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Basic model of Quantitative Genetics 

Basic model:  P = G + E 

Phenotypic value -- we will occasionally 
also use z for this value 

Genotypic value 

Environmental value 

G = average phenotypic value for that genotype 
if we are able to replicate it over the universe 
of environmental values, G = E[P] 

Hence, genotypic values are functions of the  
environments experienced. 
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Basic model of Quantitative Genetics 
Basic model:  P = G + E 

G = average phenotypic value for that genotype 
if we are able to replicate it over the universe 
of environmental values, G = E[P] 

G x E interaction --- The performance of a particular 
genotype in a particular environment differs from 
the sum of the average performance of that 
genotype over all environments  and the average 
performance of that environment over all genotypes. 
Basic model now becomes  P = G + E + GE 

G = average value of an inbred line over a series 
of environments 
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East (1911)  data 
on US maize 

crosses 
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Each sample (P1, P2, F1) has same G,  all variation in 
P is due to variation in E 

Same G, Var(P) = Var(E) 
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All same G, hence 
Var(P) = Var(E) 

Variation in G 
Var(P) = Var(G) +
 Var(E) 

Var(F2) > Var(F1) due to Variation in G 



Johannsen (1903) bean data 

•  Johannsen had a series of fully inbred
 (= pure) lines. 

•  There was a consistent between-line
 difference in the mean bean size 
– Differences in G across lines 

• However, within a given line, size of
 parental seed independent of size of
 offspring speed 
– No variation in G within a line 
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8 
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The transmission of genotypes versus 
alleles 

•  With fully inbred lines, offspring have the same genotype as 
their parent, and hence the entire parental genotypic value G is 
passed along 
–  Hence, favorable interactions between alleles (such as with 

dominance) are not lost by randomization under random mating 
but rather passed along. 

•  When offspring are generated by crossing (or random mating), 
each parent contributes a single allele at each locus to its 
offspring, and hence only passes along a PART of its genotypic 
value 

•  This part is determined by the average effect of the allele 
–  Downside is that favorable interaction between alleles are NOT 

passed along to their offspring in a diploid (but, as we will see, are 
in an autoteraploid) 
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Genotypic values 
It will prove very useful to decompose the genotypic 
value into the difference between homozygotes (2a) and 
a measure of dominance (d or k = d/a)  

aa Aa AA 

C - a C + d C + a 

Note that the constant C is the average value of 
the two homozygotes. 

If no dominance, d = 0, as heterozygote value equals 
the average of the two parents.  Can also write d = ka, 
so that G(Aa) = C + ak 
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Computing a and d 

Genotype aa Aa AA 

Trait value 10 15 16 

Suppose a major locus influences plant height, with 
the following values  

C = [G(AA) +  G(aa)]/2 = (16+10)/2 = 13 
a = [G(AA) - G(aa)]/2 = (16-10)/2 = 3 
d = G(Aa)]  - [G(AA) + G(aa)]/2   
   = G(Aa)]  - C = 15 - 13 = 2 
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Population means: Random mating 
Let p = freq(A), q = 1-p = freq(a).  Assuming  
random-mating (Hardy-Weinberg frequencies),    

Genotype aa Aa AA 

Value C - a C + d C + a 

Frequency q2 2pq p2 

Mean = q2(C - a) + 2pq(C + d) + p2(C + a) 
       µRM   = C + a(p-q) + d(2pq) 

Contribution from 
homozygotes 

Contribution from 
heterozygotes 
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Population means: Inbred cross F2 
Suppose two inbred lines are crossed. If A is fixed 
in one population and a in the other, then p = q = 1/2  

Genotype aa Aa AA 

Value C - a C + d C + a 

Frequency 1/4 1/2 1/4 

Mean = (1/4)(C - a) + (1/2)(C + d) + (1/4)( C + a) 
       µRM   = C  +   d/2 

Note that C is the average of the two parental lines, so when d
 > 0, F2 exceeds this.  Note also that the F1 exceeds 
this average by d, so only half of this passed onto F2. 
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Population means:  RILs from an F2 
A large number of F2 individuals are fully inbred, either by selfing 
for many generations or by generating doubled haploids.  If p an
 q denote the F2 frequencies of A and a, what is the expected
 mean over the set of resulting RILs? 

Genotype aa Aa AA 

Value C - a C + d C + a 

Frequency q 0 p 

µRILs   = C  +   a(p-q) 

Note this is independent of the amount of dominance (d) 
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The average effect of an allele 

•  The average effect αA of an allele A is defined by the 
difference between offspring that get allele A and a 
random offspring. 
–   αA = mean(offspring value given parent transmits 

A) - mean(all offspring) 
–  Similar definition for αa. 

•  Note that while C, a, and d (the genotypic 
parameters) do not change with allele frequency, αx 
is clearly a function of the frequencies of alleles with 
which allele x combines. 
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Random mating 
Consider the average effect of allele A when a parent is randomly- 
mated to another individual from its population 

Allele from other 
parent 

Probability Genotype Value 

A p AA C + a 

a q Aa C + d 

Suppose parent contributes A 

Mean(A transmitted) = p(C + a) + q(C + d) = C + pa + qd 

  αA = Mean(A transmitted) - µ = q[a + d(q-p)] 
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Random mating 

Allele from other 
parent 

Probability Genotype Value 

A p Aa C + d 

a q aa C - a 

Now suppose parent contributes a 

Mean(a transmitted) = p(C + d) + q(C - a) = C - qa + pd 

  αa = Mean(a transmitted) - µ = -p[a + d(q-p)] 

18 

 α, the average effect of an 
allelic substitution 

•   α = αA - αa is the average effect of an allelic 
substitution, the change in mean trait value when an 
a allele in a random individual is replaced by an A 
allele 
–   α = a + d(q-p). Note that  

•   αA = qα   and αa   =-pα. 
• E(αX) = pαA + qαa =  pqα - qpα = 0,  
• The average effect of a random allele is zero, 

hence average effects are deviations from the 
mean 
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Dominance deviations 
•  Fisher (1918) decomposed the contribution 

to the genotypic value from a single locus as  
Gij = µ + αi + αj + δij 
–  Here, µ is the mean (a function of p) 
–   αi are the average effects 
–  Hence, µ + αi + αj is the predicted genotypic 

value given the average effect (over all 
genotypes) of alleles i and j. 

–  The dominance deviation  associated with 
genotype Gij is the difference between its true 
value and its value predicted from the sum of 
average effects (essentially a residual) 
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Fisher’s (1918) Decomposition of G 
One of Fisher’s key insights was that the genotypic value 
consists of a fraction that can be passed from parent to 
offspring and a fraction that cannot. 

Mean value   µG = Σ Gij Freq(AiAj) 

Average contribution to genotypic value for allele i 

Consider the genotypic value Gij resulting from an  
AiAj individual 

In particular, under sexual reproduction, parents only 
pass along SINGLE ALLELES to their offspring 

Gij = µG + αi + αj + δij 
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Since parents pass along single alleles to their 
offspring, the αi (the average effect of allele i) 
represent these contributions 

The genotypic value predicted from the individual 
allelic effects is thus 

The average effect for an allele is POPULATION- 
SPECIFIC, as it depends on the types and frequencies  
of alleles that it pairs with 

Gij = µG + αi + αj + δij 

Gij = µG + αi + αj 
^ 
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Dominance deviations --- the difference (for genotype 
AiAj) between the genotypic value predicted from the 
two single alleles and the actual genotypic value, 

Gij = µG + αi + αj + δij 

The genotypic value predicted from the individual 
allelic effects is thus Gij = µG + αi + αj 

^ 

Gij - Gij = δij 
^ 
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N = # Copies of Allele 2 0 1 2 

G11 

G21 

G22 

µ + 2α1 

µ + α1 + α2 

µ + 2α2 

δ12 

δ11 

δ22 

Slope = α = α2 - α1  

1 

α$

11 21 22 Genotypes 
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Fisher’s decomposition is a Regression 

Predicted value 
Residual error 

A notational change clearly shows this is a regression, 

Independent (predictor) variable N = # of A2 alleles 

Note that the slope α2 - α1 = α, the average effect 
of an allelic substitution 

Gij = µG + αi + αj + δij 

Gij = µG + 2α1 +(α2 – α1) N + δij 
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Regression slope Intercept 

A key point is that the average effects change with 
allele frequencies.  Indeed, if overdominance is present 
they can change sign with allele frequencies. 

Gij = µG + 2α1 + (α2 – α1) N + δij 
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0 1 2 
N 

G G22 

G11 

G21 

Allele A2 common, α1 > α2 

The size of the circle denotes the weight associated with 
that genotype.  While the genotypic values do not change, 
their frequencies (and hence weights) do. 
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0 1 2 
N 

G G22 

G11 

G21 

Allele A1 common, α2 > α1 

Slope = α2 - α1  

Again, same genotypic values as previous slide, but 
different weights, and hence a different slope 
(here a change in sign!) 
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0 1 2 
N 

G G22 

G11 

G21 

Both A1  and  A2 frequent, α1 = α2 = 0 

With these allele frequencies,  both alleles have the same  
mean value when transmitted, so that all parents have the  
same average offspring value  -- no response to selection 
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Average Effects and Additive Genetic Values 

A ( G ij ) = αi + 

The α values are the average effects of an allele 

A key concept is the Additive Genetic Value (A) of 
an individual 

A is called the Breeding value or the Additive genetic 
value 

αi
(k) = effect of allele i at locus k  

A ( G ij ) = αi + αj 

j!
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Why all the fuss over A? 

Suppose pollen parent has A = 10 and seed parent has  
A = -2 for plant height 

Expected average offspring  height is (10 - 2)/2  
= 4 units above the population mean.  Offspring A = 
average of parental A’s 

KEY:  parents only pass single alleles to their offspring. 
Hence, they only pass along the A part of their genotypic 
value G 

j !
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Genetic Variances 
Writing the genotypic value as 

The genetic variance can be written as 

This follows since 

Gij = µG + (αi + αj) + δij 

As Cov(α,δ) = 0 
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Genetic Variances 

σ$
2 
G = 

2 
A + 

2 
D 

Additive Genetic Variance 
(or simply Additive Variance) Dominance Genetic Variance 

(or simply dominance variance) 

Hence, total genetic variance = additive + dominance 
variances, 

σ$ σ$
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Key concepts (so far) 
•   αi = average effect of allele i 

–  Property of a single allele in a particular population 
(depends on genetic background) 

•  A = Additive Genetic Value (A)  
–  A = sum (over all loci) of average effects 
–  Fraction of G that parents pass along to their offspring 
–  Property of an Individual in a particular population 

•  Var(A) = additive genetic variance 
–  Variance in additive genetic values 
–  Property of a population 

•  Can estimate A or Var(A) without knowing any of the 
underlying genetical detail (forthcoming) 
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One locus, 2 alleles: 

Q1Q1      Q1Q2        Q2Q2 

0        a(1+k)          2a            

When dominance present,  Additive variance is an 
asymmetric function of allele  frequencies 

Since E[α] = 0,  
Var(α) = E[(α -µa)2] = E[α2]  
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Q1Q1      Q1Q2        Q2Q2 

0        a(1+k)          2a            

This is a symmetric function of 
allele frequencies 

Dominance variance 

Can also be expressed in terms of d = ak 
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Additive variance, VA,  with no dominance (k = 0) 

Allele frequency, p 

VA 
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Complete dominance (k = 1) 

Allele frequency, p 

VA 

VD 
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Epistasis 

These components are defined to be uncorrelated, 
(or orthogonal), so that 
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Additive x Additive interactions -- αα, AA 
interactions between a single allele 
at one locus with a single allele at another 

Additive x Dominance interactions -- αδ, AD 
interactions between an allele at one 
locus with the genotype at another, e.g. 
allele Ai and genotype Bkj 

Dominance x dominance interaction --- δδ, DD 
the interaction between the dominance 
deviation at one locus with the dominance 
deviation at another. 
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Heritability 
•  Central concept in quantitative genetics 
•  Fraction of phenotypic variance due to

 additive genetic values (Breeding values) 
–  h2 = VA/VP 

–  This is called the narrow-sense heritability 
–  Phenotypes (and hence VP) can be directly

 measured 
–  Breeding values (and hence VA) must be

 estimated  
•   Estimates of VA require known collections of

 relatives    
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Broad-sense heritability 

•  Narrow-sense heritability h2 applies when
 outcrossing,  
–   h2 = Var(A)/Var(P) 
–  =  the fraction of all trait variation due to variation

 in breeding (additive genetic) values 
•  Broad-sense heritability H2 applies when

 selecting among a series of pure lines 
–  H2 = Var(G)/Var(P) 
–     =  the fraction of all trait variation due to

 variation in Genotypic values 
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Defining H2 for Plant Populations 
Plant breeders often do not measure individual plants  
(especially with  pure lines), but instead  often measure a plot or  
a block of individuals. 

