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Best linear unbiased prediction (BLUP)

𝐲 = 𝟏𝐧𝜇 + 𝐗𝜷 + 𝐞
Linear mixed model

BLUP solutions

I = identity matrix (dimensions m x m)

l = 𝜎!"	/ 𝜎#
"

�̂�
*𝜷 = 𝟏𝐧′𝟏𝐧 𝟏𝐧" 𝐗

𝐗′𝟏𝐧 𝐗"𝐗 + 𝐈𝜆

#$ 𝟏𝐧" 𝐲
𝐗"𝐲

BLUP
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• How to determine the shrinkage parameter l?
Ø Estimate the variance components using GREML
Ø Cross-validation with various input values for l

• Assumes SNPs effects are: 
• all non-zero
• very small
• normally distributed

BLUP

How realistic is it?
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Bayesian methods 

• Bayesian methods can estimate all parameters including SNP effects 
simultaneously

• Allow alternative assumptions regarding the distribution of SNP 
effects

What are alternative distributions that make sense?
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Assumptions for SNP effect distribution

Alternative distributions
MethodDistribution of SNP effectsAssumption

BayesAStudents t Small number of moderate to large 
effects, many small effects
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Assumptions for SNP effect distribution

Alternative distributions

MethodDistribution of SNP effectsAssumption

BayesAStudents t Small number of moderate to large 
effects, many small effects

BayesBMixture, spike at zero, 
Students t

Small number of moderate to large 
effects, many zero effects

BayesCMixture, spike at zero, 
normal distribution

Small number of small effects, many 
zero effects

BayesRMulti-variate normalMany zero effects, proportion of small 
effects, some moderate to large effects
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BayesC

How to incorporate this prior knowledge in the estimation of SNP effects?

Assumptions for SNP effect distribution

BayesR
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Introduction to Bayesian methods
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP µ

Probability of 
parameters x given 
the data y (posterior)

Is proportional to Probability of 
data y given the 
x (likelihood of 
data)

Prior 
probability 
of x
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Introduction to Bayesian methods

Consider an experiment where we measure height of 10 people 
to estimate average height

We want to use prior knowledge from many previous studies that 
average height is 174cm with standard error 5cm

y = average height + e
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP µ

Prior probability of x (average height)
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP µ

Prior probability of x (average height)
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP µ

Prior probability of x (average height)
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Bayes theorem

Introduction to Bayesian methods

)()|()|( xPxyPyxP µ

L(y|x)                              P(x)                  
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Less certainty about prior information? Use less informative (flat) prior

Introduction to Bayesian methods

)()|()|( xPxyPyxP µ

L(y|x)                              P(x)                  
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More certainty about prior information? Use more informative prior

Introduction to Bayesian methods

)()|()|( xPxyPyxP µ

L(y|x)                              P(x)                  
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PGS prediction with Bayesian methods
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Model

BayesC

𝐲 = 𝟏𝜇 + 𝐗𝜷 + 𝐞

BLUP is a special case of BayesC when 𝜋 = 1 

0



0
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Posterior inference on SNP effects

BayesC

𝐲 = 𝟏𝜇 + 𝐗𝜷 + 𝐞
𝑃(𝜷|𝒚) ∝ 𝑃(𝒚|𝜷)𝑃(𝜷)

∝ 𝜎!"
#$" exp −

𝐲 − 𝐗𝜷 % 𝐲 − 𝐗𝜷
2𝜎!"

+
&'(

)

𝜎*"
#(" exp −

𝛽&"

2𝜎*"
𝜋 + 𝜑+(1 − 𝜋)

*𝜷 = 𝐸 𝜷 𝒚

SNP effect estimates:

= 4
*!
…	4

*"
𝜎!"

#$" exp −
𝐲 − 𝐗𝜷 % 𝐲 − 𝐗𝜷

2𝜎!"
+
&'(

)

𝜎*"
#(" exp −

𝛽&"

2𝜎*"
𝜋 + 𝜑+(1 − 𝜋) d𝛽(…d𝛽)

= -𝜷𝑃 𝜷 𝒚 d𝜷
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Posterior inference on SNP effects

BayesC

• Cannot solve directly à no closed form solution

• Estimates of parameters depend on other parameters

• Use Markov chain Monte Carlo (MCMC) algorithm!

8𝜷 = 𝐸 𝜷 𝒚 = 4
*!
…	4

*"
𝜎!"

#$" exp −
𝐲 − 𝐗𝜷 % 𝐲 − 𝐗𝜷

2𝜎!"
+
&'(

)

𝜎*"
#(" exp −

𝛽&"

2𝜎*"
𝜋 + 𝜑+(1 − 𝜋) d𝛽(…d𝛽)
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Markov chain

MCMC algorithm

A sequence of samples where each sample depends only on the 
previous one (memoryless). This property allows the algorithm to 
gradually explore the distribution.

Monte Carlo
Using random sampling to perform numerical estimation, e.g., 
integrating over a probability distribution by averaging over samples.
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A special case of MCMC to sample from posterior distribution of each 
parameter conditional on all other parameters.

Gibbs Sampling

MCMC algorithm

Figure source
The key is to derive 𝑃 𝑥;|𝑥<  and 𝑃 𝑥<|𝑥;

https://mikelove.wordpress.com/2008/09/08/visual-explanation-of-gibbs-sampling/
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To run Gibbs sampling, we need to derive the full conditional 
distribution for each parameter

BayesC

𝐲 = 𝟏𝜇 + 𝐗𝜷 + 𝐞• 𝑃 𝜇 𝒚, 𝜷, 𝜎#
", 𝜋, 𝜎!"

• 𝑃 𝛽$ 𝒚, 𝜷%$ , 𝜎#
", 𝜋, 𝜎!"

