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Polygenic score (PGS) methods

PGS = !𝛽!𝑥"! + !𝛽#𝑥"# + !𝛽$𝑥"$ +⋯	= ∑%&!
'!"# )𝛽%𝑥"%

A weighted sum of the count of risk alleles

How many SNPs?
Which SNPs?
What weights? 

Basic method:
Clumping & P-value thresholding 
(C+PT):

• Select most associated SNP in 
tower – LD-based clumping

• Select on a p-value threshold
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Polygenic score (PGS) methods

PGS = !𝛽!𝑥"! + !𝛽#𝑥"# + !𝛽$𝑥"$ +⋯	= ∑%&!
'!"# )𝛽%𝑥"%

A weighted sum of the count of risk alleles

How many SNPs?
Which SNPs?
What weights? 

Can we simultaneously use all SNPs?
Yes! But …
cannot aggregate GWAS effects
due to linkage disequilibrium (double counting)
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Polygenic score (PGS) methods

PGS = !𝛽!𝑥"! + !𝛽#𝑥"# + !𝛽$𝑥"$ +⋯	= ∑%&!
'!"# )𝛽%𝑥"%

A weighted sum of the count of risk alleles

How many SNPs?
Which SNPs?
What weights? 

Estimate SNP effects with a multiple regression?
Yes! 
But … 
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Linear model

where
• y is a vector of n phenotypes, 
• µ is the mean, 
• X is an incidence matrix of individuals’ genotypes for all SNPs,
• 𝜷 are the fixed effects of the m SNPs, 
• e is a vector of random residuals, 𝐞 ~ N(0, 𝜎!")

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞

Least squares method
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Least squares (LS): minimising the sum of squares of the residuals. 

Least squares method
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Linear model

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞

�̂�
*𝜷
= 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

LS solutions

No unique solutions when #SNPs > #individuals
(p > n problem)

Least squares method
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Linear mixed model

where
• y is a vector of n phenotypes, 
• µ is the mean, 
• X is an incidence matrix of individuals’ genotypes for all SNPs,
• 𝜷 are the random effects of the m SNPs, 
• e is a vector of random residuals, 𝐞 ~ N(0, 𝜎!")

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞

Assume SNP effects come from normal distribution with 
same variance 𝜷 ~ N(0, 𝜎+#)

BLUP
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Assumed distribution of SNP effects
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Best linear unbiased prediction

To estimate random effects (Henderson 1975 & Robinson 1991).

Best: minimum mean square error within class of linear predictors

Linear: random variables 𝜷 are linear functions of the data y
Unbiased: the average value of the estimate of	𝜷 is equal to the 
average value of the quantity being estimated
Predictor: to distinguish random effects from fixed effect estimates 

BLUP
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Best linear unbiased prediction (BLUP)

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞
Linear mixed model

BLUP solutions

I = identity matrix (dimensions m x m)

l = 𝜎,#	/ 𝜎+
#

�̂�
*𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

BLUP
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LS solutions
�̂�
*𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

BLUP solutions
�̂�
*𝜷
= 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

BLUP
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• 10 SNPs
• Only 5 phenotypes

X
Individual y 1 2 3 4 5 6 7 8 9 10

1 0.19 0 0 0 0 0 0 1 2 0 2
2 1.23 1 0 0 1 1 1 2 1 0 1
3 0.86 1 0 0 1 0 0 1 1 1 1
4 1.23 1 1 1 1 0 1 2 1 1 1
5 0.45 0 1 1 1 1 1 2 1 0 1

Example
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Let 1n’ = [1 1 1 1 1]

Assume value of 1 for l

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

Example

BLUP solutions

X
Individual y 1 2 3 4 5 6 7 8 9 10

1 0.19 0 0 0 0 0 0 1 2 0 2
2 1.23 1 0 0 1 1 1 2 1 0 1
3 0.86 1 0 0 1 0 0 1 1 1 1
4 1.23 1 1 1 1 0 1 2 1 1 1
5 0.45 0 1 1 1 1 1 2 1 0 1
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BLUP solutions

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

Example
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BLUP solutions

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

Example
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BLUP solutions

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

Example
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BLUP solutions

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

Example
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BLUP solutions

5 3 2 2 4 2 3 8 6 2 6 3.96
3 4 1 1 3 1 2 5 3 2 3 3.32
2 1 3 2 2 1 2 4 2 1 2 1.68
2 1 2 3 2 1 2 4 2 1 2 1.68
4 3 2 2 5 2 3 7 4 2 4 3.77
2 1 1 1 2 3 2 4 2 0 2 1.68
3 2 2 2 3 2 4 6 3 1 3 2.91
8 5 4 4 7 4 6 15 9 3 9 6.87
6 3 2 2 4 2 3 9 9 2 8 4.15
2 2 1 1 2 0 1 3 2 3 2 2.09
6 3 2 2 4 2 3 9 8 2 9 4.15