This replication can result in inconsistent measures of H2  even for  
otherwise  identical populations.   

Effect of the k-th plot 

deviations of individual 
plants within this plot 

Let zijkl denote the value of the l-th replicate in plot k of genotype i 
in environment j.  We can decompose this value as 

 zijkl = Gi + Ej + GEij + pijk + eijkl 
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If we set our unit of measurement as the average over  
all plots, the phenotypic variance for the mean of line  
i becomes 

Thus, VP, and  H2 = VG/VP, depend  on our choice of e, r, and n 

σ"2 ( ) = σ"2 G + σ"2 E + 
σ"2 G E 
e 
+ 
σ"2 p 
e r 
+ 

σ"2 e 
e r n 

Suppose we replicate the genotype over e environments, 
with r plots (replicates) per environment, and n individuals 
per plot. 

In order to compare board-sense heritabilities we need to use a 
consistent design (same values of e, r, and n) 

zi 
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 Key observations 
•  The amount of phenotypic resemblance

 among relatives for the trait provides an
 indication of the amount of genetic variation
 for the trait.  

•  If trait variation has a significant genetic
 basis, the closer the relatives, the more
 similar their appearance 

•  The covariance between the phenotypic
 value of relatives measures the strength of
 this similarity, with larger Cov = more
 similarity 
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Genetic Covariance between relatives 

Genetic covariances arise because two related  individuals 
 are more likely to share alleles than  
are two unrelated individuals. 

Sharing alleles means having alleles that are identical by
 descent (IBD): both copies can be traced back to  a
 single copy in a  recent common ancestor.  

Father Mother 
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Father Mother 

No alleles IBD One allele IBD 

Both alleles IBD 
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Resemblance between relatives and
 variance components 

•  The phenotypic variance between relatives
 can be expressed in terms of genetic
 variance components 
–  Cov(zx,zy) = axyVA + bxyVD. 
–  The weights a and b depend on the nature of the

 relatives x and y, and are measures of how often
 they are expected to share alleles identical by
 descent  

–  These are critical in predicting selection response 
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Parent-offspring genetic covariance 
Cov(Gp, Go) --- Parents and offspring share  
EXACTLY one allele IBD 

Denote this common allele by A1 

G p = A p + D p = α"1 + α"x + D 1 x 

G o = A o + D o = α"1 + α"y + D 1 y 

IBD allele Non-IBD alleles 
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Hence, relatives sharing one allele IBD have a 
genetic covariance of Var(A)/2 

The resulting parent-offspring genetic covariance  
becomes Cov(Gp,Go) = Var(A)/2 
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Half-sibs 

1 

o 1 

2 

o 2 

The half-sibs share no alleles IBD 
 •  occurs with probability 1/2 

Each sib gets exactly one
 allele from common father, 
different alleles from the
 different mothers 

Hence, the genetic covariance of half-sibs is just  
(1/2)Var(A)/2 = Var(A)/4 
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Full-sibs 
Father Mother 

Sib 1 

Prob(Allele from father IBD) = 1/2.  Given the allele in parent
 one, prob = 1/2 that sib 2 gets same allele 

Each sib gets 
exact one allele 
from each parent 

Sib 2 

Prob(Allele from father not IBD) = 1/2.  Given the allele in
 parent one, prob = 1/2 that sib 2 gets different allele 
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Full-sibs 
Father Mother 

Full Sibs 
Paternal allele not IBD [ Prob = 1/2 ] 
Maternal allele not IBD [ Prob = 1/2 ] 
Prob(sibs share 0 alleles IBD) = 1/2*1/2 = 1/4 

Each sib gets 
exact one allele 
from each parent 
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Father Mother 

Full Sibs 

Paternal allele  IBD [ Prob = 1/2 ] 
Maternal allele  IBD [ Prob = 1/2 ] 
Prob(sibs share 2 alleles IBD) = 1/2*1/2 = 1/4 

Each sib gets 
exact one allele 
from each parent 

Prob(share 1 allele IBD) = 1-Pr(0) - Pr(2) = 1/2 
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I BD al l el es P rob a bil i ty Co n tr i but i on 

0 1/ 4 0 

1 1/ 2 V a r ( A ) / 2 

2 1/ 4 V a r ( A ) +  Va r( D ) 

Resulting Genetic Covariance between full-sibs 

Cov(Full-sibs) = Var(A)/2 + Var(D)/4 
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Genetic Covariances for General Relatives 

Let r = (1/2)Prob(1 allele IBD) + Prob(2 alleles IBD) 

Let u = Prob(both alleles IBD) 

General genetic covariance between relatives 
Cov(G) = rVar(A) + uVar(D) 

When epistasis is present, additional terms appear 
r2Var(AA) + ruVar(AD) + u2Var(DD) + r3Var(AAA) +  
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More general relationships  

•  To obtain the expected covariance for any
 set of relatives, we normally need only
 compute r and u for that set of relatives 

•  With general inbreeding, becomes more
 complex (as three other terms, in addition to
 VA and VD arise) 

•  With crosses involving inbred and/or related
 parents, values for r and u are different from
 those presented above. 
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Coefficients of Coancestry 
Suppose we pick a single allele each at random from 
two relatives.  The probability that these are IBD is  
called Θ, the coefficient of coancestry.  In terms of our 
previous notation, 2Θ = r = the coeff on Var(A) 

Θxy denotes the coefficient for relatives x and y 

Consider an offspring z from a (hypothetical) cross 
of x and y. Θxy = fz, the inbreeding coefficient of z. 
Why?  Because the offspring of x and y each get a  
randomly-chosen allele from each parent.  The probability 
fz that both alleles are IBD (the probability of inbreeding) 
is thus just Θxy. 
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 θ and the coefficient on VA 
•  The coefficient on the additive variance for

 the relatives x and y is just 2θxy.   
•  To see this,  

–  let AiAj denote the two alleles in x and AkAl those
 in y.  

–  Cov(breeding values) = Pr(Ai ibd Ak) cov(αi, αk) +
 Pr(Ai ibd Al) cov(αi,αl) + Pr(Aj ibd Ak) cov(αj, αk) +
 Pr(Aj ibd Al) cov(αj,αl)  = 4 θxyVar(α) 

–  Since Var(A) = 2Var(α), Cov = 2 θxyVar(A) 
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Θxx :  The Coancestry of an individual
 with itself  

Self x, what is the inbreeding coefficient of its offspring? 

To compute Θxx, denote the two alleles in x by A1 and A2 

Draw A1 

Draw A1 Draw A2 

Draw A2 

IBD 

IBD 

Hence, for a non-inbred individual, Θxx = 2/4 = 1/2 

If x is inbred, fx = prob A1 and A2 IBD,  

fx 

fx 

Θxx = (1+ fx)/2  
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Example 
B A D C 

E F 

G 

Consider the following pedigree 
Suppose A and D are fully-inbred,  
and related, lines with θAD = 0.5. 
Further, B and C are unrelated and 
outcrossed individuals 

Individual A B C D 

Fx 1 0 0 1 

 θxx = (1 + Fx)/2 1 1/2 1/2 1 
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The Parent-offspring Coancestry 
Let A1, An denote the two alleles in the offspring, where 
An is the allele from the nonfocal parent (NP), while 
A1,Ap are the two alleles in the focal parent (P) 

Draw A1 

Draw A1 Draw An 

Draw Ap 

IBD 

ΘP,NP 

For a non-inbred individual, ΘP0 = 1/4 

fp 

ΘPO = (1 + fp + 2ΘP,NP)/4 = (1 + fp + 2fo)/4  

Offspring 

Pa
re

nt
 

A1, Ap IDB if  
parent is inbred 

Prob(An,Ap), the alleles 
from the two parents are IBD, 
i.e. , offspring is inbred 

ΘP,NP 

General: 
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Θop =  Parent & Offspring 

Mother 

Offspring 

Paternal allele 

θ"p o = 
1 
4 θ"p o = 

1 + f p 
4 

 fo 

θ"p o = 
1 + 2 f o 
4 

θ"p o = 
1 
4 
( 1 + f p + 2 θ mf ) 

Parent inbred 

Offspring inbred 

1/2 = Prob random offspring allele
 from father. Prob = θmf = fo that this
 allele is IBD to mother giving 
a contribution of fo/2 

fp 

This is just 2f0   
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B A D C 

E F 

G 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2,  
θAB = θAC = θBC = θBD =  θCD = 0 

Consider A - E (inbred parent - offspring) 
θAE = (1+fA)/4 = (1+1)/4 = 1/2.  Same value for θDF 

Consider B - E (outbred parent - offspring) 
θBE = (1+fB)/4 = (1+0)/4 = 1/4.  Same value for θCF 

Consider E - G (outbred parent - offspring) 
θEG = (1+fE)/4 = (1+0)/4 = 1/4.  Same value for θFG 
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B A D C 

E F 

G 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2,  
θAB = θAC = θBC = θBD =  θCD = 0 

What about θEF ? 

The randomly-chosen allele from E has equal chance 
of being from A or B.  Likewise for F (from C or D) 

Of these four possible combinations (A&C, A&D, B&C, B&D), only  
an allele from A and an allele from D have a chance of being 
IBD, which is θAD = 1/2.  