• 𝑃 𝜎#
" 𝒚, 𝜷, 𝜋, 𝜎!"

• 𝑃 𝜋 𝒚, 𝜷, 𝜎#
", 𝜎!"

• 𝑃 𝜎!" 𝒚, 𝜷, 𝜎#
", 𝜋
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Posterior joint distribution

BayesC

𝑃 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝒚 	

∝ 𝑃 𝒚 𝜇, 𝜷, 𝜎=<, 𝜋, 𝜎>< 𝑃 𝜇 𝑃 𝜷 𝜎=<, 𝜋 𝑃 𝜎=< 𝑃 𝜋 𝑃(𝜎><)

Likelihood

Point-normal mixture

Scaled inverse chi-square distribution

Beta distribution
Flat prior
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Posterior joint distribution

BayesC

𝑃 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝒚 	

∝ 𝑃 𝒚 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝑃 𝜇 𝑃 𝜷 𝜎=

<, 𝜋 𝑃 𝜎=
< 𝑃 𝜋 𝑃(𝜎><)

∝ 𝜎!"
#$" exp −

𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%
&
𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%

2𝜎!"

×4
%'(

)

𝜎*
" #(" exp −

𝛽%"

2𝜎*"
𝜋 + 𝜑+(1 − 𝜋)

× 𝜎*
" #

,!-"
" 𝑒𝑥𝑝 −

𝜐*𝜏*
"

2𝜎*"

× 𝜎!"
#,"-"" 𝑒𝑥𝑝 −

𝜐!𝜏!"

2𝜎!"
×	𝜋.#((1 − 𝜋)/#(

Likelihood

Prior for 𝜷	: point-normal mixture

Prior for 𝜎*"	: scaled inverse chi-square distribution

Prior for 𝜎!"	: scaled inverse chi-square distribution

Prior for 𝜋	: beta distribution



26

Full conditional distribution for 𝜇

BayesC

𝑃 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝒚 	

∝ 𝑃 𝒚 𝜇, 𝜷, 𝜎=<, 𝜋, 𝜎>< 𝑃 𝜇 𝑃 𝜷 𝜎=<, 𝜋 𝑃 𝜎=< 𝑃 𝜋 𝑃(𝜎><)

∝ 𝜎!"
#$" exp −

𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%
& 𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%

2𝜎!"

×4
%'(

)

𝜎*
" #(" exp −

𝛽%"

2𝜎*
" 𝜋 + 𝜑+(1 − 𝜋)

× 𝜎*
" #

,!-"
" 𝑒𝑥𝑝 −

𝜐*𝜏*"

2𝜎*
"

× 𝜎!"
#,"-"" 𝑒𝑥𝑝 −

𝜐!𝜏!"

2𝜎!"
×	𝜋.#((1 − 𝜋)/#(
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Full conditional distribution for 𝜇

BayesC

𝑃 𝜇 𝒚, 𝜷, 𝜎=
<, 𝜋, 𝜎><

∝ 𝜎><
?@< exp −

𝐲 − 𝟏𝜇 − ∑A𝐗A𝛽A
B 𝐲 − 𝟏𝜇 − ∑A𝐗A𝛽A

2𝜎><

~	𝑁
𝟏B	(𝐲 − ∑A𝐗A𝛽A)

𝑛
,
𝜎><

𝑛
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Full conditional distribution for 𝛽%

BayesC

𝑃 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝒚 	

∝ 𝑃 𝒚 𝜇, 𝜷, 𝜎=<, 𝜋, 𝜎>< 𝑃 𝜇 𝑃 𝜷 𝜎=<, 𝜋 𝑃 𝜎=< 𝑃 𝜋 𝑃(𝜎><)

∝ 𝜎!"
#$" exp −

𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%
&
𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%

2𝜎!"

×4
%'(

)

𝜎*
" #(" exp −

𝛽%"

2𝜎*"
𝜋 + 𝜑+(1 − 𝜋)

× 𝜎*
" #

,!-"
" 𝑒𝑥𝑝 −

𝜐*𝜏*
"

2𝜎*"

× 𝜎!"
#,"-"" 𝑒𝑥𝑝 −

𝜐!𝜏!"

2𝜎!"
×	𝜋.#((1 − 𝜋)/#(
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Full conditional distribution for 𝛽%

BayesC

𝑃 𝛽A 𝒚, 𝜷?A, 𝜎=
<, 𝜋, 𝜎><

∝ 𝜎><
?!" exp −

𝐲?𝟏D?∑# 𝐗#=#
$
𝐲?𝟏D?∑# 𝐗#=#

<F%"
 

× 𝜎=
< ?;< exp −

𝛽A<

2𝜎=
< 𝜋 + 𝜑G(1 − 𝜋) Let’s introduce an indicator variable 𝛿!

If 𝛿! = 1,	 then 𝛽! is in non-zero component

If 𝛿! = 0,	 then 𝛽! = 0
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Full conditional distribution for 𝛽%

BayesC

𝑃 𝛽A 𝒚, 𝛿A = 1,𝜷?A, 𝜎=
<, 𝜋, 𝜎><

∝ 𝜎><
?@< exp −

𝐲 − 𝟏𝜇 − ∑A𝐗A𝛽A
B
𝐲 − 𝟏𝜇 − ∑A𝐗A𝛽A

2𝜎><
× 𝜎=<

?;< exp −
𝛽A<

2𝜎=<

If 𝛿A = 1 

~	𝑁
𝐗AB(𝐲 − 𝟏𝜇 − ∑HIA𝐗HB 𝛽H)

𝐗AB𝐗A + 𝜎></𝜎=
< ,

𝜎><

𝐗AB𝐗A + 𝜎></𝜎=
<
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Full conditional distribution for 𝜎&'
BayesC

𝑃 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝒚 	

∝ 𝑃 𝒚 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝑃 𝜇 𝑃 𝜷 𝜎=

<, 𝜋 𝑃 𝜎=
< 𝑃 𝜋 𝑃(𝜎><)

∝ 𝜎!"
#$" exp −

𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%
& 𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%

2𝜎!"