5.96 -0.46 -0.04 -0.04 -0.81 -0.31 -0.01 -1.01 -1.19 -0.50 -1.19 3.96
-0.46 0.65 0.11 0.11 -0.11 0.08 -0.06 -0.06 0.11 -0.18 0.11 3.32
-0.04 0.11 0.72 -0.28 -0.03 0.04 -0.11 -0.11 0.03 -0.07 0.03 1.68
-0.04 0.11 -0.28 0.72 -0.03 0.04 -0.11 -0.11 0.03 -0.07 0.03 1.68
-0.81 -0.11 -0.03 -0.03 0.83 -0.09 -0.05 -0.05 0.17 -0.09 0.17 3.77
-0.31 0.08 0.04 0.04 -0.09 0.68 -0.12 -0.12 0.09 0.24 0.09 1.68
-0.01 -0.06 -0.11 -0.11 -0.05 -0.12 0.76 -0.24 0.05 0.07 0.05 2.91
-1.01 -0.06 -0.11 -0.11 -0.05 -0.12 -0.24 0.76 0.05 0.07 0.05 6.87
-1.19 0.11 0.03 0.03 0.17 0.09 0.05 0.05 0.83 0.09 -0.17 4.15
-0.50 -0.18 -0.07 -0.07 -0.09 0.24 0.07 0.07 0.09 0.68 0.09 2.09
-1.19 0.11 0.03 0.03 0.17 0.09 0.05 0.05 -0.17 0.09 0.83 4.15

�̂�
#𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

Example
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BLUP solutions
Mean 0.47
SNP1 0.29
SNP2 -0.05
SNP3 -0.05
SNP4 0.08
SNP5 -0.02
SNP6 0.13
SNP7 0.13
SNP8 -0.08
SNP9 0.11
SNP10 -0.08

“Smear” the effect 
over SNPs in LD

Example
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Now we want to predict PGS of a group of young individuals without 
phenotypes

We have the -𝜷, and we can get X from their genotypes (after genotyping)……

𝐏𝐆𝐒 = 𝐗*𝜷

Young 
individuals X

1 1 1 1 1 1 1 2 1 0 1
2 1 0 0 1 1 1 1 1 0 1
3 1 0 0 1 1 1 2 1 0 1
4 1 0 0 1 1 2 2 1 0 1
5 0 0 0 0 0 0 1 2 0 2

PGS prediction with BLUP
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𝐏𝐆𝐒 = 𝐗*𝜷

X                                       PGS
1 1 1 1 1 1 2 1 0 1 0.29 0.48
1 0 0 1 1 1 1 1 0 1 -0.05 0.45
1 0 0 1 1 1 2 1 0 1 -0.05 0.58
1 0 0 1 1 2 2 1 0 1 0.08 0.71
0 0 0 0 0 0 1 2 0 2 -0.02 -0.19

0.13
0.13

-0.08
0.11

-0.08

$𝜷

PGS prediction with BLUP
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Shrinkage

BLUP solutions

l = 𝜎#"	/ 𝜎!
"  is known as the shrinkage parameter

It shrinks LS estimates toward zero to an extent depending on the 
noise-signal ratio.

�̂�
*𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲
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Shrinkage

BLUP solutions

l = 𝜎#"	/ 𝜎!
"  is known as the shrinkage parameter

Ignoring mean and other SNP
$𝛽! =

"!"#
"!""!$%

 

   = (0*0.19+1*1.23+1*0.86+1*1.23+ 0*0.45)/(3+1)

�̂�
*𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

Individual
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 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 2 ~

 with = 2^, we see that the average value of \b\ among ?b
 the selected SNPs is equal to the true average value of
 \b\ because b is unbiased in the sense of (2). That is,

 estimators of the kind recommended here do not suffer

 from the winner's curse. This property holds irrespec
 tive of the threshold chosen to select the SNPs.