Hence, θEF  = θAD /4 = 1/8 
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m f 

1/2 1/2 

 (1/2)(1/2)(1/2)  (1/2)(1/2)(1/2) 

Θ = 1/8 + 1/8 = 1/4 

m f 

(1+fm)/2 
(1+ff)/2 

[(1 +fm )/2] (1/2)(1/2) [(1 +ff )/2] (1/2)(1/2) 

Θ =(2 + fm+ ff)/8 

Full sibs (x and y) from parents m and f 

Unrelated, non-inbred 
parents 

Unrelated, inbred 
parents 
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m f 

Θ mf 

 Θ mf /4 

Full sibs (x and y) from parents m and f 

m f 

Θ mf 

 Θ mf (1/2)(1/2) 

This gives  Θ = (2+fm+ff +4 Θ mf)/8 

Parents inbred & related. 
Two additional paths to add 
to Θ =(2+fm+ff)/8 
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Full sibs (x and y) from parents m and f 

Θxy =  (2 + fm + ff + 4Θmf)/8 

f m 

x y 

s f d f s m d m 

ff = Θsf,df fm = Θsm,dm 

Θxy =  (2 + Θsm,dm + Θsf,df + 4Θmf)/8 

Putting all this together gives 
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B A D C 

E F 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2, θEF = 1/8,  
θAB = θAC = θBC = θBD =  θCD = 0 

S1,S2 

 θS1S2 = (2 + 0 + 0 + 4[1/8])/8 = (4 + 1)/16 = 5/16 

Θxy =  (2 + ΘAB + ΘCD + 4ΘEF)/8 

Example 
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Half-sibs 

• Using the same arguments as above, 
θEF = (θAA + θAB + θAC + θBC)/4 
      = ([1 + fA]/2  + θAB + θAC + θBC)/4 
Hence, if B and C unrelated,  
θEF =  (1 + fA)/8 

A B C 

E F 

A is the common parent 
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Computing θxy -- The Recursive Method 
•  There is a simple recursive method for generating the elements Aij

 = 2 θij of a relationship matrix (used for BLUP selection). For ease of
 reading, we use the notation A(i,j) = Aij 
–  Basic idea is that the founding individuals of the pedigree are

 assumed to be unrelated and not inbred (although this can also
 be accommodated).  These founders are assigned values of
 A(i,i) = 1.   

–  Likewise, any unknown parent of any future individual is assumed to be
 unrelated to all others in the pedigree and not inbred, and they are
 also assigned a value of A(i,i) = 1.  

–  Let Si and Di denote the sire and dam (father and mother) of individual
 i.    For this offspring A(i,i) = 1 + A(Si, Di)/2 

–  A(i,j) = A(j,i) = [A(j,Si) + A(j,Di)]/2 = [A(i,Sj) + A(i,Dj)]/2  
–  The recursive (or tabular) method starts with the founding parents and

 then proceeds down the pedigree in a recursive fashion to fill out A for
 the desired pedigree. 
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Example 

1 

2 3 4 5 

6 7 8 

9 
10 

11 

Ancestors are 1 & 2 

A(1,1) = A(2,2) = 1 
A(1,2) = 0 

3:  S3 = 1, D3 = Unknown,  A(3,3) = 1 + A(S3,D3)/2 = 1 + A(1,unk)/2 = 1 
A(1,3) = [A(1,S3) + A(1,D3)]/2 = [A(1,1) + A(1,unk)]/2 = 1/2. 
Note also that A(1,4) = A(1,5) = 1/2, A(4,4) = A(5,5) = 1. 
A(3,4) = [A(3,S4) + A(3,D4) ]/2 = [A(3,1) + A(3,unk)]/2 = (1/2+0)/2 = 1/4. 
Same for A(3,5) = 1/4.  2 is unrelated to 3, 4, 5, giving  A(2,3) = A(2,4) = A(2,5) = 0. 

3, 4, 5, 8 all have
 unknown parents 
(only a single
 arrow to them) 
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1 

2 3 4 5 

6 7 8 

9 
10 

11 

So far 

6:  S6 = 2, D6 = 3.  A(6,6) = 1 + A(S6, D6)/2 = 1 + A(2,3)/2 = 1 
A(6,1) = [A(1, S6) + A(1, D6)]/2 =  [A(1,2) + A(1,3)]/2 = [0 + 1/2]/2 = 1/4 
A(6,2) = [A(2, S6) + A(2, D6)]/2 =  [A(2,2) + A(2,3)]/2 = [1+ 0]/2 = 1/2 
A(6,3) = [A(3, S6) + A(3, D6)]/2 =  [A(3,2) + A(3,3)]/2 = [0 + 1]/2 = 1/2 
A(6,4) = [A(4, S6) + A(4, D6)]/2 =  [A(4,2) + A(4,3)]/2 = [0 + 1/4]/2 = 1/8 
A(6,5) = [A(5, S6) + A(5, D6)]/2 = [A(5,2) + A(5,3)]/2 = (0+1/4)/2 = 1/8 

7:  S7 = 2, D7 = 4.  A(7,7) = 1 + A(S7, D7)/2 = 1 + A(2,4)/2 = 1 + 0/2 = 1 
A(6,7) = [A(6, S7) + A(6, D7)]/2 = [A(6, 2) + A(6, 4)]/2 = (1/2 +1/8)/2 = 5/16 

8:  S8 = 5, D8 = unk.  A(8,8) = 1 + A(S8, D8)/2 = 1 + A(5,unk)/2 = 1. 
A(6,8) = [A(6, S8) + A(6, D8)]/2 = [A(6, 5) + A(6, unk)]/2 = (1/8)/2 = 1/16 

9:  S9 = 7, D9 = 6.  A(9,9) = 1 + A(S9, D9)/2 = 1 + A(6,7)/2 = 1 + 5/32 = 1.156 <- inbred!  

Actual relatedness versus expected values from
 pedigrees 
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Values for the coefficient of coancestry (θ) and the 
coefficient of fraternity (Δ) obtained from pedigrees 
are expected values.  Due to random segregation of 
genes from parents, The actual value (or realization)  
can be different. 
For example, we expect 2θ to be ½ for full subs.  However, 
one pair of sibs may actually be more similar (0.6) and 
another less similar (say 0.35).  On average, 2θ is ½ 
for pairs of full sibs, but if we knew the actual value  
of θ, we have more information.  With sufficient  
dense genetic markers, we can estimate these 
relationships directly. 

Genomic selection uses this extra information. 



What about coefficient of coancestry θ ? 

37 37 

38 

Indiv x:  00  00  10  10  00  10  11  00  11  00!

Indiv y:  10  00  11  11  10  11  11  10  11  10!

Locus-specific 
θ 

0.5    1.0     0.5    0.5     0.5     0.5     1.0    0.5      1.0     0.5 

Estimated θ is the average over all ten loci, = 0.65  
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The coefficient of fraternity 
•  While (twice) the coefficient of coancestry gives the

 weight on the additive variance for two relatives, a
 related measure of IDB status among relatives gives
 the weight on the dominance variance 

•  The probability that the two alleles in individual x are
 IBD to two alleles in individual  y is denoted Δxy, and
 is called the coefficient of fraternity. 

•  This can be expressed as a function of the
 coefficients of coancestry for the parents of (mx and
 fx) of x and the parents (my and fy) of y. 
–   Δxy = θmxmyθfxfy+ θmxfyθfxmy 
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The coefficient of fraternity (cont) 

•  x and y can have both alleles IBD if 
–  The allele from the father (fx) of x and the father (fy) of y are

 IDB (probability θfxfy) AND the allele from the mother (mx)
 of x and the mother (my) of y are IDB (probability θmxmy) , or
 θfxfy θmxmy  

–  OR the allele from the mother (mx) of x and the father (fy) of
 y are IDB (probability θmxfy) AND the allele from the father
 (fx) of x and the mother (my) of y are IDB (probability θfxmy) ,
 or θmxfy θfxmy   

–  Putting these together gives  
•     Δxy = θmxmyθfxfy+ θmxfyθfxmy 
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x y 

fx fy mx 
my 

Δxy = θmxmyθfxfy + θmxfyθfxmy 

θmxmy 
θfxfy 

θmxfy 

θfxmy 

Δxy, The Coefficient of Fraternity 

Δxy = Prob(both alleles in x & y IBD) 
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Examples of Δxy: Full sibs 
•  Full sibs share same mon, dad 

–   mx = my = m,  fx = fy = f 
–   Δxy = θmxmyθfxfy + θmxfyθfxmy  = θmmθff + θmf

2 

–   Δxy = (1+fm)(1+ff)/4 + θmf
2

 

•   If parents unrelated, θfm = 0, giving  
–   Δxy = (1+fm)(1+ff)/4 

•  If parents are unrelated and not inbred, 
–   Δxy = 1/4 
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Examples of Δxy: Half sibs 
•  Paternal half sibs share same dad, different

 moms 
–  fx = fy = f;  mx and my 
–   Δxy = θmxmyθfxfy + θmxfyθfxmy  = θmxmyθff + θmxf θmyf

 

–   Δxy = θmxmy (1+fm)/2 + θmxf
 θmyf

 
 

•   If mothers are unrelated to each other and to
 the common father, θmxmy = θmxf = θmyf = 0,
 giving  
–   Δxy = 0 
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When is Δ non-zero? 
•  Since Δxy = θmxmyθfxfy + θmxfyθfxmy   
• A nonzero value for Δ requires either  

– That the fathers of both x and y are related
 AND the mothers of both x and y are
 related 

– OR that the father of x is related to the
 mother of y AND the mother of x is
 related to the father of y  
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B A D C 

E F 

From before  

θAA= θDD = 1; θBB = θCC = 1/2;  
θAD = 1/2, θEF = 1/8,  
θAB = θAC = θBC = θBD =  θCD = 0 

S1,S2 

What is Δ for the full sibs (S1 and S2)? 

Δxy = θmxmyθfxfy + θmxfyθfxmy = θEEθFF + θEF
2 "

Giving Δxy = θEEθFF + θEF
2 

       = (1/2)(1/2) + (1/8)2 "
          = 1/4 + 1/64 = 17/64 = 0.266 
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 Δxy and the coefficient on VD 

•  The coefficient on the dominance variance for the
 relatives x and y is just Δxy.   

•  To see this,  
–  let AiAj denote the two alleles in x and AkAl those

 in y. 
–  Suppose that alleles i and k come from the

 mothers of these two relatives and alleles j and l
 from their fathers.  

–  Cov(dominance values) = Pr(Ai ibd Ak; Aj ibd Al )
 cov(δij, δkl) + Pr(Ai ibd Al; Aj ibd Ak)cov(δij, δkl)  

–   = (θfxfyθmxmy + θmxfyθjxmy) Var(D) = Δxy Var(D)  



Estimating relationships using
 molecular data 

47 

With SNP data, treat identity in state (also 
called alike in state, AIS) as IBD 

Suppose the genotypes of two individual at 10 SNPs are 

3/10 loci have Δxy = 1, so average Δxy over all loci is 
0.3* 1 = 0.3 

Indiv x:  00  00  10  10  00  10  11  00  11  00!

