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Motivation 0 B

AUSTR ALIA

« Best prediction methods take genetic values as random effect
(e.g., BLUP and BayesR).

« These methods require individual genotypes and phenotypes.

« These data are often not publicly accessible.

« Computationally demanding with large # individuals/SNPs.

« Could be addressed by using GWAS summary stafistics (sumstats).

 Methodology in human genetics has moved forward 1o use GWAS
sumstats only.
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Sumstats

Cell Genomics ¢? CellPress

OPEN ACCESS

2021

‘ '.) Check for updates

Genome-wide association studies

Emil Uffelmann®', Qin Qin Huang®?2, Nchangwi Syntia Munung@®?, Jantina de Vries?,
Yukinori Okada®*5, Alicia R. Martin®7¢, Hilary C. Martin, Tuuli Lappalainen®'®? and
Danielle Posthuma@® '™

Workshop proceedings: GWAS summary
statistics standards and sharing

Jacqueline A.L. MacArthur,’-2* Annalisa Buniello,” Laura W. Harris,’ James Hayhurst,” Aoife McMahon," Elliot Sollis,’
Maria Cerezo,' Peggy Hall,® Elizabeth Lewis," Patricia L. Whetzel," Orli G. Bahcall,* Inés Barroso,> Robert J. Carroll,®
Michael Inouye,”-#-° Teri A. Manolio,® Stephen S. Rich,° Lucia A. Hindorff,®> Ken Wiley,® and Helen Parkinson'-*

Table 1. Recommended standard reporting elements for GWAS

SumStats

Table 3 | Databases of GWAS summary statistics

Data element Column header  Mandatory/Optional
variant id variant_id One form of variant ID Database Content
chromosome chromosome is mandatory, either rsID GWAS Catalog'*? GWAS summary statistics and GWAS lead SNPs reported in
b . b . or chromosome, base pair GRS pepsE
e [kl eI location, and genome build? GeneAtlas® UK Biobank GWAS summary statistics
location location ’ _ L
Pan UKBB UK Biobank GWAS summary statistics
value value Mandato
P P- v GWAS Atlas?” Collection of publicly available GWAS summary statistics
effect allele effect_allele Mandatory with follow-up insilico analysis
other allele other_allele Mandatory FinnGen results GWAS summary statistics released from FinnGen, a project
offect allele el allele Mandatory that collected biological samples from many sources in
- - Finland
frequency frequency
i dbGAP Public depository of National Institutes of Health-funded
eff_eCt (odds odds_ratio or Mandatory genomics data including GWAS summary statistics
ratio or beta) beta OpenGWAS database GWAS summary data sets
slancaicierioy Sl CLE el Wansiaiely Pheweb.jp GWAS summary statistics of Biobank Japan and
upper confidence  ci_upper Optional cross-population meta-analyses
interval For a comprehensive list of genetic data resources, see REF.">. GWAS, genome-wide
T —-_—. & [l Optional association studies; SNP, single-nucleotide polymorphism.

interval




Sumstats for PGS prediction [~ Rt
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What are the minimum data required?

Given the standard GWAS with genotypes being allelic counts (0/1/2),
the minimum data required for PGS prediction include:

SNP marginal effect estimates

Standard errors > GWAS sumstats
GWAS sample size

LD correlations among SNPs - LD matrix



THE UNIVERSITY

Sumstats for PGS prediction

SNP marginal effect estimates

GWAS estimates effect of each SNP one at a time from single SNP regression, so the
estimate is marginal to (unconditional on) other SNPs.

-1
= "X ! 5 o
by = (X/X;) Xy : g :
. . . 4.0
Assuming X has been stfandardised with column e &
mean zero and variance one, then g g .
! g 3.0
Xij = nVar(Xj) =n £ s
. (&)
And 2048
1 : : ;
b] X y SNP genotype

Note that it has the inner product of the SNP genotypes and the phenotypes.



Sumstats for PGS prediction

SNP marginal effect estimates

For diseases, GWAS is done using logistic regression

Pi
| — X::b:
Og<1 _ pi) U T ijYj

The SNP effect is log odds ratio (OR), i.e.,
difference in log odds for cases vs. controls

b; = log(OR)

Approximately equal fo the b; from the linear
model when frue effect size is small.