×4
%'(

)

𝜎*
" #(" exp −

𝛽%"

2𝜎*
" 𝜋 + 𝜑+(1 − 𝜋)

× 𝜎*
" #

,!-"
" 𝑒𝑥𝑝 −

𝜐*𝜏*
"

2𝜎*
"

× 𝜎!"
#,"-"" 𝑒𝑥𝑝 −

𝜐!𝜏!"

2𝜎!"
×	𝜋.#((1 − 𝜋)/#(



32

Full conditional distribution for 𝜎&'
BayesC

𝑃 𝜎=
< 𝒚, 𝜷, 𝜋, 𝜎><

∝>
AJ;

K

𝜎=
< ?;< exp −

𝛽A<

2𝜎=
<

L#

	× 𝜎=
< ?

M&N<
< 𝑒𝑥𝑝 −

𝜐=𝜏=
<

2𝜎=
<

~	𝜒?< E𝜐= =	𝜐= +	F
A
𝛿A 	 , �̃�=< =

∑A 𝛽A< +	𝜐=𝜏=<

E𝜐=

0
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Full conditional distribution for	𝜋

BayesC

𝑃 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝒚 	

∝ 𝑃 𝒚 𝜇, 𝜷, 𝜎=<, 𝜋, 𝜎>< 𝑃 𝜇 𝑃 𝜷 𝜎=<, 𝜋 𝑃 𝜎=< 𝑃 𝜋 𝑃(𝜎><)

∝ 𝜎!"
#$" exp −

𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%
& 𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%

2𝜎!"

×4
%'(

)

𝜎*
" #(" exp −

𝛽%"

2𝜎*
" 𝜋 + 𝜑+(1 − 𝜋)

× 𝜎*
" #

,!-"
" 𝑒𝑥𝑝 −

𝜐*𝜏*"

2𝜎*
"

× 𝜎!"
#,"-"" 𝑒𝑥𝑝 −

𝜐!𝜏!"

2𝜎!"
×	𝜋.#((1 − 𝜋)/#(
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Full conditional distribution for	𝜋

BayesC

𝑃 𝜇, 𝜷, 𝜎=
<, 𝜋, 𝜎>< 𝒚 	

∝ 𝑃 𝒚 𝜇, 𝜷, 𝜎=<, 𝜋, 𝜎>< 𝑃 𝜇 𝑃 𝜷 𝜎=<, 𝜋 𝑃 𝜎=< 𝑃 𝜋 𝑃(𝜎><)

∝ 𝜎!"
#$" exp −

𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%
& 𝐲 − 𝟏𝜇 − ∑%𝐗%𝛽%

2𝜎!"

×4
%'(

)

𝜎*
" #(" exp −

𝛽%"

2𝜎*
" 𝜋 + 𝜑+(1 − 𝜋)

× 𝜎*
" #

,!-"
" 𝑒𝑥𝑝 −

𝜐*𝜏*"

2𝜎*
"

× 𝜎!"
#,"-"" 𝑒𝑥𝑝 −

𝜐!𝜏!"

2𝜎!"
×	𝜋.#((1 − 𝜋)/#(

Only depends on the indicator variable 𝛿% 

+
&'(

)

𝜋,# +	(1 − 𝜋) (#,#
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Full conditional distribution for	𝜋

BayesC

𝑃 𝜋 𝒚, 𝜷, 𝜎=
<, 𝜎><

∝ ∏AJ;
K 𝜋L# +	(1 − 𝜋) ;?L#  ×	𝜋O?;(1 − 𝜋)P?;

~	𝐵𝑒𝑡𝑎 𝑎 +	F
A
𝛿A 	 , 𝑏 + 𝑚 −F

A
𝛿A
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Gibbs sampling

BayesC

• Set starting values for (𝜇, 𝜹, 𝜷, 𝜎=<, 𝜋, 𝜎><)

• Then (for many iterations)
• For each SNP, sample 𝛿A, 𝛽A conditional on other parameters 

• Sample 𝜇, 𝜎=<, 𝜋, 𝜎>< with updated 𝜹, 𝜷

Samples reconstruct posterior distributions of parameters
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Gibbs sampling

BayesC

Trace plot Posterior distribution

Posterior mean is used as the point estimate of the SNP effect
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As a method of fine-mapping

BayesC

Posterior inclusion probability (PIP): 
probability that the SNP is included in the model with a nonzero effect.
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Model

BayesR

𝐲 = 𝟏𝜇 + 𝐗𝜷 + 𝐞

BayesC is a special case of BayesR with two components

the LD correlation matrix between the genotypes at all markers in the population,
in which the genotypes in the sample are assumed to be a random sample, with bB
an estimate calculated from a population reference that is assumed to closely
resemble the sample used to generate the GWAS summary statistics. Zhu and
Stephens39 discuss further the theoretical properties of a similar likelihood. We
assess the limits of replacing D and B with these approximations through
simulation and real data analysis.

We perform Bayesian posterior inference by assuming a prior on the multiple
regression genetic effects and the posterior

pðβjb;D;BÞ / pðbjβ;D;BÞpðβjD;BÞ: ð5Þ

In this paper we implement the BayesR model24,26, which assumes that

βjjπ; σ
2
β ¼

0 with probability π1;

$ Nð0; γ2σ2βÞ with probability π2;

..