Indiv y:  10  00  11  11  10  11  11  10  11  10!
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General Resemblance between
 relatives 
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Example 
B A D C 

E F 
S1,S2 

We found for full sibs S1, S2 that 
θ = 5/16, hence 2 θ  = 5/8;  Δ = 17/64  

Expected genetic covariance between this sibs is 

(5/8)Var(A) + (17/64)Var(D) + (5/8)2Var(AA) + 
 (5/8) (17/64)Var(AD) + (17/64) 2Var(DD) + … 
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Autotetraploids 
•  Peanut, Potato, alfalfa, soybeans all examples

 of crops with at least some autotetraploid
 lines 

•  With autotetraploid, four alleles per locus,
 with a parent passing along two alleles to an
 offspring 

•  As a result, a parent can pass along the
 dominance contribution in G to an offspring 

•  Further, now there are four variance
 components assocated with each locus 
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Genetic variances for
 autotetraploids 

•  G = A + D + T + Q 
–  A (additive) and D (dominance, or digenic effects)

 as with diploids 
–  T (trigenic effects) are the three-way interactions

 among alleles at a locus 
–  Q (quadrigenic effects) are the four-way

 interactions at a locus 
•  Total genetic variance becomes 

–  VG = VA + VD + VT + VQ 
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Resemblance between
 autotetraploid relatives 

Relatives VA VD VT VQ 

Half-sibs 1/4 1/36 

Full-sibs 1/2 2/9 1/12 1/36 

Parent
-offspring 1/2 1/6 

Assumes unrelated, non-inbred parents 



Lecture 3 
Estimation of genetic 

variances  

Bruce Walsh lecture notes 
Introduction to Quantitative Genetics 

SISG, Brisbane 
6 – 7 Feb 2017 
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Heritability 
Narrow vs. broad sense 

Narrow sense: h2 = VA/VP  

Broad sense: H2 = VG/VP  

Slope of midparent-offspring regression 
        (sexual reproduction) 

Slope of a parent - cloned offspring  regression 
     (asexual reproduction) 

When one refers to heritability, the default is narrow-sense, h2 

h2 is the  measure of (easily) usable genetic variation under 
     sexual reproduction 

2 



Why h2 instead of h? 

Blame Sewall Wright, who used h to denote the correlation 
 between phenotype and breeding value.  Hence,  h2 is the 
 total fraction of phenotypic variance due to breeding values 

Heritabilities are functions of populations 

Heritability measures the standing genetic variation of a population, 
A zero heritability DOES NOT imply that the trait is not genetically 
determined 

Heritability values only make sense in the content of the population 
for which it was measured. 
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Heritabilities are functions of the distribution of 
environmental values (i.e., the universe of E values) 

Decreasing VP increases h2. 

Heritability values measured in one environment 
(or distribution of environments) may not be valid  
under another 

Measures of heritability for lab-reared individuals 
may be very different from heritability in nature 

4 



Heritability and the prediction of breeding values 

If P denotes an individual's phenotype, then best linear  
predictor of their breeding value A is 

The residual variance is also a function of h2: 

The larger the heritability, the  tighter the distribution of true  
breeding values around the value h2(P - µP) predicted by  
an individual’s phenotype. 
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Heritability and population divergence 

Heritability is a completely unreliable predictor of 
 long-term response 

Measuring heritability values in two populations that  
show a difference in their means provides no information 
on whether the  underlying difference is genetic 

6 



 Sample heritabilities 
People hs 

Height 0.80 

Serum IG 0.45 

Pigs 

Back-fat 0.70 

Weight gain 0.30 

Litter size 0.05 

Fruit Flies 

Abdominal Bristles 0.50 

Body size 0.40 

Ovary size 0.3 

Egg production 0.20 

Traits more closely 
associated with fitness 
tend to have lower  
heritabilities 
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Basic approach to estimating genetic
 variances 
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Different crosses are made, which allow us to  
express the covariance between relatives  
(which are functions of the genetic variances) 
with the variance between measured groups. 
Between-group variances estimated by ANOVA 

For example, variance between the means of 
full-sib families = cov(full sibs) = Var(A)/2 
+ Var(D)/4 + Var(Ec)  



Types of crosses (mating designs) 

•  Parent-offspring 
•  Full sib 
• Half sib 
• Nested full sib/half sib 

– North Carolina (NC) design one: all males
 crossed to same set of females 

– NC design two: males crossed to random
 (different) females 

•  dialleles 
9 

10 

ANOVA: Analysis of variation 
•  Partitioning of trait variance into within- and among

-group components 
•  Two key ANOVA identities 

–  Total variance = between-group variance +
 within-group variance 

•  Var(T) = Var(B) + Var(W) 

–  Variance(between groups) = covariance (within
 groups) 

–  Intraclass correlation, t = Var(B)/Var(T) 
•  The more similar individuals are within a group (higher within

-group covariance), the larger their between-group differences
 (variance in the group means) 
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4 3 2 1 4 3 2 1 

Situation 1 

Var(B) = 2.5 
Var(W) = 0.2 
Var(T) = 2.7 

Situation 2 

Var(B) = 0 
Var(W) = 2.7 
Var(T) = 2.7  t = 2.5/2.7 = 0.93  t = 0 
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Why cov(within) = variance(among)? 
•  Let zij denote the jth member of group i. 

–  Here zij = u + gi + eij 
–  gi  is the group effect 
–  eij  the residual error 

•  Covariance within a group Cov(zij,zik )  
–  = Cov(u + gi + eij, u + gi + eik)  
–  = Cov(gi, gi) as all other terms are uncorrelated 
–  Cov(gi, gi) = Var(g) is the among-group variance 



Estimation:  One-way ANOVA 
Simple (balanced) full-sib design:  N full-sib families,  
each with n offspring:  One-way ANOVA model 

zij = µ + fi + wij 
   

Trait value in
 sib j from
 family i 

Common Mean 

Effect for family i = 
deviation of mean of i from  

the common mean 

Deviation of sib j
 from the family

 mean 
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Mating Designs 

FULL-SIB DESIGN: N full-sib families with n offspring each. 

SoV df SS MS EMS 

Among-families N-1 SSf/df(f) 

Within-families n(N-1) SSw/df(w) 

14 



Covariance between members of the same group  
equals the variance among (between) groups 

Hence, the variance among family effects equals the  
 covariance between full sibs 
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 The within-family variance σ2
w = σ2

P  - σ2
f, 

16 



One-way Anova: N families with n 
 sibs, T = Nn 

17 

Estimating the variance components: 

2Var(f) is an upper bound for the additive variance 

18 



Assigning standard errors ( = square root of Var) 

Fun fact: Under normality, the (large-sample) variance  
for a mean-square is given by 

19 

Estimating heritability 

Hence, h2 < 2 tFS 

An approximate large-sample standard error  
for h2 is given by 

20 



Worked example 

Factor Df SS MS EMS 

Among-familes 9 SSf = 405 45 σ2
w  + 5 σ2

f 
Within-families 40 SSw = 800 20 σ2

w 

10 full-sib families, each with 5 offspring are measured 
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Same approach works  
using half-sib families 



Mating Designs 

HALF-SIB DESIGN: N half-sib families with n offspring each. 

SoV df SS MS EMS 

Among-families N-1 SSf/df(f) 

Within-families n(N-1) SSw/df(w) 

23 

Mating Designs 

HALF-SIB DESIGN: N half-sib families with n offspring each. 

SoV df SS MS EMS 

Among-families N-1 SSf/df(f) 

Within-families n(N-1) SSw/df(w) 

24 



Nested designs 

•  Under a nested design, several types of relatives are
 jointly considered, typically full- vs. half-sibs 

•  Under the North Carolina Design one (NC I), males
 are crossed to a random series of unrelated females  
–  No common females (each unique to a cross) 

•  Under NC II, males are crossed to a set of common
 (but unrelated) females 
–  All males crossed to the same set of females 

•  Under a diallel, a (full or partial) set of all pairwise
 crosses is made. 
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Full sib-half sib design:  Nested ANOVA 
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Estimation: Nested ANOVA (NC I) 
Balanced full-sib / half-sib design:  N males (sires) 
are crossed to M dams each of which has n offspring: 
Nested ANOVA model for NC I is 

Value of the kth
 offspring from
 the jth dam for

 sire i 

Overall mean 

Effect of sire i =
 deviation 

of mean of i’s
 family from 

overall mean  

Effect of dam j of sire i
 = deviation 

of mean of dam j from
 sire and overall 

mean  

Within-family
 deviation of kth 

offspring from the
 mean of the 
ij-th family  

zijk = µ + si + dij + wijk 
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Mating Designs 

NORTH CAROLINA DESIGN I: Each male (N sire) is mated to several
 unrelated females (M dams) to produce n offspring per dam. 

28 

Note no common females between crosses 



Nested  ANOVA model (for NC I): 

  zijk = µ + si + dij+ wijk 

σ2
s = between-sire variance = variance in sire family means 

σ2
d = variance among dams within sires =  

variance of dam means for the same sire 

σ2
w = within-family variance 

σ2
T = σ2

s + σ2
d + σ2

w 

29 

Mating Designs 

NORTH CAROLINA DESIGN I: Each male (N sire) is mated to several
 unrelated females (M dams) to produce n offspring per dam. 

SoV df SS MS EMS 

Sires N-1 MSs/df(s) 

Dams(Sire) N(M-1) MSd/df(d) 

Sibs(dams) T-NM MSw/df(w) 
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Estimation of sire, dam, and family variances: 

Translating these into the desired variance components 

•  Var(Total) = Var(between FS families) + Var(Within FS) 

• Var(Sires) = Cov(Paternal half-sibs) 

        σ2
w = σ2

z - Cov(FS) 
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Summarizing, 

Expressing these in terms of the genetic and environmental variances, 

32 



4tPHS = h2 

h2  < 2tFS
 

Intraclass correlations and estimating heritability 

Note that 4tPHS  = 2tFS  implies no dominance  
or shared family environmental effects 

t P H S = 
C o v ( P H S ) 
V a r ( z ) 

= 
V a r ( s ) 
V a r ( z ) 

t F S = 
C o v ( F S ) 
V a r ( z ) 

= 
V a r ( s ) + V a r ( d ) 

V a r ( z ) 
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Worked Example: 
 N = 10 sires, M = 3 dams, n = 10 sibs/dam 

34 



Mating Designs 

NORTH CAROLINA DESIGN II: A group of sires (NS sires) are mated to an
 independent group of dams (ND dams) to produce n offspring 

. 
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Note same set of females in all crosses 

Estimation: Nested ANOVA (NC II) 
Balanced full-sib / half-sib design:  N males (sires) 
are crossed to M common dams each of which has n offspring: 
Nested ANOVA model 

Value of the kth
 offspring from
 the jth dam for

 sire i 

Overall mean 

Effect of sire i =
 deviation 

of mean of i’s
 family from 

overall mean  

Effect of dam j 
Within-family

 deviation of kth 
offspring from the

 mean of the 
ij-th family  

zijk = µ + si + dj + Iij  wijk 
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Interaction between
 effects of sire i and dam j 

The dij term under NC I is replaced in NC II  by dj + Iij 



Mating Designs 

NORTH CAROLINA DESIGN II: A group of sires (NS sires) are
 mated to an independent group of dams (ND dams) to produce n
 offspring 

. 

SoV df SS EMS 

Sires Ns-1 

Dams 

Interaction 

Nd-1 

(Ns-1)(Nd-1) 

Sibs NsNd(n-1) 
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Full Diallele (all selfed and reciprocal crosses are made) 
Incomplete Diallele – no selfed crosses  
Incomplete Diallele – no selfed, no reciprocal crosses 

Mating Designs 

DIALLELS: A group of individuals (N) are mated to the same set of individuals
 (N) to produce n offspring 

38 



Mating Designs 

DIALLELS: A group of individuals (N) are mated to the same set of
 individuals (N) to produce n offspring. Analysis for incomplete
 diallele without selfed or reciprocal crosses. 

SoV df SS EMS 

GCA N-1 

SCA N(N-3)/2 

Sibs (n-1)[N(N-1)/2-1] 

39 

Parent-offspring regression 

40 

Single parent - offspring regression 

The expected slope of this regression is: 

Residual error variance (spread around expected values) 
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The expected slope of this regression is h2 

Residual error variance (spread around expected values) 
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Standard errors  
Single parent-offspring regression, N parents, each with n offspring 
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Midparent-offspring regression,  
N sets of parents, each with n offspring 

•  Midparent-offspring variance half that of single parent-offspring variance 

44 



Parent-Offspring Regression 

Regression one parent on offspring – no environment correlation among parent and offspring. 