THE UNIVERSITY
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Genotype



LD matrix for PGS prediction

Linkage disequilibrium (LD) correlations

Usually obtained from a reference population
LD correlation matrix -

R = 1X'X

1
n

assuming X is standardised “u,
with mean zero and .
variance one

.-...;'“; 11




Principle of sumstats-based methods

Use of summary data only - how does it worke

GWAS results and LD correlations are sufficient statistics for the
estimation of SNP joint effects!



Sufficient statistics
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A staftistic is sufficient if no other stafistics provides any additional
information as to the value of the parameter.

e.d., X1, Xy, ..., X, ~ N(u,0?) and we want to estimate u and o2

n X n . e . Le
i=1%i * Yi=1X; and n are sufficient statistics for u

":>

|2 1xl « Y xF, Y 1xl and n are sufficient
statistics for g2

We don’'t need to know the value of each x!



Principle of sumstats-based methods

BLUP
y=Xp +e

BLUP solutions: Recall

B R=-X'X

B = [X'XH 12] " IX'y "

bj =—Xjy
where A = 0—‘2 ‘ ‘
op
nR nb

R (LD matrix), b (marginal effects) and n (sample size)
are sufficient staftistics for the estimation of B.



Compare BLUP and SBLUP

BLUP SBLUP (sumstats-based BLUP)
« Model: * Model:
y=XB+e b=Rf +¢€

. Estimator- e Estimator:

8 - [X'X 4 U]-1X' [nR + 1] "1nb

= y
; \ / \ \
Genotype Phenotypes GWAS GWAS effects
matrix sample correlation

Size matrix



Compare BayesR and SBayesR algorithms

Gibbs sampling

Full conditional distribution for g;, if in a nonzero dist'n,

r.

2
£(B; | b,else) = N (E’]Z—j)

where

Individual-level data Summary-level data
=Xy — 2 X _
g / (y k] kﬁk) 1j = nb; — zkij Ri1 Bk

2 0.2
O _ e

K Y04 / \_ Y04 .




Compare BayesR and SBayesR algorithms

All X'y and X’X can be replaced by nb and nR

Algorithm 1 - Individual level data algorithm

Initialise parameters and read genotypes and phenotypes in PLINK binary format
Initialise y* =y — XB

for i :=1 to number of iterations do

fori:=1topdo

od

od

Sample update from full conditional for (TE from scaled inverse chi-squared distribution v = vg + g and s B =

Calculate r =x y
Calculate r; = rj + xjxjﬁ](ifl)
Calculate 02 = 0}%75]:5 for each of C classes (e.g., BayesR C=4 and v = (0,0.0001,0.001,0.01))

Calculate the left hand side ;. = x]’.x,' + g for each of the C classes

2
Calculate the log densities of given ; = c using log(Lc) = —5 {log (Uc I”) ;l ] + log(7.), where 7. is the current
e . a1s . . _ _ 1
Calculate the full conditional posterior probability for &; = c for C classes w1tb P(d; = cl6,y) = £ expliog £, Tog(£0)]
Using full conditional posterior probabilities sample class membership for /S](.’) using categorical random variable sampler
Given class sample SNP effect ﬁ}( from N (Ir , ‘1752 )
Given SNP effect adjust corrected phenotype side (y*)() = (y*)(=1) — X; (,B;i) - ,B;iil))
/52
g ﬂ*zq 1 Wc
vgtq 4

where g is the number of non-zero Varlar\ts
Sample update from full condmonal for o2 from scaled inverse chi-squared distribution 7, = 1 + v,

and scale parameter 52— SSE”‘ 2257 and SSE = y*'y*

Sample update from full conditional for 7t, which is Dirichlet(C, ¢ + &), where c is a vector of length C and contains the counts
of the number of variants in each variance class and « = (1,...,1)

Calculate genetic variance for 12y calculation using ‘782' = Var(XpB)

Calculate héN p=

>
I3
o2 +a?