 The advantages of the properties of type (2) estima
 tors [i.e., those with property (2)] can be illustrated
 using two examples. First, suppose the purpose of se
 lecting the markers is to predict the disease risk faced

 i) Least squares  ii) BLUP

 -4 -2 0 2 4 -4 -2 0 2 4

 LS(b) BLUP(b)

 FIG. 2. Comparison of conventional least squares (LS) estimates (i) and BLUP estimates (ii) of the effects of SNPs. The true SNP ef
 fects were simulated ~N(0, 0.5) and estimated with sampling error ~ N(0,0.5). The SNPs with the largest magnitude of effect are plotted
 (I LS(b) I > 4). The BLUP estimates are unbiased, while the least squares estimates overestimated the magnitude of the largest effects. The
 dashed line shows y = and the solid line is the regression ofb on the LS(&) or BLUP(&). BLUP estimates are unbiased irrespective of the
 threshold chosen for selection.
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BLUP avoids selection bias!

 Statistical Science
 2009, Vol.24, No. 4,517-529
 DOI: 10.1214/09-STS306
 ? Institute of Mathematical Statistics, 2009

 Estimating Effects and Making Predictions
 from Genome-Wide Marker Data
 Michael E. Goddard, Naomi R. Wray, Klara Verbyla and Peter M. Visscher

 Abstract. In genome-wide association studies (GWAS), hundreds of thou
 sands of genetic markers (SNPs) are tested for association with a trait or phe
 notype. Reported effects tend to be larger in magnitude than the true effects
 of these markers, the so-called "winner's curse." We argue that the classical
 definition of unbiasedness is not useful in this context and propose to use
 a different definition of unbiasedness that is a property of the estimator we
 advocate. We suggest an integrated approach to the estimation of the SNP
 effects and to the prediction of trait values, treating SNP effects as random
 instead of fixed effects. Statistical methods traditionally used in the predic
 tion of trait values in the genetics of livestock, which predates the availability
 of SNP data, can be applied to analysis of GWAS, giving better estimates of
 the SNP effects and predictions of phenotypic and genetic values in individ
 uals.

 Key words and phrases: Genome-wide association study, prediction, esti
 mation.

 1. INTRODUCTION

 The rules for the genetic inheritance of traits, dis
 covered by Mendel, are most obvious for traits con
 trolled by a single gene, for example, individuals who
 carry two defective variants in the gene CFTR develop
 cystic fibrosis. However, most of the traits that are of
 importance in medicine, agriculture and evolution are
 influenced by many genes and by nongenetic or "envi
 ronmental" factors. For example, height in humans in
 volves many physiological processes and many genes
 but is also influenced by nongenetic factors such as nu
 trition and health care. These traits are called quanti

 Michael E. Goddard is Professor of Animal Genetic,
 Faculty of Land and Food Resources, University of
 Melbourne and Department of Primary Industries, Victoria,
 Australia. Naomi R. ray is Professor of Psychiatric,
 Genetic Epidemiology and Queensland Statistical Genetics,
 Queensland Institute of Medical Research, Australia. Klara
 Verbyla is PhD Scholar, Faculty of Land and Food
 Resources, University of Melbourne and Department of
 Primary Industries, Victoria, Australia. Peter M. Visscher is
 Professor of Statistical Genetics, Genetic Epidemiology and
 Queensland Statistical Genetics, Queensland Institute of
 Medical Research, Australia (e-mail:
 Peter. Vis s eher @qimr. edu. au).

 tative or complex traits and include common genetic
 diseases such as heart disease, breast cancer, diabetes
 and psychiatric disorders.

 Until recently few of the genes which harbor vari
 ants for complex genetic traits had been identified. The
 availability of genome-wide panels of densely spaced,
 genetic markers has led to a revolution in the study of
 the genetics of complex traits. These genetic markers
 are single nucleotide polymorphisms (SNPs) which are
 positions in the DNA sequence where the nucleotides
 can vary (e.g., G or T). Individuals carry pairs of ho
 mologous chromosomes and so have one of three geno
 types at a G/T SNP?GG, GT or TT. Assays are now
 available that determine the genotype of an individual
 at 100,000 to over 1 million SNPs spread over all of
 the chromosomes of the species.

 SNPs usually have no direct effect on a trait un
 der study. However, any polymorphism that does af
 fect the trait will be located on a chromosome close to

 one or more of the genotyped SNPs because the geno
 typed SNPs are chosen to cover all chromosomes in,
 at least, moderate density. Polymorphisms that are lo
 cated close to each other on a chromosome can occur

 together more often than expected by chance, so that
 they are correlated or in linkage disequilibrium (LD).
 Thus, for every polymorphism that affects a trait, there

 517
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 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 2 ~

 with = 2^, we see that the average value of \b\ among ?b
 the selected SNPs is equal to the true average value of
 \b\ because b is unbiased in the sense of (2). That is,

 estimators of the kind recommended here do not suffer

 from the winner's curse. This property holds irrespec
 tive of the threshold chosen to select the SNPs.

