (෠𝑏) of SNPs on a trait (y) – GWAS

- Tunning/Validation
• Further estimate some parameters (depends on methods; 

not all methods require it)

-  Target/Testing/Validation

• Build a polygenetic risk score (PRS) (ො𝑦): 
• Evaluate the prediction performance/accuracy

Should be independent; no overlap; 

out-of-sample prediction
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x: M markers for N samples

y from N(0,1) independently (null hypothesis)

1) Multiple linear regression of y on x (when M<N)

𝐸 𝑅2 = 𝑀/𝑁

2) Select m “best” markers out of M in total, and conduct multiple 
linear regression in the same dataset

𝐸 𝑅2 ≫ 𝑚/𝑁

variation “explained” by chance

winner’s curse

Pitfall 1: No target sample – report R2 in discovery sample

Pitfalls
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“A cross-validated Bayesian 
prediction analysis using 
all genetic markers on the 
same data found that only 
6% of phenotypic variation 
could be explained by the 
predictor.”
(Wray et al., 2013. Nat. Rev. Genet.)

Winner’s curse

~10 best markers selected 

from 2.5 million markers
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- Overlapping target and discovery sample

- Greater similarity between target and discovery sample (such as 
relatedness)

- Cross-validation: not a pitfall, but to be aware

Pitfall 2: target sample overlapped with discovery sample

Pitfalls
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- Estimate SNP effects and/or select SNPs from total sample (discovery 

+ target sample)

- Re-estimate effects in the target sample after selecting in the 

discovery sample

- Out-of-sample prediction

- Select SNPs in total sample

- Direct report R2 in the discovery sample

Pitfall 3: Less obvious non-independence

Pitfalls
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• Evaluation of prediction performance

• Prediction accuracy and bias for quantitative traits

• Different statistics for disease traits with pros and cons

• Parameters determining the prediction accuracy

• SNP-based heritability (ℎ𝑚
2 )

• Number of SNPs (m)

• Discovery sample size (N)

• Pitfalls in the prediction analysis

• No target sample (only discovery sample)

• Overlapping discovery & target sample

• Less obvious non-independence

Summary



Questions?



Practical 2: Evaluation of PRS prediction

https://cnsgenomics.com/data/teaching/GNGWS25/module5/Practical2_Evaluation.html
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https://cnsgenomics.com/data/teaching/GNGWS25/module5/Practical2_Accracy.html
https://cnsgenomics.com/data/teaching/GNGWS25/module5/Practical2_Accracy.html
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