Lloyd-Jones et al. 2019 Nat Comm, Supplementary Note

Algorithm 2 Summary data algorithm

Initialise parameters and read summary statistics
Reconstruct X'X and X'y from summary statistics and LD reference panel
Calculate r* = X'y — X'X8
fori:=1 to number of iterations do
fori:=1topdo
Calculate r; = 1} +xx;B;
Calculate 2 = afnyFC for each fo C classes (e.g., SBayesR C=4 and «y = (0,0.01,0.1,1)")

Calculate the left hand side I;; = x;x‘,' + E;"— for each of the C classes

2
Calculate the log densities of given é; = c using log(Lc) = —3 [log (02! ) - ?ZIL] + log(mtc), where 7. is the current
elic
. . s _ . _ _ 1
Calculate the full conditional posterior probability for §; = ¢ for C classes w1tb P(é; =cl8,y) = 5 oxplion(£)) Tog(Ly)]
Using full conditional posterior probabilities sample class membership for PB,E!) using categorical random variable sampler
Given class sample SNP effect ﬁ}i) from N ("%’ D;T%)
Given SNP effect adjust corrected right hand side (r*) (1 = (r*)() — X'x; (ﬁ;“’” - ,Sj(.')). X'x; is the jth column of X'X.
od 2
-~ "U'%z“'E?—] %
Sample update from full conditional for o2 from scaled inverse chi-squared distribution 7, = vy + q and 72, = o
where g is the number of non-zero variants
Sample update from full conditional for ¢ from scaled inverse chi-squared distribution 7, = n + v,

and scale parameter T2 = SSE_J[”‘T’ and SSE =y'y — B'r* — p'X'y
Sample update from ful_l conditional for 7r, which is Dirichlet(C, ¢ + &), where c is a vector of length C and contains the counts
of the number of variants in each variance class. . "
Calculate genetic variance for h%,;, calculation using crg = MSS/n, where MSS = B X'y — B r*
Calculate h%,, = %
od



Individual-level data Summary-level data
analysis analysis

y=Xp +e

Bayes SBayes

Covariates, such as age and sex, are accounted for when running GWAS.



From individual- to summary-level model

Consider an individual-data model with a standardised genotype
maftrix X:

y=Xp +e
Multiply both sides by =X’ gives

1X' 1X'X +1X'
—_ — — —_— e
n y n B n

/b=RB+e -

1
Var(e) = —Ro?
GWAS marginal SNP effects T n

LD correlation matrix



Sumstats-based Bayesian methods D Sraniit
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SBayes

€

L + , 1,
SNP marginal effects \ ar(€) = n \Oe
from GWAS

b =R
o
/

LD correlation matrix SNP joint effects

COMMUNICATIONS

ARTICLE

https:// rg/1 54146

PriOr d iSTrib U ﬁO n fOr eO C h S N P effeCT I pnicOP;:ediitigntby Bayesian multiple
regression on summary statistics

L Ju engo!, Gerhard Moser
X 1, Huanwei Wang® !, Zhili Zheng!, Reedik Magi2, Ténu Esko?, Andres Metspalu®5
Naomi R. Wray® ", Michael E. Goddard’, Jian Yang® "8* & Peter M. Visscher® "

LDpred-Inf LDpred?2 BSLMM SBayesR
SBLUP SBayesC

N i




Scaling GWAS effects ) Sy
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We have assumed standardised genotypes/phenotypes. However,

« Typically, GWAS are performed using allele counts (0/1/2) as genotypes
(X/™)
« often with unstandardised phenotypes (Var(y) + 1).

The solutions is to ‘scale’ the GWAS marginal effects before the analysis and
‘unscale’ the estimated joint effects after the analysis.



Scaling GWAS effects ) Sy
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Let o; be the SD of genotypes for SNP j and g, be the SD of phenotypes.