 The advantages of the properties of type (2) estima
 tors [i.e., those with property (2)] can be illustrated
 using two examples. First, suppose the purpose of se
 lecting the markers is to predict the disease risk faced

 i) Least squares  ii) BLUP

 -4 -2 0 2 4 -4 -2 0 2 4

 LS(b) BLUP(b)

 FIG. 2. Comparison of conventional least squares (LS) estimates (i) and BLUP estimates (ii) of the effects of SNPs. The true SNP ef
 fects were simulated ~N(0, 0.5) and estimated with sampling error ~ N(0,0.5). The SNPs with the largest magnitude of effect are plotted
 (I LS(b) I > 4). The BLUP estimates are unbiased, while the least squares estimates overestimated the magnitude of the largest effects. The
 dashed line shows y = and the solid line is the regression ofb on the LS(&) or BLUP(&). BLUP estimates are unbiased irrespective of the
 threshold chosen for selection.
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Shrinks LS estimates toward zero
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Property of BLUP
 Statistical Science
 2009, Vol.24, No. 4,517-529
 DOI: 10.1214/09-STS306
 ? Institute of Mathematical Statistics, 2009

 Estimating Effects and Making Predictions
 from Genome-Wide Marker Data
 Michael E. Goddard, Naomi R. Wray, Klara Verbyla and Peter M. Visscher

 Abstract. In genome-wide association studies (GWAS), hundreds of thou
 sands of genetic markers (SNPs) are tested for association with a trait or phe
 notype. Reported effects tend to be larger in magnitude than the true effects
 of these markers, the so-called "winner's curse." We argue that the classical
 definition of unbiasedness is not useful in this context and propose to use
 a different definition of unbiasedness that is a property of the estimator we
 advocate. We suggest an integrated approach to the estimation of the SNP
 effects and to the prediction of trait values, treating SNP effects as random
 instead of fixed effects. Statistical methods traditionally used in the predic
 tion of trait values in the genetics of livestock, which predates the availability
 of SNP data, can be applied to analysis of GWAS, giving better estimates of
 the SNP effects and predictions of phenotypic and genetic values in individ
 uals.

 Key words and phrases: Genome-wide association study, prediction, esti
 mation.

 1. INTRODUCTION

 The rules for the genetic inheritance of traits, dis
 covered by Mendel, are most obvious for traits con
 trolled by a single gene, for example, individuals who
 carry two defective variants in the gene CFTR develop
 cystic fibrosis. However, most of the traits that are of
 importance in medicine, agriculture and evolution are
 influenced by many genes and by nongenetic or "envi
 ronmental" factors. For example, height in humans in
 volves many physiological processes and many genes
 but is also influenced by nongenetic factors such as nu
 trition and health care. These traits are called quanti

 Michael E. Goddard is Professor of Animal Genetic,
 Faculty of Land and Food Resources, University of
 Melbourne and Department of Primary Industries, Victoria,
 Australia. Naomi R. ray is Professor of Psychiatric,
 Genetic Epidemiology and Queensland Statistical Genetics,
 Queensland Institute of Medical Research, Australia. Klara
 Verbyla is PhD Scholar, Faculty of Land and Food
 Resources, University of Melbourne and Department of
 Primary Industries, Victoria, Australia. Peter M. Visscher is
 Professor of Statistical Genetics, Genetic Epidemiology and
 Queensland Statistical Genetics, Queensland Institute of
 Medical Research, Australia (e-mail:
 Peter. Vis s eher @qimr. edu. au).

 tative or complex traits and include common genetic
 diseases such as heart disease, breast cancer, diabetes
 and psychiatric disorders.

 Until recently few of the genes which harbor vari
 ants for complex genetic traits had been identified. The
 availability of genome-wide panels of densely spaced,
 genetic markers has led to a revolution in the study of
 the genetics of complex traits. These genetic markers
 are single nucleotide polymorphisms (SNPs) which are
 positions in the DNA sequence where the nucleotides
 can vary (e.g., G or T). Individuals carry pairs of ho
 mologous chromosomes and so have one of three geno
 types at a G/T SNP?GG, GT or TT. Assays are now
 available that determine the genotype of an individual
 at 100,000 to over 1 million SNPs spread over all of
 the chromosomes of the species.