Regression one parent – offspring (one offspring or the mean of multiple offspring). 

Regression mid parent on offspring – no environment correlation among parent and
 offspring. 

Regression parent -offspring inbreeding – no environment correlation. 
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Estimating Heritability in Natural Populations 
Often, sibs are reared in a laboratory environment,  
making parent-offspring regressions and sib ANOVA 
problematic for estimating heritability 

Let b’ be the slope of the regression of the values of lab-raised 
offspring regressed in the trait values of their parents in the 
wild 
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A lower bound can be placed of heritability using 
parents from nature and their lab-reared offspring 



Why is this a lower bound? 
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is the additive genetic covariance between  

environments and hence γ2 < 1 

Defining H2 for Plant Populations 
Plant breeders often do not measure individual plants (especially
 with  pure lines), but instead measure a plot or  a block of
 individuals. This can result in inconsistent measures of H2  
even for otherwise identical populations 
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Hence, VP, and hence H2, depends on our choice of e, r, and n 

e = number of environments 
r = (replicates) number of plots/environment 
n = number of individuals per plot 
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Mixed Models 
•  The above designs only compare a small set of relatives (e.g.,

 sibs, parent-offspring).  More generally, esp. in plant breeding,
 we may have much richer sets of relatedness. Further, designs
 are usually unbalanced, unequal numbers of relatives 

•  The framework of mixed models (BLUP for estimation of genetic
 effects, REML for estimation of genetic variances) handles such
 completely general designs. 
–  A relationship matrix A for the θ values for all individuals is

 used to allow us to extract the maximal amount of
 information. 

–  Easily handles unbalanced designs 
–  Mixed Models covered later in the course.  

50 
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Y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of fixed effects (to be estimated),  
e.g., year, location and treatment effects 

Vector of random
 effects, such as

 individual  
genetic values  (to

 be estimated) 

Vector of residual errors 
 (random effects) 

Incidence
 matrix for
 fixed effects 

Incidence matrix for random effects 
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Y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of random
 effects 

Incidence
 matrix for
 fixed effects 

Vector of fixed effects   

Incidence matrix for random effects 

Vector of residual errors 

Observe y, X, Z. 

Estimate fixed effects β 

Estimate random effects u, e 

Assume Cov(u) = Var(A)*A 
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Response to Selection 

•  Selection can change the distribution of 
phenotypes, and we typically measure this by 
changes in mean 
–  This is a within-generation change 

•  Selection can also change the distribution of 
breeding values 
–  This is the response to selection, the change in 

the trait in the next generation (the between-
generation change) 
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The Selection Differential and the 
Response to Selection 

•  The selection differential S measures the 
within-generation change in the mean 
– S = µ* - µ 

•  The response R is the between-generation 
change in the mean 
– R(t) = µ(t+1) - µ(t) 

4 

Parental Generation 

Offspring Generation 

Truncation selection 
Uppermost fraction 

p saved 

µp µ* S 

µo 

R 
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The Breeders’ Equation:  Translating S into R 
Recall the regression of offspring value on midparent value 

Averaging over the selected midparents, 
        E[ (Pf + Pm)/2 ] = µ*,  

E[ yo - µ ] = h2 ( µ� - µ ) = h2 S 

Likewise, averaging over the regression gives 

Since E[ yo - µ ] is the change in the offspring mean, it  
represents the response to selection, giving: 

R = h2 S The Breeders’ Equation (Jay Lush) 
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•  Note that no matter how strong S, if h2 is 
small, the response is small  

•  S is a measure of selection, R the actual 
response.  One can get lots of selection but 
no response 

•  If offspring are asexual clones of their 
parents, the breeders’ equation becomes  
–   R = H2 S 

•  If males and females subjected to differing 
amounts of selection, 
–   S = (Sf + Sm)/2 
–  Example:  Selection on seed number in plants -- pollination 

(males) is random, so that S = Sf/2  
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Pollen control 
•  Recall that S = (Sf + Sm)/2 
•  An issue that arises in plant breeding is pollen 

control --- is the pollen from plants that have also 
been selected? 

•  Not the case for traits (i.e., yield) scored after 
pollination.  In this case, Sm = 0, so response only 
half that with pollen control 

•  Tradeoff:  with an additional generation, a number of 
schemes can give pollen control, and hence twice 
the response 
–  However, takes  twice as many generations, so 

response per generation the same  
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Selection on clones 
•  Although we have framed response in an outcrossed 

population, we can also consider selecting the best 
individual clones from a large population of different 
clones (e.g., inbred lines) 

•  R = H2S, now a function of the board sense 
heritability.  Since H2 > h2, the single-generation 
response using clones exceeds that using outcrossed 
individuals 

•  However, the genetic variation in the next 
generation is significantly reduced, reducing 
response in subsequent generations 
–  In contrast, expect an almost continual response for several 

generations in an outcrossed population. 
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Price-Robertson identity 
•  S = cov(w,z) 
•  The covariance between trait value z and 

relative fitness (w = W/Wbar, scaled to have 
mean fitness = 1) 

•  VERY! Useful result 
•  R = cov(w,Az), as response = within 

generation change in BV 
–  This is called Robertson’s secondary theorem of 

natural selection 

10 



11 

Suppose pre-selection mean = 30, and we select top 
5.  In the table zi = trait value, ni =  number of offspring 

Unweighted S = 7,  predicted response = 0.3*7 = 2.1 
offspring-weighted S = 4.69, pred resp = 1.4  
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Response over multiple generations 
•  Strictly speaking, the breeders’ equation only holds 

for predicting a single generation of response from 
an unselected base population 

•  Practically speaking, the breeders’ equation is usually 
pretty good for 5-10 generations 

•  The validity for an initial h2 predicting response over 
several generations depends on: 
–  The reliability of the initial h2  estimate 
–  Absence of environmental change between 

generations 
–  The absence of genetic change between the 

generation in which h2 was estimated and the 
generation in which selection is applied 
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50% selected 
Vp = 4, S =
 1.6 

20% selected 
Vp = 4, S = 2.8 

20% selected 
Vp = 1, S =
 1.4 

The selection differential is a function of both 
the phenotypic variance and the fraction selected 
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The Selection Intensity, i 
As the previous example shows, populations with the 
same selection differential (S) may experience very 
different amounts of selection 

The selection intensity i provides a suitable measure 
for comparisons between populations, 
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Truncation selection 
•  A common method of artificial selection is truncation 

selection --- all individuals whose trait value is above 
some threshold (T) are chosen. 

•  Equivalent to only choosing the uppermost fraction p 
of the population 
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Selection Differential Under 
Truncation Selection 

R code for i:  dnorm(qnorm(1-p))/p!

Likewise,      

S =µ*- µ!
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Truncation selection 
•  The fraction p saved can be translated into an 

expected selection intensity (assuming the trait is 
normally distributed),  
–   allows a breeder (by setting p in advance) to 

chose an expected value of i before selection, and 
hence set the expected response 

p 0.5 0.2 0.1 0.05 0.01 0.005 

i 0.798 1.400 1.755 2.063 2.665 2.892 

 Height of a unit normal at the  
threshold value corresponding to p 

R code for i:  dnorm(qnorm(1-p))/p!
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Selection Intensity Version of the Breeders’ 
Equation 

Since h = correlation between phenotypic and breeding 
values, h = rPA 

R = i rPAσA 

Response =  Intensity * Accuracy * spread in Va  

When we select an individual solely on their phenotype, 
the accuracy (correlation) between BV and phenotype is h 
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Accuracy of selection 
More generally, we can express the breeders 
equation as 

R = i ruA σA 

Where we select individuals based on the
 index u (for example, the mean of n of their
 sibs). 

ruA = the accuracy of using the measure u to 
predict an individual's breeding value =  
correlation between u and an individual's BV, A 

20 
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Improving accuracy 
•  Predicting either the breeding or genotypic 

value from a single individual often has low 
accuracy --- h2 and/or H2 (based on a single 
individuals)  is small  
– Especially true for many plant traits with 

high G x E 
– Need to replicate either clones or relatives 

(such as sibs) over regions and years to 
reduce the impact of G x E 

–  Likewise, information from a set of relatives 
can give much higher accuracy than the 
measurement of a single individual 
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Stratified mass selection 
•  In order to accommodate the high 

environmental variance with individual plant 
values, Gardner (1961) proposed the method 
of stratified mass selection 
–  Population stratified into a number of different 

blocks (i.e., sections within a field) 
–  The best fraction p within each block are chosen 
–  Idea is that environmental values are more similar 

among individuals within each block, increasing 
trait heritability. 
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Overlapping Generations 

Ry = 
im + if 

Lm + Lf 

h2σp 

Lx = Generation interval for sex x  
    = Average age of parents when progeny are born 

The yearly rate of response is 

Trade-offs:  Generation interval vs. selection intensity: 
If younger animals are used (decreasing L), i is also lower, 
as more of the newborn animals are needed as replacements 
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Computing generation intervals 

OFFSPRING Year 2 Year 3 Year 4 Year 5 total 

Number 
(sires) 

60 30 0 0 90 

Number 
(dams) 

400 600 100 40 1140 
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Generalized Breeder’s Equation 

Ry = 
im + if 

Lm + Lf 

ruAσA 

Tradeoff between generation length L and  
accuracy r 

The longer we wait to replace an individual, the more 
accurate the selection (i.e., we have time for progeny 
testing and using the values of its relatives) 

26 
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Permanent Versus Transient 
Response 

Considering epistasis and shared environmental values, 
the single-generation response follows from the  
midparent-offspring regression 

Permanent component  
of response 

Transient component of response --- contributes 
to short-term response.  Decays away to zero 

over the long-term 
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Permanent Versus Transient 
Response 

The reason for the focus on h2S is that this 
component is permanent in a random-mating  
population, while the other components are 
transient, initially contributing to response, but 
this contribution decays away under random mating 

Why?  Under HW, changes in allele frequencies 
are permanent (don’t decay under random-mating), 
while LD (epistasis) does, and environmental 
values also become randomized 
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Response with Epistasis 
The response after one generation of selection from 
an unselected base population with A x A epistasis is 

The contribution to response from this single generation 
after τ generations of no selection is  

c is the average (pairwise) recombination between loci 
involved in A x A 
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Response with Epistasis 

Contribution to response from epistasis decays to zero as 
linkage disequilibrium decays to zero 

Response from additive effects (h2 S) is due to changes in  
allele frequencies and hence is permanent.  Contribution  
from A x A due to linkage disequilibrium   
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Why breeder’s equation assumption of an unselected base population?   
If history of previous selection, linkage disequilibrium may be present  
and the mean can change as the disequilibrium decays 

For t generation of selection followed by 
τ generations of no selection (but recombination) 

RAA has a limiting 
value given by 

Time to equilibrium a 
function of c 

Decay half-life 
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What about response with higher-order epistasis? 