The genotypic value
_cnt

_ ycentpent _ )
gj =Xy b =

9j

. .
L=X; b =X sbf™ = Xf
o o
y y
All we need to do is to get
bj — S «—— Output from GWAS

where s; can be estimated by

cnt _ pent

S This is in the SD units

1
j— 2 2
nSE]- + bj




Assumptions regarding LD reference

LD reference population matches with GWAS population in genetics
* No systematic differences in LD - same ancestry

* Minimum sampling variance in LD - LD ref sample size cannot be too small

- 1.0 m= 1.0 ﬁ 1.0
e 0.8 & 0.8 i 0.8
™
0 =5 0.6 o 0.6 - 0.6
E EEEN -} -
0.4 - 0.4 = 0.4
0.2 0.2 0.2
0.0 0.0 0.0

LD decays to zero between distant SNPs

« Can use sparse or block-wide LD matrices



Regulation of LD matrix I e
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Lioyd-Jones et al (2019) used chromosome-wide shrunk LD matrices.
Zheng et al (2024) used eigen-decomposed matrices from LD blocks.
« More robust to LD heterogeneity - better prediction performance

« Faster - allows us to fit multi-million SNPs simultaneously

nature genetics

Article https://doi.org/10.1038/s41588-024-01704-y

Leveraging functional genomic annotations
and genome coverage toimprove polygenic
prediction of complex traits withinand
between ancestries

Received: 10ctober 2022 Zhili Zheng ®'**|, Shouye Liu', Julia Sidorenko®', Ying Wang®', Tian Lin®',
Loic Yengo®', Patrick Turley ®*®, Alireza Ani®®°’, Rujia Wang ®°,

Ilja M. Nolte ® %, Harold Snieder ®°, LifeLines Cohort Study*, Jian Yang®°°,
Published online: 30 April 2024 Naomi R. Wray ®''°, Michael E. Goddard"", Peter M. Visscher ®'**

& Jian Zeng ®'
|®| Check for updates 20

Accepted: 5 March 2024




THE UNIVERSITY

Low-rank model (fits 7M SNPs or more)

In each quasi-independent LD block:
b = R p + €

[ GWAS SNP marginal effects ][ LD correlation matrix ][ SNP joint effects ][ Residuals ]

I . I Var(E) ) .

/ Eigen-decomposition \
I ‘ ‘ It only requires the top 20%
u A u PCs to explain 99.5% of the
) . . variance in LD!
A2Ub =  AzU B+ A2Ue
A"\ = Q ﬁ + <
] e



Low-rank model

Improvedr N . ethos
p O ed ObUS €55 GWAS: FinnGen .LDpred—funct

Method LDref: UK Biobank . MegaPRS
SBayesR
I LDpred2 . SBayesRC
a b — SBayesRC
0.45 - . 0.45 - . -
'#'? iInnGen
& 0.40 $ & %
) )
o ©  0.40 A
S 3 ﬁ $ 0
O O
® 0.35 - ®
S S
0 o
B B -25 -
§ 0.30 - I;I § 0357
. -50
0.25 - : . ; T T T T T
ukb20k  uk10k  1kgO0.5k afrdk 100 90 50 0
LD refefence Percent of overlapped in meta—-analysis
\ T2D Asthma HBP GLAUC
Very small LD ref  Different ancestry Missing SNPs in Trait

sample size sub cohorts
22



Always good to check SNP effect estimates
Marginal effect size vs. SBayesRC calculated effect size

Most common Presence of large effects Bad convergence!

________________

2

1

0

-1

Joint effect estimates

-2

Joint effect estimates
Joint effe“cfp Ae“s‘tgimates

GWAS marginal effects GWAS marginal effects GWAS marginal effects

23
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 Minimum data required for sumstat-based methods are
» GWAS effects, standard errors, GWAS sample size, LD matrix

* |In principle, SBayes and Bayes are equivalent methods when same data
are used.

« SBayes is an approx. to Bayes when LD is estimated from a reference
sample, but unleashes the power of large GWAS sample size.

« Matrix regulation/factorisation can better model LD.

24
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Questions?e
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Take a break

26



SBayesRC: Incorporating functional annotations

27



Functional genomic annotations

Functional genomic annotations provide orthogonal information useful for polygenic
prediction.

« Chromatin states
« Biological functions
« Molecular quantitative trait loci (xQTL)

------ Regulatory sequence Regulatory sequence
Enhancer
/silencer Promoter 5'UTR Open reading frame fsilencer
1 1 I
Proximal Core Start Stop

owa - W -
H3K4me3 “ JL

H3K27ac

oI U W

Image from ENCODE
CRICOS code 00025B 28



Functional genomic annotations O or i

Functional genomic annotations provide orthogonal information useful for polygenic
prediction.