 SNPs usually have no direct effect on a trait un
 der study. However, any polymorphism that does af
 fect the trait will be located on a chromosome close to

 one or more of the genotyped SNPs because the geno
 typed SNPs are chosen to cover all chromosomes in,
 at least, moderate density. Polymorphisms that are lo
 cated close to each other on a chromosome can occur

 together more often than expected by chance, so that
 they are correlated or in linkage disequilibrium (LD).
 Thus, for every polymorphism that affects a trait, there
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Unbiased: E[𝜷 | )𝜷./01] = )𝜷./01

In contrast, for LS estimator: E[-𝜷#$ | 𝜷] = 𝜷

 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 This is illustrated by simulation in Figure 2. Here
 100,000 markers effect (b) and their least squares es

 timates (b) are simulated by b = b + e9b^ N(0, ^),
 e ~ N(0, 2). We arbitrarily chose = 2 = 1/2. b
 is an unbiased estimator of b in the classical sense that

 E(b\b) = b. However, if we now select the SNPs with
 the largest \b\ (\b\ > 4), then this over-estimates the
 true value \b\. This is an example of the winner's curse
 and occurs because b is not unbiased in the sense of (2).

 On the other hand, if we estimate b by b = b/(l + ),

 2 ~

 with = 2^, we see that the average value of \b\ among ?b
 the selected SNPs is equal to the true average value of
 \b\ because b is unbiased in the sense of (2). That is,

 estimators of the kind recommended here do not suffer

 from the winner's curse. This property holds irrespec
 tive of the threshold chosen to select the SNPs.

 The advantages of the properties of type (2) estima
 tors [i.e., those with property (2)] can be illustrated
 using two examples. First, suppose the purpose of se
 lecting the markers is to predict the disease risk faced

 i) Least squares  ii) BLUP

 -4 -2 0 2 4 -4 -2 0 2 4

 LS(b) BLUP(b)

 FIG. 2. Comparison of conventional least squares (LS) estimates (i) and BLUP estimates (ii) of the effects of SNPs. The true SNP ef
 fects were simulated ~N(0, 0.5) and estimated with sampling error ~ N(0,0.5). The SNPs with the largest magnitude of effect are plotted
 (I LS(b) I > 4). The BLUP estimates are unbiased, while the least squares estimates overestimated the magnitude of the largest effects. The
 dashed line shows y = and the solid line is the regression ofb on the LS(&) or BLUP(&). BLUP estimates are unbiased irrespective of the
 threshold chosen for selection.
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Desirable property of a genetic predictor:

The regression of y on the predictor has an 
intercept of zero and a slope of one.
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Where do we get l from?

• If know 𝜎!", then know l.

• Can estimate total additive genetic variance (𝜎'") and divide by 
number of segments, e.g. 𝜎!" = 𝜎'"/𝑚

• Assumes SNPs capture all of genetic variance!

• Estimate with REML

• Bayesian approach

• Cross validation

Estimate l
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Genomic selection in livestock

Examples of BLUP applications

Use genome-wide SNPs to estimate the breeding 
value of selection candidates.

“Genomic selection” = “precision medicine” for 
animals
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• Inflammatory Bowel Disease
• Affects 2 in every 1000 people (approx.)

• 68,000 IBD patients and 29,000 healthy controls from 15 cohorts, European descent
• 909,763 GWAS SNPs or 123,437 SNPs on the custom designed Immunochip

• Prediction methods:
o Genetic profile risk scores (GPRS) constructed using effects of all SNPs from GWAS 
o GBLUP
o Elastic net (EN)
o BayesR - Bayesian method that models SNP effects as a mixture of 4 normal distributions.

Humans – Crohn’s disease Chen et al. 2017. BMC Medicine.

Examples of BLUP applications
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Humans – Crohn’s disease Chen et al. 2017. BMC Medicine.

Assess value of predictions as 
“Area Under Curve” (AUC) from 
5-fold cross-validation

Examples of BLUP applications
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• Simultaneously estimate all SNP effects as random

o No need to prune on LD or select p-value threshold

o No need to know causal variants or biological function

• Assumes normal distribution on SNP effects with equal variance

• Need to specify the shrinkage parameter 

• Unbiased estimates of SNP effects

• Improved prediction accuracy in practice

BLUP

Summary
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Questions?
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Practical 3: BLUP
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https://cnsgenomics.com/data/teaching/GNGWS25/module5/Practical3_BLUP.html
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