.

$ Nð0; γCσ2βÞ with probability 1%
PC%1

c¼1 πc;

8
>>>>><

>>>>>:

where C denotes the maximum number of components in the finite mixture model,
which is prespecified. The γc coefficients are prespecified and constrain how the
common marker effect variance σ2β scales in each distribution. In previous
implementations of BayesR the variance weights γ were with respect to the genetic
variance σ2g. For example, it is common in the BayesR model to assume C= 4 such
that γ= (γ1, γ2, γ3, γ4)′= (0, 0.0001, 0.001, 0.01)′. This requires the genotypes to be
centred and scaled and equates the genetic variance σ2g ¼ mσ2β , where m is the
number of variants. We relax this assumption to disentangle the relationship
between these parameters and to maintain the flexibility of the model to assume
scaled or unscaled genotypes. In this implementation, we let the weights be with
respect to σ2β and have a default γ= (0, 0.01, 0.1, 1.0)′, which maintains the relative
magnitude of the variance classes as in the original model. Supplementary Notes 2–
4 detail further the hierarchical model and hyperparameter prior specification.
Supplementary Note 3 details the derivation of the Markov chain Monte Carlo
Gibbs sampling routine for sampling of the key model parameters θ ¼
ðβ0;π0; σ2β; σ
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where S2β and νβ are the scale parameter and degrees of freedom, respectively. The
residual variance σ2ε is assumed to have scaled inverse χ2 distribution prior with
distribution
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SNP-based heritability estimation is performed by calculating h2SNP ¼ σ2g=ðσ2ε þ
σ2gÞ at each iteration i of the MCMC chain, where the genetic variance σ2g is
estimated via the sample variance of the vector Xβ(i) for each observed β(i) in
iteration i and σ2ε by the sampled residual variance at the ith iteration (see
Supplementary Notes 3 and 4 for further details). Point estimates of h2SNP are then
summarised from the generated posterior distribution.

To illustrate why the Gibbs sampling routine proposed lends itself to the use of
summary statistics, we focus on the full conditional distribution of βj under the
proposed multiple regression model. To facilitate the explanation we make the
simplifying assumption that C= 2 and γ= (γ1, γ2)= (0, 1). The full conditional
distribution of βj under this assumption (see Supplementary Note 3) is
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where lj ¼ x0jxj þ σ2ε=σ
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and β̂j ¼ x0j½y % X%jβ%j(=lj ¼ x0jw=lj , where X−j is X

without the jth column. The term lj only involves the diagonal elements of X′X and

is easily calculated from summary statistics via X0Xj ¼ D
1
2BD

1
2. For β̂j , we require

rj ¼ x0jw: ð7Þ

This quantity can be efficiently stored and calculated in each MCMC iteration
via a right-hand side updating scheme. We define the right-hand side X′y corrected
for all current β as

r) ¼ X0y % X0Xβ; ð8Þ

where r∗ is a vector of dimension p × 1. The jth element of r∗ can be used to

calculate

rj ¼ x0jw ¼ r)j þ x0jxjβj: ð9Þ

Therefore, once a variant has been chosen to be in the model its effect is
sampled from Eq. (6), which is the kernel of the normal distribution with mean β̂j
and variance σ2e=lj . After the effect for variant j has been sampled we update

ðr)Þðiþ1Þ ¼ ðr)ÞðiÞ % X0xjðβ
ðiþ1Þ
j % βðiÞj Þ ð10Þ

Importantly, after the initial reconstruction of X′y=Db from summary
statistics, Eq. (10) only requires X′xj, which is the jth column of X′X. The operation
in Eq. (10) is a very efficient vector subtraction and only requires the subtraction of
the nonzero elements of the shrinkage estimator of the LD correlation matrix from
Wen and Stephens33, which we perform by using sparse vector operations. The
other elements of the Gibbs sampling routine are the same as the individual data
model, except for the sampling of σ2ε , which is outlined in Supplementary Note 3.

Reference LD matrix construction. The summary statistics methods used require
the construction of a reference LD correlation matrix. Typically this is done
through the use of a fixed 1–10-Mb window approach, as in GCTA-SBLUP or
LDpred, which sets LD correlation values outside this window to zero. Zhu and
Stephens39 detail the reasons for using the shrinkage estimator of the LD matrix33,
which shrinks the off-diagonal entries of the LD correlation matrix towards zero
and is required for the RSS39. Experimentation with different types of sparse LD
correlation matrices led to the conclusion that the shrinkage estimator was the
most stable for SBayesR implementation. Briefly, each element of the reference LD
correlation matrix Bij is shrunk by the factor exp ð%ρij=2mÞ, where m is taken to be
the sample size used to generate the genetic map, ρij is an estimate of the
population-scaled recombination rate between SNPs i and j taken as ρij ¼ 4Necij ,
for Ne the effective population size and cij the genetic distance between sites i and j
in centimorgans as stated in Li and Stephens66. LD matrix entries are set to zero if
exp ð%ρij=2mÞ is less than a user-chosen cutoff.

Genetic distance between sites is derived from the genetic map files containing
interpolated map positions for the CEU population generated from the 1000G
OMNI arrays (Data availability). The calculation of the shrunk LD matrix requires
the effective population sample size, which we set to be 11,400 (as in Zhu and
Stephens39), the sample size of the genetic map reference, which corresponds to the
183 individuals from the CEU cohort of the 1000G and the hard threshold on the
shrinkage value, which we set to 10−3. This threshold gave a good balance between
computational efficiency and accuracy with, on average, each SNP having a
window width of 10.6 Mb (SD= 5.6 Mb) across the autosomes (Supplementary
Fig. 22). The shrunk LD matrix is stored in a sparse matrix format (ignoring matrix
elements equal to 0) for efficient SBayesR computation. Currently, the LD matrix
construction can only be performed with PLINK hard-call genotypes.