Fixed incremental difference 
that decays when selection 

stops 
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Response in autotetraploids 

•  Autotetraploids pass along two alleles at 
each locus to their offspring 

•  Hence, dominance variance is passed along 
•  However, as with A x A, this depends upon 

favorable combinations of alleles, and these 
are randomized over time by transmission, so 
D component of response is transient. 
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P-O covariance Single-generation 
response 

Response to t generations of 
selection with constant  
selection differential S 

Response remaining after t generations of selection  
followed by τ generations of random mating 

Contribution from dominance 
quickly decays to zero 

Autotetraploids 
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General responses 
•  For both individual and family selection, the 

response can be thought of as a regression of some 
phenotypic measurement (such as the individual 
itself or its corresponding selection unit value x) on 
either the offspring value (y) or the breeding value RA 
of an individual who will be a parent of the next 
generation (the recombination group). 

•  The regression slope for predicting  
–  y from x is  σ (x,y)/σ2(x)  
–  BV RA from x  σ (x,RA)/σ2(x) 

•  With transient components of response, these 
covariances now also become functions of time --- 
e.g. the covariance between x in one generation and 
y several generations later 
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 Maternal Effects: 
Falconer’s dilution model 

 z = G + m zdam + e 

G = Direct genetic effect on character 
G = A + D + I.  E[A] = (Asire + Adam)/2 

maternal effect passed from dam to offspring m zdam is  
just a fraction m of the dam’s phenotypic value 

 m can be negative --- results in the potential for 
 a reversed response 

The presence of the maternal effects means that response 
is not necessarily linear and time lags can occur in response 



37 

Parent-offspring regression under the dilution model 

In terms of parental breeding values, 

With no maternal effects, baz = h2 

The resulting slope becomes bAz = h2 2/(2-m) 

- 

38 

Parent-offspring regression under the dilution model 
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Response to a single generation of selection 

Reversed response in 1st  
  generation largely due to 
  negative maternal correlation 
  masking genetic gain 

Recovery of genetic response after 
    initial maternal correlation decays 

 h2 = 0.11, m = -0.13  (litter size in mice) 
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 h2 = 0.35 

Selection occurs for 10 generations and then stops 



Additional material 

Unlikely to be covered in class 
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Selection on Threshold Traits 

Assume some underlying continuous value z, the  
liability, maps to a discrete trait. 

z < T      character state zero (i.e.  no disease) 

z > T      character state one (i.e.   disease) 

Alternative (but essentially equivalent model) is a 
probit (or logistic) model, when p(z) =  
Prob(state one | z).  Details in LW Chapter 14. 

Response on a binary trait is a special case of
 response on a continuous trait 
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Frequency of character state on 
in next generation 

Frequency of trait 

Observe: trait values
 are either 0,1. Pop 
mean = q (frequency 
of the 1 trait) 

Want to map from 
q onto the underlying 
liability scale z, where 
breeder’s equation 
Rz = h2Sz holds 
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Liability scale Mean liability before selection 

Selection differential 
on liability scale 

Mean liability in next generation 
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qt* - qt is the  
selection differential  
on the phenotypic scale 

Mean liability in next generation 
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Steps in Predicting Response to Threshold Selection 

i)  Compute initial mean µ0 

We can choose a scale where the liability 
z has variance of one and a threshold T = 0 

Hence, z - µ0 is a unit normal random variable 

P(trait) = P(z > 0) = P(z - µ > -µ) = P(U > -µ) 

U is a unit normal 

Define z[q] = P(U < z[q] ) = q.  P(U > z[1-q] ) = q 

For example, suppose 5% of the pop shows the trait. P(U > 1.645) =
 0.05, hence µ = -1.645. Note:  in R, z[1-q] = qnorm(1-q), with
 qnorm(0.95) returning 1.644854 

General result: µ = - z[1-q]  
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Steps in Predicting Response to Threshold Selection 

ii)  The frequency qt+1 of the trait in the next  
generation is just 

qt+1 = P(U > - µt+1 ) = P(U > - [h2S + µt ] ) 
                            = P(U > -  h2S - z[1-q] )  

iii)  Hence, we need to compute S, the selection  
differential for the liability z 

Let pt = fraction of individuals chosen in 
generation t that display the trait 
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- 
- t t q 

S t = π π t = 
φ!( π t ) p t - q t 

1 q 
* 

This fraction does not display 
 the trait, hence z < 0   

When z is normally distributed, this reduces to 

Height of the unit normal density function 
at the point µt 

Hence, we start at some initial value given h2 and 
µ0, and iterative to obtain selection response 

This fraction displays 
 the trait, hence z > 0   
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Ancestral Regressions 
When regressions on relatives are linear, we can think of the response as
 the sum over all previous contributions  

For example, consider the response after 3 gens: 

8 great-grand parents 
S0 is there selection 
differential 
β3,0 is the regression 
coefficient for an  
offspring at time 3 
on a great-grandparent 
From time 0 

4 grandparents 
Selection diff S1 
 β3,1 is the regression 
of relative in generation 
3 on their gen 1 relatives 

2 parents 
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Ancestral Regressions 

βT,t = cov(zT,zt) 

More generally, 

The general expression cov(zT,zt), where we keep track of the actual
 generation, as oppose to cov(z, zT-t ) -- how many generations 
separate the relatives, allows us to handle inbreeding, where the 
regression slope changes over generations of inbreeding. 
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Changes in the Variance under Selection 
The infinitesimal model --- each locus has a very small 
effect on the trait. 

Under the infinitesimal, require many generations  
for significant change in allele frequencies 

However, can have significant change in genetic 
variances due to selection creating linkage disequilibrium 

Under linkage equilibrium, freq(AB gamete) =
 freq(A)freq(B) 

With positive linkage disequilibrium, f(AB) > f(A)f(B), so
 that AB gametes are more frequent 

With negative linkage disequilibrium, f(AB) < f(A)f(B),
 so that AB gametes are less frequent 
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Additive variance with LD: 
Additive variance is the variance of the sum of allelic effects, 

Additive variance 

Genic variance: value of Var(A) 
in the absence of disequilibrium 
function of allele frequencies 

Disequilibrium contribution. Requires covariances
 between allelic effects at different loci 
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Key:  Under the infinitesimal model, no  
(selection-induced) changes in genic 
variance  σ2

a  

Selection-induced changes in d change σ2
A, σ2

z , h2 

Dynamics of d:  With unlinked loci, d loses half its value each  
generation (i.e, d in offspring is 1/2  d of their parents, 
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Dynamics of d:  Computing the effect of selection in  generating d 

Consider the parent-offspring regression 

Taking the variance of the offspring given the selected parents gives 

Change in variance from selection 
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Change in d = change from recombination plus 
change from selection 

Recombination Selection 

+ = 

In terms of change in d, 

This is the Bulmer Equation (Michael Bulmer), and it is 
akin to a breeder’s equation for the change in variance 

At the selection-recombination  
equilibrium, 
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Application:  Egg Weight in Ducks 
Rendel (1943) observed that while the change  
mean weight weight (in all vs. hatched) as 
negligible, but their was a significance decrease 
in the variance, suggesting stabilizing selection 

Before selection, variance = 52.7, reducing to 
43.9 after selection. Heritability was h2 = 0.6 

= 0.62 (43.9 - 52.7) = -3.2 
Var(A) = 0.6*52.7= 31.6.  If selection stops, Var(A) 
is expected to increase to 31.6+3.2= 34.8 
Var(z) should increase to 55.9, giving h2 = 0.62 
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Specific models of selection-induced 
changes in variances 

Proportional reduction model: 
constant fraction k of  

variance removed 

Bulmer equation simplifies 
to 

Closed-form solution 
to equilibrium h2 
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Equilibrium h2 under direction 
truncation selection 
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Directional truncation selection 
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Changes in the variance = changes in h2 
and even S (under truncation selection) 

R(t) = h2(t) S(t) 
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Inbreeding 
•  Inbreeding =  mating of related individuals 
•  Often results in a change in the mean of a trait 
•  Inbreeding is intentionally practiced to: 

–  create genetic uniformity of laboratory stocks  
– produce stocks for crossing (animal and plant 

breeding) 
•  Inbreeding is unintentionally generated: 

– by keeping small populations (such as is found 
at zoos) 

– during selection 



3 

Genotype frequencies under inbreeding 

•  The inbreeding coefficient, F 
•  F = Prob(the two alleles within an individual 

are IBD) -- identical by descent 
•  Hence, with probability F both alleles in an 

individual are identical, and hence a 
homozygote 

•  With probability 1-F, the alleles are 
combined at random 
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Genotype Alleles IBD Alleles not IBD frequency 

A1A1 Fp (1-F)p2 p2 + Fpq 

A2A1 0 (1-F)2pq (1-F)2pq 

A2A2 Fq (1-F)q2 q2 + Fpq 

p A1

A2q

F

F

A1A1

A2A2

p

p A1A1

A2A1
q

A2A1
q

A2A2

Alleles IBD!

1-F 

1-F 

Random mating 

Alleles IBD!
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Changes in the mean under inbreeding 

µF = µ0 - 2Fpqd 

Using the genotypic frequencies under inbreeding, the  
population mean µF under a level of inbreeding F is 
related to the mean µ0 under random mating by 

Genotypes  A1A1   A1A2   A2A2 
      0    a+d      2a 

 freq(A1) = p,   freq(A2) = q!
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•  There will be a change of mean value if dominance is present (d not 0) 

•  For a single locus, if  d > 0, inbreeding will decrease the mean value of
 the  trait.  If  d < 0, inbreeding will increase the mean 

•  For multiple loci, a decrease (inbreeding depression) requires  
directional dominance  ---  dominance effects  di tending to be positive. 

 • The magnitude of the change of mean on inbreeding depends on gene  
frequency, and is greatest when  p = q = 0.5  
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Inbreeding Depression and Fitness 
traits 

Inbred! Outbred!

8 

Inbreeding depression 

Example for maize height 

F2 F3 F4 F5 F6 
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Fitness traits and inbreeding depression 

•  Often seen that inbreeding depression is 
strongest on fitness-relative traits such as 
yield, height, etc. 

•  Traits less associated with fitness often show 
less inbreeding depression 

•  Selection on fitness-related traits may 
generate directional dominance 
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Why do traits associated with fitness 
show inbreeding depression? 

•  Two competing hypotheses: 
–   Overdominance Hypothesis: Genetic variance for fitness is 

caused by loci at which heterozygotes are more fit than both 
homozygotes. Inbreeding  decreases the frequency of 
heterozygotes, increases the frequency of homozygotes, so 
fitness is reduced. 

–   Dominance  Hypothesis:  Genetic variance for fitness is caused 
by rare deleterious alleles that are recessive or partly recessive; 
such alleles persist in populations because of recurrent mutation.  
Most copies of deleterious alleles in the base population are in 
heterozygotes.  Inbreeding increases the frequency of 
homozygotes for deleterious alleles, so fitness is reduced.  
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Inbred depression in largely 
selfing lineages 

•  Inbreeding depression is common in outcrossing 
species 

•  However,  generally fairly uncommon in species with 
a high rate of selfing 

•  One idea is that the constant selfing have purged 
many of the deleterious alleles thought to cause 
inbreeding depression 

•  However, lack of inbreeding depression also means a 
lack of heterosis (a point returned to shortly) 
–  Counterexample is Rice:  Lots of heterosis but 

little inbreeding depression 
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Variance Changes Under Inbreeding 

Inbreeding reduces variation within each population 

Inbreeding increases the variation between populations 
(i.e., variation in the means of the populations)  

F = 0 
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F = 1/4 

F = 3/4 

F = 1 

Between-group variance increases with F 

Within-group variance  decreases with F 
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Implications for traits 

•  A series of inbred lines from an F2 population 
are expected to show  
–  more within-line uniformity (variance about the 

mean within a line)  
• Less within-family genetic variation for 

selection 

–  more between-line divergence (variation in the 
mean value between lines) 
• More between-family genetic variation for 

selection 
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Variance Changes Under Inbreeding 

General F = 1 F = 0 

Between lines 2FVA 2VA 0 

Within Lines (1-F) VA 0 VA 

Total (1+F) VA 2VA VA 

The above results assume ONLY additive variance 
i.e., no dominance/epistasis.  When nonadditive 
variance present, results very complex (see WL Chpt 3). 
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Line Crosses:  Heterosis 
When inbred lines are crossed, the progeny show an increase in mean 
for characters that previously suffered a reduction from inbreeding. 