« Chromatin states
« Biological functions
« Molecular quantitative trait loci (xQTL)

------ Zeng et al 2021 Nature Communications

0
& C;\

Fold enrichment
in per—SNP heritability

a° (,° S

CRICOS code 00025B 29



Opportunities/challenges

Functional annotations are informative on both the presence of causal variants and the
distribution of causal effect sizes.

Differences in proportion of Differences in distribution of
causal variants causal effects
@© _
o
B Proportion of SNPs
B Proportion of causal variants
©
o
<
o
N
o
o
o

Anno 1 Anno 2 Anno 3

CRICOS code 00025B 30



Opportunities/challenges s
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When causal variants are not observed, SNP markers can tag the causal variant
by LD but may not tag by annotation.

4 . ) 4 . )
Causal variant (CV) observed Causal variant not observed
—)é(— Effect =N ';K’

fl lo‘
@ SNP c‘.c:/-’- SNP
Anno 1 ~ Anno2 Anno 1 ~ Anno2

N\ J N\ J

It's best to model all SNPs simultaneously with their annotations!

CRICOS code 00025B 31
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nature communications PLOS COMPUTATIONAL BIOLOGY

Explore content v About the journal v Publish with us v
& OPENACCESS B PEER-REVIEWED

— . . RESEARCH ARTICLE
nature > nature communications > articles > article

Leveraging functional annotations in genetic risk prediction

Article | Open Access | Published: 18 October 2021 .
for human complex diseases

lnCOI"pOl‘ating fllnctional pl‘iOl‘S impl‘OVCS pOIygenic Yiming Hu B3, Qiongshi Lu B, Ryan Powles, Xinwei Yao, Can Yang, Fang Fang, Xinran Xu, Hongyu Zhao
prediction accuracy in UK Biobank and 23andMe data
sets AnnoPred

Carla Méarquez-Luna &, Steven Gazal, Po-Ru Loh, Samuel S. Kim, Nicholas Furlotte, Adam Auton,

23andMe Research Team & Alkes L. Price

Winner's Curse Correction and Variable Thresholding
LDpred-funct Improve Performance of Polygenic Risk Modeling Based on
Genome-Wide Association Study Summary-Level Data

Jianxin Shi [&], Ju-Hyun Park, Jubao Duan, Sonja T. Berndt, Winton Moy, Kai Yu, Lei Song, William Wheeler, Xing Hua,
Debra Silverman, Montserrat Garcia-Closas, Chao Agnes Hsiung, Jonine D. Figueroa, [ --- I, Nilanjan Chatterjee [E] [ view all ]

Exploiting biological priors and sequence variants P+T-funct-LASSO
enhances QTL discovery and genomic prediction of

complex traits .
nature genetics

I. M. MacLeod &, P. J. Bowman, C. J. Vander Jagt, M. Haile-Mariam, K. E. Kemper, A. J. Chamberlain,
C. Schrooten, B. J. Hayes & M. E. Goddard

Explore content ¥ About the journal ¥  Publish withus v

nature > nature genetics > articles > article

BMC Genomics 17, Article number: 144 (2016) | Cite this article

6209 Accesses | 146 Citations | 9 Altmetric | Metrics Article | Published: 07 Apri 2022
Leveraging fine-mapping and multipopulation training
B ayes RC data to improve cross-population polygenic risk scores

Pol y P red Omer Weissbrod &, Masahiro Kanai, Huwenbo Shi, Steven Gazal, Wouter J. Peyrot, Amit V. Khera,
Yukinori Okada, The Biobank Japan Project, Alicia R. Martin, Hilary K. Finucane & Alkes L. Price &

Nature Genetics 54, 450-458 (2022) | Cite this article 32
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Need new method that can

* simultaneously fit all SNPs and annotation data in a
unified model

e account for variations in both causal variant proportion

and causal effect distribution

nature genetics

Article

https://doi.org/10.1038/s41588-024-01704-y
Leveraging functional genomic annotations
and genome coverage toimprove polygenic