The simulation study on chromosomes 21 and 22 established that an LD
reference cohort of 50,000 random individuals from the UKB gave the highest
SBayesR prediction accuracy and lowest bias in h2SNP estimation (Supplementary
Note 1). The overlap between this random subsample with the 100,000 random
individuals used to generate the simulated phenotypes was 13,967. This same set of
50,000 individuals was used for LD reference calculation in LDpred, SBLUP and for
P+ T clumping. For this 50,000-individual UKB cohort, chromosome-wise LD
matrices, that is, all interchromosomal LD is ignored, were built, and the shrinkage
estimator of the LD matrix calculated by using an efficient implementation in the
GCTB software. This was performed for the 1,094,841 HM3 and the 2,865,810
UKB-pruned common variant sets. The total time and memory used to compute
the SBayesR LD reference is not included in the time assessment results in the main
text. The building of the sparse LD reference for SBayesR HM3 variants took in
total 13 1/3 CPU days and ~500 GB of memory. SBayesR can compute the sparse
LD matrix in parallel via dividing each chromosome into genomic chunks. We
used 100 CPUs to compute the LD matrix, which brought the average runtime and
memory for computing each LD matrix chunk to 3.25 h and 5 GB. These
chromosome-wise LD matrices are a once-off computation cost that can be
distributed with the programme and were used for all SBayesR and RSS analysis in
the genome-wide simulation and further analyses using this HM3 variant set.

Genome-wide simulation method initialisation. HEreg was performed using the
GCTA software and requires a genetic relatedness matrix (GRM), which was built
from the 1,094,841 genome-wide HM3 variants in the GCTA software. LDpred was
run genome-wide and we specified h2SNP to be equal to the true simulated value,
specified the number of SNPs on each side of the focal SNP for which LD should be
adjusted to be 350 and calculated effect size estimates for LDpred-inf and the
following fraction of nonzero effects prespecified parameters: 1, 0.3, 0.1, 0.03, 0.01,
0.003, 0.001, 0.0003 and 0.0001. For RSS, analyses were performed for each
chromosome with the chromosome-wise shrunk LD matrices calculated in GCTB
and stored in MATLAB format. The RSS-BSLMM model was run for 2 million
MCMC iterations with 1 million as burn-in and a thinning rate of 1 in 100 to arrive
at 10,000 posterior samples for each of the model parameters. For each chromo-
some, the posterior mean for the SNP effects and h2SNP estimates was used. The
chromosome-wise h2SNP estimates were summed to get the genome-wide estimate.
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the LD correlation matrix between the genotypes at all markers in the population,
in which the genotypes in the sample are assumed to be a random sample, with bB
an estimate calculated from a population reference that is assumed to closely
resemble the sample used to generate the GWAS summary statistics. Zhu and
Stephens39 discuss further the theoretical properties of a similar likelihood. We
assess the limits of replacing D and B with these approximations through
simulation and real data analysis.

We perform Bayesian posterior inference by assuming a prior on the multiple
regression genetic effects and the posterior

pðβjb;D;BÞ / pðbjβ;D;BÞpðβjD;BÞ: ð5Þ

In this paper we implement the BayesR model24,26, which assumes that
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where C denotes the maximum number of components in the finite mixture model,
which is prespecified. The γc coefficients are prespecified and constrain how the
common marker effect variance σ2β scales in each distribution. In previous
implementations of BayesR the variance weights γ were with respect to the genetic
variance σ2g. For example, it is common in the BayesR model to assume C= 4 such
that γ= (γ1, γ2, γ3, γ4)′= (0, 0.0001, 0.001, 0.01)′. This requires the genotypes to be
centred and scaled and equates the genetic variance σ2g ¼ mσ2β , where m is the
number of variants. We relax this assumption to disentangle the relationship
between these parameters and to maintain the flexibility of the model to assume
scaled or unscaled genotypes. In this implementation, we let the weights be with
respect to σ2β and have a default γ= (0, 0.01, 0.1, 1.0)′, which maintains the relative
magnitude of the variance classes as in the original model. Supplementary Notes 2–
4 detail further the hierarchical model and hyperparameter prior specification.
Supplementary Note 3 details the derivation of the Markov chain Monte Carlo
Gibbs sampling routine for sampling of the key model parameters θ ¼
ðβ0;π0; σ2β; σ
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where S2β and νβ are the scale parameter and degrees of freedom, respectively. The
residual variance σ2ε is assumed to have scaled inverse χ2 distribution prior with
distribution
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SNP-based heritability estimation is performed by calculating h2SNP ¼ σ2g=ðσ2ε þ
σ2gÞ at each iteration i of the MCMC chain, where the genetic variance σ2g is
estimated via the sample variance of the vector Xβ(i) for each observed β(i) in
iteration i and σ2ε by the sampled residual variance at the ith iteration (see
Supplementary Notes 3 and 4 for further details). Point estimates of h2SNP are then
summarised from the generated posterior distribution.