This increase in the mean over the average value of the 
parents is called   hybrid vigor or heterosis 

A cross is said to show heterosis if H > 0, so that the  
F1 mean is larger than the average of both parents.!
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Expected levels of heterosis!

If pi denotes the frequency of Qi in line 1, let pi + δpi denote 
the frequency of Qi in line 2. 

•  Heterosis depends on dominance:  d = 0  = no inbreeding depression and no  
Heterosis. As with inbreeding depression, directional dominance is required for heterosis. 

• H is proportional to the square of the difference in allele frequencies  
between populations.  H is greatest when alleles are fixed in one population and 
lost in the other (so that |δpi| = 1).  H = 0  if  δp = 0. 

• H is specific to each particular cross. H  must be determined empirically, 
since we do not know the relevant loci nor their gene frequencies.  

The expected amount of heterosis becomes!

H F 1 = 
n X 

i = 1 
( ± p i ) 2 d i 

Heterosis declines in the F2 

In the F1, all offspring are heterozygotes.  In the F2,  
random mating has occurred, reducing the frequency  
of heterozygotes.!

As a result, there is a reduction of the amount of  
heterosis  in the F2 relative to the F1, !

Since random mating occurs in the F2 and subsequent 
generations, the level of heterosis stays at the F2 level.!
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Agricultural importance of heterosis 

Crop % planted 
as hybrids 

% yield 
advantage 

Annual 
added 

yield:  % 

Annual 
added 

yield: tons 

Annual land 
savings 

Maize 65 15 10 55 x 106   13 x 106 ha 

Sorghum 48 40 19 13 x 106   9 x 106 ha 

Sunflower 60 50 30 7 x 106   6 x 106 ha 

Rice 12 30 4 15 x 106  6 x 106 ha 

Crosses often show   high-parent heterosis, wherein the  
F1 not only beats the average of the two parents  
(mid-parent  heterosis), it exceeds the best parent. 

20 

Hybrid Corn in the US 

Shull (1908) suggested objective of corn breeders  
should be to find and maintain the best parental 
lines for crosses 

Initial problem:  early inbred lines had low seed set 

Solution (Jones 1918):  use a hybrid line as the seed  
parent, as it should show heterosis for seed set 

1930’s - 1960’s:  most corn produced by double crosses 

Since 1970’s most from single crosses 
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A Cautionary Tale 

1970-1971 the great  Southern Corn Leaf Blight  almost
 destroyed the whole US corn crop 

Much larger (in terms of food energy) than the great potato
 blight of the 1840’s 

Cause:  Corn can self-fertilize, so to make hybrids either have to
 manually detassle the pollen structures or use genetic tricks that
 cause male sterility. 

Almost 85% of US corn in 1970 had Texas cytoplasm Tcms, a
 mtDNA encoded male sterility gene 

Tcms turned out to be hyper-sensitive to the fungus 
Helminthosporium maydis.  Resulted in over a billion dollars 
of crop loss 

Crossing Schemes to Reduce the 
Loss of Heterosis:  Synthetics 

Take n lines and construct an F1 population by 
making all pairwise crosses 
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Synthetics 

•  Major trade-off 
– As more lines are added, the F2 loss of 

heterosis declines 
– However, as more lines are added, the 

mean of the F1 also declines, as less elite 
lines are used 

– Bottom line:  For some value of n,  F1 - H/n 
reaches a maximum value and then starts 
to decline with n  

24 

Types of crosses 
•  The F1 from a cross of lines A x B (typically 

inbreds) is called a single cross 
•  A three-way cross (also called a modified 

single cross) refers to the offspring of an A 
individual crossed to the F1 offspring of B x 
C. 
–  Denoted A x (B x C) 

•  A double (or four-way) cross is (A x B) x (C x 
D), the offspring from crossing an A x B F1 
with a C x D F1. 
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Predicting cross performance 

•  While single cross (offspring of A x B) hard to 
predict, three- and four-way crosses can be 
predicted if we know the means for single 
crosses involving these parents 

•  The three-way cross mean is the average mean 
of the two single crosses: 
–  mean(A x {B x C}) = [mean(A x B) + mean(A x C)]/2  

•  The mean of a double (or four-way) cross is the 
average of all the single crosses, 
–  mean({A x B} x {C x D}) = [mean(AxC) + mean(AxD) + 

mean(BxC) + mean(BxD)]/4 

Individual vs. Maternal Heterosis 
•   Individual heterosis   

–   enhanced performance in a hybrid individual 
•   Maternal heterosis   

–  enhanced maternal performance (such as
 increased litter size and higher survival rates of
 offspring) 

–  Use of crossbred dams 
–  Maternal heterosis is often comparable, and can

 be greater than, individual heterosis 



Individual vs. Maternal Heterosis in Sheep traits 

Trait Individual H Maternal H total 

 Birth weight 3.2% 5.1% 8.3% 

Weaning weight 5.0% 6.3% 11.3% 

Birth-weaning 
survival  

9.8% 2.7% 12.5% 

Lambs reared 
per ewe 

15.2% 14.7% 29.9% 

Total weight 
lambs/ewe 

17.8% 18.0% 35.8% 

Prolificacy 2.5% 3.2% 5.7% 

Estimating the Amount of 
Heterosis in Maternal Effects 

z A = z + g 
I 
A + g 

M 
A + g 

M 0 

A 

Contributions to mean value of line A 

Individual
 genetic

 effect (BV) 

Maternal
 genetic

 effect (BV) 

Grandmaternal
 genetic effect (BV) 



z A B = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
B + g 

M 0 

B + h 
I 
A B 

Consider the offspring of an A sire and a B dam 

Individual genetic
 value is the

 average of both
 parental lines 

Maternal and
 grandmaternal

 effects 
from the B mothers 

Contribution
 from (individual) 

heterosis 

z B A = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
A + g 

M 0 
A + h 

I 
A B 

Now consider the offspring of an B sire and a A dam 

Maternal and grandmaternal
 genetic effects for B line 

z A B = z + 
g 

I 
A + g 

I 
B 

2 
+ g 

M 
B + g 

M 0 

B + h 
I 
A B 

Difference between the two line means estimates 
difference in maternal + grandmaternal effects 
in A vs. B 



z A B + z B A 

2 

z A A + z B B 

2 
= h 

I 
A B 

Hence, an estimate of individual heteroic effects is 

z C A B = 2 g 
I 
C + g I A + g I B 

4 + h 
I 
C A + h I C B 

2 + g 
M 
A + g M 

B 
2 + h M 

A B + g M 0 
B + r 

I 
a b 
2 

The mean of offspring from a sire in line C crossed to 
a dam from a A X B cross (B = granddam, AB = dam) 

Average individual genetic value 
(average of the line BV’s) 

New individual
 heterosis of C x AB

 cross 

Genetic maternal effect  
(average of maternal BV for both

 lines) 
Grandmaternal
 genetic effect 

Maternal genetic
 heteroic effect 

“Recombinational loss” --- 
 decay of the F1 heterosis

 in the F2   

z C A B = 
z C A + z C B 

2 
= h 

M 
A B + 

r I a b 
2 

One estimate (confounded) of maternal heterosis 
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Lecture	  6:	  Correlated	  Characters

Steve	  Chenoweth	  lecture	  notes
Introduction	  to	  Quantitative

Genetics
SISG,	  Brisbane
6	  – 7	  Feb	  2017

Background	  Reading:	  L&W	  chapter	  21
Additional	  Reading:	  W&L	  Chapter	  34	  

(Correlated	  response	  sections)

Many	  quantitative	  traits	  are	  correlated

a
b

c

d

snout

caudal fin

(tail)

caudal

peduncle

dorsal fin

pectoral fin

anal fin

pelvic fins
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Fabian, D. & Flatt, T. (2012) Life	  History	  Evolution. Nature	  Education	  Knowledge 3(10):24

Life	  History	  Evolution

Many	  quantitative	  traits	  are	  correlated

snout

caudal fin

(tail)

caudal

peduncle

dorsal fin

pectoral fin

anal fin

pelvic fins
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Why	  do	  we	  care	  about	  trait	  covariance	  in	  
quantitative	  genetics?

• Describing	  the	  genetic	  basis	  of	  traits
• how	  quantitative	  genetic	  variance	  is	  
maintained
• how	  quantitative	  traits	  respond	  to	  
artificial	  (and	  natural)	  selection	  evolve

d
e
p
th

length

length

depth

P =	  E +	  G

What	  covariances	  do	  we	  care	  about	  in	  quantitative	  
genetics	  and	  evolution?

covP =	  covE +	  covG

Variance trait	  1 Covariance	  
between traits

Covariance	  
between traits

Variance	  trait	  2

P =	  variance	  covariance	  
matrix	  describing	  

phenotypic	  variation

vP =	  vE +	  vG
P	  =	  E	  +	  G
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P – the	  phenotypic	  variance-‐covariance	  matrix
• Estimated	  directly	  from	  the	  observed	  phenotype	  
recorded	  for	  each	  individual

• Underlies	  the	  estimation	  of	  partial	  regression	  
coefficients of	  selection:

! = !!!s!

s	  =	  selection	  differential,	  
=	  mean	  of	  selected	  individuals	  – population	  mean

More	  on	  this	  in	  the	  next	  lecture…

P =	  E +	  G

Trait	  1

Tr
ai
t	  2

Tr
ai
t	  2

Trait	  1

Tr
ai
t	  2

Trait	  1

What	  covariance	  matrices	  do	  we	  care	  about	  in	  
quantitative	  genetics	  and	  evolution?

covP =	   covE + covG

= +



1/17/17

5

Environmental	  effects
• Variation	  among	  individuals	  in	  their	  
environmental	  experience	  can	  generate	  
phenotypic	  differences,	  and	  affect	  multiple	  
traits
– E.g.,	  nutrition	  environment

• Typically	  difficult	  to	  know and	  measure the	  
environmental	  variation

E	  = P	  – G
• Partition	  out	  environmental	  causes	  to	  focus	  on	  
genetic

P =	  E +	  G

Trait	  1

Tr
ai
t	  2

Tr
ai
t	  2

Trait	  1

Tr
ai
t	  2

Trait	  1

What	  covariance	  matrices	  do	  we	  care	  about	  in	  
quantitative	  genetics	  and	  evolution?

covP =	   covE + covG

= +
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1. Linkage -‐alleles	  at	  
different	  loci	  found	  
together	  in	  same	  
genotype	  more	  often	  
than	  expected	  by	  
chance
• Physical
• Selection
• Non	  random	  mating