Leveraging functional annotations prediction of complex traitswithinand
. e between ancestries
for cross-ancestry prediction

CRICOS code 00025B 33



SBayesRC

Incorporate functional annotations through a hierarchical prior:

B] ~ T4 +7T2 +7T3 +7T4_ +7T5

y J\

probit(njk) = SNP annotations X annotation effects

effect

5B 34

effect effect

effect
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Incorporate functional annotations through a hierarchical prior:

B] ~ T4 +7T2 +7T3 +7T4_ +7T5

' J\

probit(njk) = SNP annotations X annotation effects

» Annotation effects are additive at » Estimation of conditional effects. » # annotation effect parameters x 5.
the GLM scale. « Allow annotation overlap. o Tjy + Mjp+ Wjz+ Wiy + mjs = 1.
* Interpretation.

CRICOS code 00025B 35
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Reparameterisation of annotation effects

Suppose 4 components for simplicity

« Aset of 2-component independent models:

For all SNPs [ ]
Bi ~ (1—p2) + 2 }\

For SNPs with nonzero effects (conditional on non-nul SNPs)

Bi ~ (1 —p3) H + p3

For SNPs with at least medium effects (conditional on non-small-effect SNPs)

D2. P3, P4 Qre

P~ (A =py) P independent!

[Presentation Title] | [Date] 36
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Reparameterisation of annotation effects et

Probit link function:

O~ 1(p) = z SNP annotation X annotation effect

where @ is the CDF of the standard normal distribution.

It is straightforward to compute p = &(-)

and my =1 —py; m, = (1 —p3)py; m3= (1 — py)P3D2; = P2P3D4

Assume a hormal prior distribution for each annotation effect.

Gibbs sampling for all parameters.

[Presentation Title] | [Date] 37



SBayésRC
Toy example

Prior conditional
Genome | Region 1 | Region 2 | Region 3 probabilities

0.02 0.02 0.16

Anno Effect

Matrix

00 02 0.6

0.08 0.01 0.01

01 06 0.1

|

Input data Eﬁgrgg% from prior mixing probabilities

[Presentation Title] | [Date] 38
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Toy example

0.8
Prior distribution of SNP effect is annotation dependent. 0.2
0.9
0.2

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

A | A

[Presentation Title] | [Date]

0.02 0.02 0.16

0.0 0.2 0.6

0.08 0.01 0.01

0.1 0.6 0.1

39



Trans-ancestry prediction
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Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS
PRS-CSx

)

PRS-CSx

B [6)]
o o
1 1

W
o
L

—
o
1

Improved prediction accuracy (%)
o 3
|

17%
|

1.4%

1M SNPs
W/o annot

Train dataset

F= UKB-EUR

E UKB-EUR + BBJ

nature genetics

Explore content v About the journal v  Publish withus v Subscribe

GWAS sumstats GWAS sumstats| |GWAS sumstats
LD ref pop A LD ref pop B LD ref pop C
PRS-CSx

PRS A + PRS B PRS C

Final PRS

nature > nature genetics > articles > article

Article | Published: 05 May 2022

Improving polygenic prediction in ancestrally
diverse populations

Yunfeng Ruan, Yen-Feng Lin, Yen-Chen Anne Feng, Chia-Yen Chen, Max Lam, Zhenglin

Luo, staniey slobal Asia Iniiatives, Lin fAe, AKIra sawa, Alicia k. Martin, shengyin

Hailiang Huang £ & Tian Ge &

Nature Genetics 54, 573-580 (2022) | Cite this article

How important is functional
annotation data compare to
another GWAS dataset from
the target ancestry?