To illustrate why the Gibbs sampling routine proposed lends itself to the use of
summary statistics, we focus on the full conditional distribution of βj under the
proposed multiple regression model. To facilitate the explanation we make the
simplifying assumption that C= 2 and γ= (γ1, γ2)= (0, 1). The full conditional
distribution of βj under this assumption (see Supplementary Note 3) is
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2. For β̂j , we require

rj ¼ x0jw: ð7Þ

This quantity can be efficiently stored and calculated in each MCMC iteration
via a right-hand side updating scheme. We define the right-hand side X′y corrected
for all current β as

r) ¼ X0y % X0Xβ; ð8Þ

where r∗ is a vector of dimension p × 1. The jth element of r∗ can be used to

calculate

rj ¼ x0jw ¼ r)j þ x0jxjβj: ð9Þ

Therefore, once a variant has been chosen to be in the model its effect is
sampled from Eq. (6), which is the kernel of the normal distribution with mean β̂j
and variance σ2e=lj . After the effect for variant j has been sampled we update

ðr)Þðiþ1Þ ¼ ðr)ÞðiÞ % X0xjðβ
ðiþ1Þ
j % βðiÞj Þ ð10Þ

Importantly, after the initial reconstruction of X′y=Db from summary
statistics, Eq. (10) only requires X′xj, which is the jth column of X′X. The operation
in Eq. (10) is a very efficient vector subtraction and only requires the subtraction of
the nonzero elements of the shrinkage estimator of the LD correlation matrix from
Wen and Stephens33, which we perform by using sparse vector operations. The
other elements of the Gibbs sampling routine are the same as the individual data
model, except for the sampling of σ2ε , which is outlined in Supplementary Note 3.

Reference LD matrix construction. The summary statistics methods used require
the construction of a reference LD correlation matrix. Typically this is done
through the use of a fixed 1–10-Mb window approach, as in GCTA-SBLUP or
LDpred, which sets LD correlation values outside this window to zero. Zhu and
Stephens39 detail the reasons for using the shrinkage estimator of the LD matrix33,
which shrinks the off-diagonal entries of the LD correlation matrix towards zero
and is required for the RSS39. Experimentation with different types of sparse LD
correlation matrices led to the conclusion that the shrinkage estimator was the
most stable for SBayesR implementation. Briefly, each element of the reference LD
correlation matrix Bij is shrunk by the factor exp ð%ρij=2mÞ, where m is taken to be
the sample size used to generate the genetic map, ρij is an estimate of the
population-scaled recombination rate between SNPs i and j taken as ρij ¼ 4Necij ,
for Ne the effective population size and cij the genetic distance between sites i and j
in centimorgans as stated in Li and Stephens66. LD matrix entries are set to zero if
exp ð%ρij=2mÞ is less than a user-chosen cutoff.

Genetic distance between sites is derived from the genetic map files containing
interpolated map positions for the CEU population generated from the 1000G
OMNI arrays (Data availability). The calculation of the shrunk LD matrix requires
the effective population sample size, which we set to be 11,400 (as in Zhu and
Stephens39), the sample size of the genetic map reference, which corresponds to the
183 individuals from the CEU cohort of the 1000G and the hard threshold on the
shrinkage value, which we set to 10−3. This threshold gave a good balance between
computational efficiency and accuracy with, on average, each SNP having a
window width of 10.6 Mb (SD= 5.6 Mb) across the autosomes (Supplementary
Fig. 22). The shrunk LD matrix is stored in a sparse matrix format (ignoring matrix
elements equal to 0) for efficient SBayesR computation. Currently, the LD matrix
construction can only be performed with PLINK hard-call genotypes.

The simulation study on chromosomes 21 and 22 established that an LD
reference cohort of 50,000 random individuals from the UKB gave the highest
SBayesR prediction accuracy and lowest bias in h2SNP estimation (Supplementary
Note 1). The overlap between this random subsample with the 100,000 random
individuals used to generate the simulated phenotypes was 13,967. This same set of
50,000 individuals was used for LD reference calculation in LDpred, SBLUP and for
P+ T clumping. For this 50,000-individual UKB cohort, chromosome-wise LD
matrices, that is, all interchromosomal LD is ignored, were built, and the shrinkage
estimator of the LD matrix calculated by using an efficient implementation in the
GCTB software. This was performed for the 1,094,841 HM3 and the 2,865,810
UKB-pruned common variant sets. The total time and memory used to compute
the SBayesR LD reference is not included in the time assessment results in the main
text. The building of the sparse LD reference for SBayesR HM3 variants took in
total 13 1/3 CPU days and ~500 GB of memory. SBayesR can compute the sparse
LD matrix in parallel via dividing each chromosome into genomic chunks. We
used 100 CPUs to compute the LD matrix, which brought the average runtime and
memory for computing each LD matrix chunk to 3.25 h and 5 GB. These
chromosome-wise LD matrices are a once-off computation cost that can be
distributed with the programme and were used for all SBayesR and RSS analysis in
the genome-wide simulation and further analyses using this HM3 variant set.

Genome-wide simulation method initialisation. HEreg was performed using the
GCTA software and requires a genetic relatedness matrix (GRM), which was built
from the 1,094,841 genome-wide HM3 variants in the GCTA software. LDpred was
run genome-wide and we specified h2SNP to be equal to the true simulated value,
specified the number of SNPs on each side of the focal SNP for which LD should be
adjusted to be 350 and calculated effect size estimates for LDpred-inf and the
following fraction of nonzero effects prespecified parameters: 1, 0.3, 0.1, 0.03, 0.01,
0.003, 0.001, 0.0003 and 0.0001. For RSS, analyses were performed for each
chromosome with the chromosome-wise shrunk LD matrices calculated in GCTB
and stored in MATLAB format. The RSS-BSLMM model was run for 2 million
MCMC iterations with 1 million as burn-in and a thinning rate of 1 in 100 to arrive
at 10,000 posterior samples for each of the model parameters. For each chromo-
some, the posterior mean for the SNP effects and h2SNP estimates was used. The
chromosome-wise h2SNP estimates were summed to get the genome-wide estimate.
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Why use multi-normal mixture?

BayesR

Account for almost any distribution!

𝜋;𝛽A	 ~ +	𝜋< +	𝜋Q +	𝜋R
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Estimate 𝝅 from the data

BayesR

𝜋;𝛽A	 ~ +	𝜋< +	𝜋Q +	𝜋R

Sample 𝝅 from a Dirichlet distribution (multivariate Beta distribution)

𝜋;, 𝜋<, 𝜋Q, 𝜋R B	~	𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑎;, 𝑎<, 𝑎Q, 𝑎R)

More details in Lloyd-Jones et al Nat Comm 2019
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Applications of BayesR
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BayesR application

Cattle, 800K SNPs
• Training 

– Holstein = 3049 bulls, 8478 cows
– Jersey = 770 bulls,  3917 cows

• Validation
– Holstein = 262 bulls
– Jersey = 105 bulls
– Australian Reds = 114 bulls

• GEBV with GBLUP, BayesR
• (Kemper et al GSE, 2014)
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BayesR application

Cattle, 800K SNPs
• Prediction accuracy r( V𝑔,y) 

Fat Milk Protein Fat% Protein% Average
Holstein

GBLUP 0.60 0.59 0.58 0.72 0.83 0.66

BAYESR 0.64 0.62 0.57 0.81 0.84 0.69

Jersey

GBLUP 0.56 0.62 0.67 0.64 0.76 0.65

BAYESR 0.56 0.69 0.71 0.76 0.79 0.70

Australian Reds

GBLUP 0.20 0.16 0.11 0.32 0.34 0.22

BAYES 0.26 0.21 0.13 0.44 0.36 0.28
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BayesR application

BayesR
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BayesR application

Prediction of disease risk in humans

Inferences of BayesR about the genetic architecture were consistent with the underlying
model and provided insights into the genetic architecture (S4–S5 Figs.). Posterior inference of
the BayesR model for the scenario including 10 causative SNPs, which is poorly supported by
the BayesR prior, provided strong evidence to revise the prior model. As for the 287K data,
BayesR and BSLMM outperformed LMM and GRPS in finding causal variants in all scenarios
(S6 Fig.).

Analyses of WTCCC Data
In addition to simulated data we assessed the performance of BayesR for seven diseases of the
Welcome trust case control consortium (WTCCC [17]). These data were previously used to es-
timate heritability [18,19] and for risk prediction [14,20–22].

SNP-based heritability. We report h2
g for the diseases in WTCCC on the liability scale (S3

Table), but make comparisons on the observed scale since the controls are common between
traits so that comparisons reflect the underlying genetic architecture in the cases samples. For
five of the seven traits (BD, CAD, CD, HT, RA), estimates of h2

g were very similar between

methods with estimates from BayesR slightly lower than BSLMM and LMM (Fig. 4A). For RA
and T1D, which have large associations with alleles in the major histocompatibility complex,
h2
g from the Bayesian methods was much smaller compared to LMM. Estimates of BayesR were

less consistent (indicated by larger posterior standard deviations), particularly for traits with a
large polygenic contribution to variance, such as BD and HT.

Accuracy and bias of prediction. We created 20 random 80/20 splits for each disease and
assessed accuracy by computing the area under the curve (AUC [23]). The predictive perfor-
mance for all seven diseases is shown in Fig. 4B. Mean (± standard deviation) of AUC scores of
BayesR were 0.58 (±0.012) for CAD, 0.58 (±0.017) for HT, 0.58 (±0.017) for T2D, 0.62
(±0.017) for BD, 0.64 (±0.018) for CD, 0.71 (±0.012) for RA and 0.85 (±0.011) for T1D.

Fig 4. Comparison of performance of BayesR, BSLMM, LMM and GPRS inWTCCC data. (A) Estimates of SNP-based heritability on the observed scale.
Antennas are standard deviations of posterior samples for BayesR and BSLMM or standard errors for LMM. GPRS does not provide estimates of heritability.
(B) Distribution of the area under the curve (AUC). The single boxplots display the variation in estimates among 20 replicates. In each replicate, the data set
was randomly split into a training sample containing 80% of individuals and a validation sample containing the remaining 20%.

doi:10.1371/journal.pgen.1004969.g004

Analysis of Complex Traits Using a Bayesian Mixture Model

PLOS Genetics | DOI:10.1371/journal.pgen.1004969 April 7, 2015 7 / 22

based methods in particular on the number of iterations used. We did not investigate in detail
how many iterations are sufficient and ran BSLMM with its default value of 1,000,000 sampling
steps and BayesR for 50,000 iterations. We observed only minor differences in the posterior
distributions between replicated chains and interpreted this as evidence that the algorithm

Fig 6. Proportion of genetic variance on each chromosome explained by SNPs with different effect sizes underlying seven traits in WTCCC.
Proportion of additive genetic variation contributed by individual chromosomes and the proportion of variance on each chromosome explained by SNPs with
different effect sizes. For each chromosome we calculated the proportion of variance in each mixture component as the sum of the square of the sampled
effect sizes of the SNPs allocated to each component divided by the sum of the total variance explained by SNPs. The colored bars partition the genetic
variance in contributions from each mixture class.

doi:10.1371/journal.pgen.1004969.g006

Analysis of Complex Traits Using a Bayesian Mixture Model

PLOS Genetics | DOI:10.1371/journal.pgen.1004969 April 7, 2015 10 / 22

Moser et al PLoS Genetics 2015
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Summary

Bayesian approach allows us to incorporate prior knowledge in estimation of 
SNP effects.

Markov chain Monte Carlo (MCMC) is a technique to draw samples from a 
posterior distribution for Bayesian inference of model parameters.