CRICOS code 00025B 40




Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

()

PRS-CSx SBayesRC
504
O\O (0]
< 16%
O 40 A o o
© 17%
>
8 30- |
© Train dataset
[
o 7.0% m
3 20 | > E UKB-EUR
3 E UKB—-EUR + BBJ
o 10 - 1.4% 4.0%
©
q>) | -0.4% $
e e o o
R e - - $ ————————————————————————————————————
£ [
1M SNPs 1M SNPs 1M SNPs Dense SNPs Dense SNPs
W/o annot W/o annot With annot W/o annot With annot

CRICOS code 00025B 41



Trans-ancestry prediction

Use GWAS data from UKB EUR and BBJ EAS to predict UKB EAS

()

PRS-CSx SBayesRC 33%

(o))
o
1

17.8% 24.9% |

‘ 198% 1 6%

AN
o
1

17%

Train dataset

F=3 UKB-EUR

E UKB-EUR + BBJ

w
o

7.0%

1.4% 4.0% |
1
| o $

1M SNPs 1M SNPs 1M SNPs Dense SNPs Dense SNPs
W/o annot W/o annot With annot W/o annot With annot

Sv3

—_
o
1

o
I
|
II

Improved prediction accuracy (%)
N
o

CRICOS code 00025B 42



Trans-ancestry prediction

Use GWAS data from UKB EUR and PAGE (mixed) AFR to predict UKB
AFR

Q

PRS-CSx SBayesRC
| y 39%
60
g ) |
5 1 . 1 /0 24.6% 290/0
© 16.6%
S 30 8.5% | 12.9% '
3 ' |
© | ’ agr Train dataset
c 0.1%
S ; — [ 7| EJ UKB-EUR
8 o+-4--- | k- A T
B | F=] UKB-EUR + PAGE
- [ ]
8 'Y
3 -30
o
£
o
1M SNPs 1M SNPs 1M SNPs Dense SNPs Dense SNPs
W/o annot W/o annot With annot W/o annot With annot

CRICOS code 00025B 43
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Interaction between SNP density and annotation information® oo

Relative prediction accuracy with annotations (7M imputed SNPs)

30

N
o
1

—_
o
1

W ,
// /,q;\_
R
/
/7
) VvV //
/BW
7
N /
i S .,r 9 ,Asthma
. — =
G/ AUC
R el
I\/ITEZII\/I oD //-/\uerglc
iiTS o 4 /*
5 : 4 . (4
Dyslg ﬁBP /‘Pgrotem N
AI\/Ieia on +NeuC
//f_ME Meno
{ ohBMD “RBC
‘.‘¢ /
A '/CH‘I_PLC
VitD - it
/
K
" /
. /
.
Y
(A
’
/ 2 L] L] L]
0 5 10

Relative prediction accuracy with annotations (1M HapMap3 SNPs)

Category

3

Behavior

Blood biomarker
Blood cell count
Cognitive
Disease

Physical measure

Reproductive

Improvement (%) in prediction
accuracy with vs. without
annotations:

2
Rannot -
RZ
WO

using /M imputed SNPs (y-axis) or
IM HapMap3 SNPs (x-axis).

Annotations help more with
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Contributions of functional categories to prediction accurdecy:-:

Regions conserved across 29 mammals covers 3% genome but contributed 41% prediction accuracy!
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Functional genetic architecture
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Incorporate annotations to improve fine-mapping oo

Genome-wide fine-mapping
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Download
0.5 : ; The Genome-wide Bayesian Mixture Model (GBMM) implemented in GCTB (e.g., SBayesRC) can perform genome-wide fine-
' | Basicioptions mapping analysis. These methods require summary-level data from genome-wide association studies (GWAS) and linkage
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Methodology
« Develop a low-rank method that fits all SNPs to better model LD (more robust & efficient).

 Incorporate functional annotations to better capture causal effects (improved accuracy).

Science

« For trans-ancestry prediction, functional annotations with genome coverage provide
comparable and additive information to the use of additional GWAS dataset of target ancestry.

 Significant interaction between SNP density and annotation information, suggesting whole-
genome sequence variants with annotations may further improve prediction.

« Functional partitioning highlights a major contribution of evolutionary constrained regions to
prediction accuracy and the largest per-SNP contribution from non-synonymous SNPs.
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Practical 5: Polygenic prediction using SBayesR(C)

hitps://cnsgenomics.com/data/teaching/GNGWS25/moduleb/Practicals_SBayes.html

To log into your server, type command below in Terminal for Mac/Linux users or in Command
Prompt or PowerShell for Windows users.

5s5h username@hostname

And then key in the provided password.
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