Bayesian methods can have an advantage when:

QTL of moderate to large effect on the trait (eg Fat%, DGAT1)

Very large numbers of SNP (800K, sequence) -> set some SNP effects to zero

Integrates polygenic prediction and genetic fine-mapping

Bayesian methods for Genomic Prediction
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Reference

BayesA, BayesB:

BayesC: 

BayesR:

RESEARCH ARTICLE Open Access

Extension of the bayesian alphabet for genomic
selection
David Habier1*, Rohan L Fernando1, Kadir Kizilkaya1,2 and Dorian J Garrick2,3

Abstract

Background: Two Bayesian methods, BayesCπ and BayesDπ, were developed for genomic prediction to address
the drawback of BayesA and BayesB regarding the impact of prior hyperparameters and treat the prior probability
π that a SNP has zero effect as unknown. The methods were compared in terms of inference of the number of
QTL and accuracy of genomic estimated breeding values (GEBVs), using simulated scenarios and real data from
North American Holstein bulls.

Results: Estimates of π from BayesCπ, in contrast to BayesDπ, were sensitive to the number of simulated QTL and
training data size, and provide information about genetic architecture. Milk yield and fat yield have QTL with larger
effects than protein yield and somatic cell score. The drawback of BayesA and BayesB did not impair the accuracy
of GEBVs. Accuracies of alternative Bayesian methods were similar. BayesA was a good choice for GEBV with the
real data. Computing time was shorter for BayesCπ than for BayesDπ, and longest for our implementation of
BayesA.

Conclusions: Collectively, accounting for computing effort, uncertainty as to the number of QTL (which affects the
GEBV accuracy of alternative methods), and fundamental interest in the number of QTL underlying quantitative
traits, we believe that BayesCπ has merit for routine applications.

Background
High-density single nucleotide polymorphisms (SNPs)
covering the whole genome are available in animal and
plant breeding to estimate breeding values. First, indivi-
duals having SNP genotypes and trait phenotypes are
used to estimate SNP effects (training), and then geno-
mic estimated breeding values (GEBVs) are obtained for
every genotyped individual using those effects. Cur-
rently, the number of SNP genotypes per individual
amounts to tens of thousands, but, owing to the rapid
advances in genomics, it will soon exceed millions at
comparable costs. The statistical challenge is to estimate
SNP effects in a situation where the number of training
individuals is much smaller than the vast number of
SNPs. For this purpose, Meuwissen et al. [1] presented
two hierarchical Bayesian models, termed BayesA and
BayesB, that are discussed extensively in animal and
plant breeding research (e.g., [2-6]). The reason for their

popularity is that their implementation as single site
locus sampler is straightforward, computing time is rea-
sonable, and both simulations [1,7,8] and real data ana-
lyses [9,10] have shown that linkage disequilibrium (LD)
between SNPs and quantitative trait loci (QTL) is
exploited better than with least-squares or ridge-regres-
sion; hence, accuracies of GEBVs were higher for these
Bayesian methods. Gianola et al. [11] pointed to statistical
drawbacks of BayesA and BayesB that center around the
prior for SNP effects. A priori, a SNP effect is zero with
probability π, and normally distributed having mean zero
and a locus-specific variance with probability (1-π). This
locus-specific variance has a scaled inverse chi-square
prior with few degrees of freedom and a scale parameter,
S2a, that is often derived from an assumed additive-genetic
variance under certain genetic assumptions [11,12]. It can
be shown that the full-conditional posterior of a locus-spe-
cific variance has only one additional degree of freedom
compared to its prior regardless of the number of geno-
types or phenotypes. This conflicts with the concept of
Bayesian learning, and as a consequence, shrinkage of
SNP effects depends strongly on S2a as detailed by [11].
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Abstract
Gene discovery, estimation of heritability captured by SNP arrays, inference on genetic ar-
chitecture and prediction analyses of complex traits are usually performed using different
statistical models and methods, leading to inefficiency and loss of power. Here we use a
Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic
variance explained by all variants and prediction of unobserved phenotypes in new sam-
ples. We apply the method to simulated data of quantitative traits and Welcome Trust Case
Control Consortium (WTCCC) data on disease and show that it provides accurate estimates
of SNP-based heritability, produces unbiased estimators of risk in new samples, and that it
can estimate genetic architecture by partitioning variation across hundreds to thousands of
SNPs. We estimated that, depending on the trait, 2,633 to 9,411 SNPs explain all of the
SNP-based heritability in the WTCCC diseases. The majority of those SNPs (>96%) had
small effects, confirming a substantial polygenic component to common diseases. The pro-
portion of the SNP-based variance explained by large effects (each SNP explaining 1% of
the variance) varied markedly between diseases, ranging from almost zero for bipolar disor-
der to 72% for type 1 diabetes. Prediction analyses demonstrate that for diseases with
major loci, such as type 1 diabetes and rheumatoid arthritis, Bayesian methods outperform
profile scoring or mixed model approaches.

Author Summary
Most genome-wide association studies performed to date have focused on testing individ-
ual genetic markers for associations with phenotype. Recently, methods that analyse the
joint effects of multiple markers on genetic variation have provided further insights into
the genetic basis of complex human traits. In addition, there is increasing interest in using
genotype data for genetic risk prediction of disease. Often disparate analytical methods are
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Data Availability Statement: The WTCCC data are
available to researchers by application to the
Wellcome Trust Case Control Consortium Data
Access Committee (http://www.wtccc.org.uk/info/
access_to_data_samples.html, or contact ega-
admin@ebi.ac.uk). Application is required to ensure
proper protection of confidentiality of the participants.
SNP genotype data used in the simulations are part
of a dataset that is held in dbGaP (http://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs000181.v1.p1). The exact IDs were not used in
this study nor was any phenotypic information used.
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