Cause	  of	  genetic	  covariance

Gamete	  production

2. Pleiotropy -‐same	  
genes	  affecting	  both	  
traits

• Pleiotropy	  is	  
considered	  primary	  
cause	  of	  genetic	  
covariance
– more	  persistent	  than	  
linkage,	  which	  can	  
readily	  be	  broken	  
down	  by	  
recombination

Cause	  of	  genetic	  covariance

length

depth

caudal
depth

depth

length

tail	  (caudal)	  
depth

VA

covA
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Genotype  phenotype  maps

g1 g2 g4g3 g7g6g5 g8 g9

Fat Mass Growth

Modular

Fat  content
Body  Mass
Growth  rate

Genotype  phenotype  maps

Pleiotropic

Fat  content
Body  Mass
Growth  rate

g1 g2 g4g3 g7g6g5 g8 g9

Fat Mass Growth
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Genotype  phenotype  maps

Antagonistic  Pleiotropy

Fat  content
Body  Mass
Growth  rate

g1 g2 g4g3 g7g6g5

Fat Mass Growth

+ + + -

From	  an	  allele-‐centric	  viewpoint
Recall	  that	  with	  no	  dominance,	  for	  a	  single	  locus	  that:	  

VA	  =	  2pqa2	  

across	  all	  variable	  trait-‐affecting	  loci	  we	  get:
VA	  =	  Σ2pqa2

For	  pairs	  of	  traits:

CovA(x,y)	  =	  2pqaxay

and	  genome-‐wide	  we	  get:

CovA(x,y)	  =	  Σ2pqaxay

Just	  like	  genetic	  variances,	  genetic	  covariances can	  also	  change	  when	  
allele	  frequencies	  change.	  
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Covariance	  or	  Correlation?

• Covariances are	  on	  a	  scale	  of	  trait	  products,	  like	  a	  
variance	  is	  on	  a	  scale	  of	  trait	  values	  squared.	  
– Hard	  to	  think	  about	  and	  compare

• Difficult	  to	  compare	  them	  directly	  so	  we	  often	  think	  
about	  them	  in	  terms	  of	  correlations:
– Correlations	  more	  intuitive	  and	  easier	  to	  compare

 
)var()var(

),cov(
yx

yx
´

rA =

Interpreting	  Genetic	  Correlations

• Genetic	  correlations	  are	  bound	  between	  –1	  and	  1

• The	  sign indicates	  only	  the	  net directionality of	  pleiotropic	  
effects.	  Whether	  standing	  variation	  affects	  trait	  1	  and	  trait	  2	  in	  
similar	  ways.

• The	  magnitude	  indicates	  how	  much	  genetic	  variation	  is	  
shared	  between	  traits.
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Interpreting	  Genetic	  Correlations

• rA >	  0	  ?	  
Genetic	  variance	  in	  both	  traits	  controlled	  by	  some	  genes	  which	  are	  the	  same.	  
These	  variable	  loci	  cause	  an	  increase	  in	  trait	  1	  and	  an	  increase	  in	  trait	  2.

• rA =	  1	  ?
Perfectly	  shared	  control,	  essentially	  the	  “same	  trait”	  from	  a	  genetic	  perspective

• rA <	  0	  ?
Partially	  shared	  genetic	  basis,	  BUT	  genes	  which	  increase	  trait	  1	  lead	  to	  a	  
decrease	  in	  trait	  2	  	  

• rA =	  0	  ?
No	  genes	  which	  exhibit	  genetic	  variance	  affect	  trait	  1	  and	  trait	  2	  together.	  
BUT	  remember	  it’s	  the	  net	  effect	  cross	  loci,	  there	  may	  indeed	  be	  pleiotropy	  
but	  opposing	  effects	  cancel	  each	  other	  out,

How	  do	  we	  estimate	  genetic	  
correlations?

• Method	  1:	  Artificial	  selection	  experiments
– Correlated	  responses	  to	  direct	  selection
– Genetic	  covariance	  among	  traits	  affects	  the	  evolution	  
of	  trait	  means

• Method	  2: Using	  the	  same	  statistical	  machinery	  
as	  to	  estimate	  VA,	  we	  can	  estimate	  covA
– Phenotypic	  data	  on	  >1	  trait	  +	  pedigree
– Breeding	  values:

• VA =	  variance	  in	  breeding	  values
• covA =	  covariance	  in	  breeding	  values	  of	  two	  traits
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Method	  1:	  Selection	  of vs.	  for

Sober,	  E.	  1984.	  The	  Nature	  of	  Selection.

Selection	  for small	  
balls	  results	  in	  
selection	  of small,	  
blue balls

There	  is	  a	  correlated	  
response	  in	  colour to	  
selection	  for	  size	  

Nagai	  et	  al	  1978	  selected	  for	  
nursing	  ability	  and	  body	  weight	  in	  
mice

Nagai	  et	  al.	  1978,	  Genetics,	  88,761-‐780.

…….	  	  	  Nursing	  ability
-‐-‐-‐-‐-‐-‐ Weight	  (42	  days)
Solid:	  index	  of	  both

Direct

Indirect

Direct

Indirect
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Rn

CRnr2
A(nursing,weight) = 

Where:

R   =  response to selection 
CR = correlated response to selection 
CRY = iX hX hY rA σPY

Where 
iX = selection intensity 
h2    = realised heritability (R = Sh2 thus, h2 = R/S) 
σPY = phenotypic variance in Trait Y

Empirically CR can be estimated from the selection response in the indirectly selected trait

Rw

CRw

See	  Also	  Falconer	  &	  Mackay	  1996,	  Chapter	  19

Nagai	  et	  al.	  1978,	  Genetics,	  88,761-‐780.

Rn

Trait	  selected Nursing Weight

Response	  Nursing 0.080 0.134
Response	  weight	   0.197 0.680

CRnrA(nursing,weight) = Rw

CRw

1/2

=	  [(0.134/0.080)	  x	  (0.197/0.680)] ½

=	  0.485 ½	  

=	  0.70	  
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Abstract.-Trade-offs between flower size and number seem likely to influence the evolution of floral display and are 
an important assumption of several theoretical models. We assessed floral trade-offs by imposing two generations of 
selection on flower size and number in a greenhouse population of bee-pollinated Eichhornia paniculata. We established 
a control line and two replicate selection lines of 100 plants each for large flowers (S+), small flowers (S-), and 
many flowers per inflorescence (N+). We compared realized heritabilities and genetic correlations with estimates 
based on restricted-maximum-likelihood (REML) analysis of pedigrees. Responses to selection confirmed REML 
heritability estimates (flower size, h2 = 0.48; daily flower number, h2 = 0.10; total flower number, h2 = 0.23). 
Differences in nectar, pollen, and ovule production between S+ and S - lines supported an overall divergence in 
investment per flower. Both realized and REML estimates of the genetic correlation between daily and total flower 
number were r = 1.0. However, correlated responses to selection were inconsistent in their support of a trade-off. In 
both S- lines, correlated increases in flower number indicated a genetic correlation of r = -0.6 between flower size 
and number. In contrast, correlated responses in N+ and S+ lines were not significant, although flower size decreased 
in one N+ line. In addition, REML estimates of genetic correlations between flower size and number were positive, 
and did not differ from zero when variation in leaf area and age at first flowering were taken into account. These 
results likely reflect the combined effects of variation in genes controlling the resources available for flowering and 
genes with opposing effects on flower size and number. Our results suggest that the short-term evolution of floral 
display is not necessarily constrained by trade-offs between flower size and number, as is often assumed. 
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Flower size and number both influence the attractiveness 
of animal-pollinated plants (reviewed by de Jong and Klink- 
hamer 1994; Conner and Rush 1996; Harder and Barrett 
1996). These two components of floral display can vary wide- 
ly among populations, species and higher taxa. This obser- 
vation, along with the recognition that finite floral resources 
cannot simultaneously contribute to increased flower size and 
number, has led to the expectation that trade-offs between 
these traits profoundly influence the evolution of floral dis- 
play. Accordingly, theoretical models considering the evo- 
lution of floral display assume inverse relations between flow- 
er size and number (Cohen and Dukas 1990; Morgan 1993; 
Sakai 1995; Schoen and Ashman 1995; Harder and Barrett 
1996) or between inflorescence size and number (Schoen and 
Dubuc 1990; Fishbein and Venable 1996; Venable 1996). In 
these models, the benefits of producing multiple flowers for 
pollinator attraction are countered both by resource costs and 
the potential transfer of self pollen between open flowers. 
The latter increases selling between flowers (geitonogamy) 
and reduces pollen export (pollen discounting). Both mating 
costs are supported by convincing empirical evidence (de 
Jong et al. 1993; Harder and Barrett 1995; Snow et al. 1996). 

Despite its apparent importance for floral evolution, few 
empirical studies have revealed a trade-off between flower 
size and number. Some species with unisexual flowers (di- 
cliny) have one sex that produces smaller, more numerous 
flowers than the other (reviewed by Delph 1996). However, 
differences in allocation to flowering between the sexes may 

I Present address: Department of Botany, University of Wash- 
ington, Box 355325, Seattle, Washington 98195-5325. 

obscure trade-offs in diclinous species. Plants functioning as 
males often produce both more and larger flowers than plants 
functioning as females (Delph 1996), possibly because al- 
location to pollinator attraction is higher in males (cf. Bate- 
man 1948; Charnov 1982). The influence of trade-offs be- 
tween flower size and number on floral evolution is of par- 
ticular interest in species that are monoecious or produce 
exclusively hermaphroditic flowers because these species are 
also subject to the mating costs of producing multiple flowers. 
Few studies have examined flower size and number within 
sexes of dimorphic species or in species with hermaphroditic 
flowers. Five of the nine species investigated did not show 
clear evidence of a trade-off between flower size and number 
(Table 1). Moreover, relevant genetic correlations have only 
been calculated for one species with hermaphroditic flowers. 
Andersson (1996) reported positive genetic and phenotypic 
correlations between flower number and the size of individual 
floral parts (Table 1). Thus, no study has demonstrated ge- 
netically based trade-offs between flower size and number in 
a hermaphroditic species. 

If trade-offs between flower size and number occur gen- 
erally, the frequent observation of positive or nonsignificant 
genetic correlations between floral traits (Table 1) implies 
that genes with positive or independent effects on each trait 
may often obscure trade-offs. Certainly, genes that increase 
resource acquisition should increase both flower size and 
number (van Noordwijk and de Jong 1986; Houle 1991). In 
addition, genes with positive pleiotropic effects on both traits 
(perhaps genes controlling allocation to flowering) may mask 
negative pleiotropy (genes controlling allocation among flo- 
ral traits), unless variation in allocation to flower size versus 
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an important assumption of several theoretical models. We assessed floral trade-offs by imposing two generations of 
selection on flower size and number in a greenhouse population of bee-pollinated Eichhornia paniculata. We established 
a control line and two replicate selection lines of 100 plants each for large flowers (S+), small flowers (S-), and 
many flowers per inflorescence (N+). We compared realized heritabilities and genetic correlations with estimates 
based on restricted-maximum-likelihood (REML) analysis of pedigrees. Responses to selection confirmed REML 
heritability estimates (flower size, h2 = 0.48; daily flower number, h2 = 0.10; total flower number, h2 = 0.23). 
Differences in nectar, pollen, and ovule production between S+ and S - lines supported an overall divergence in 
investment per flower. Both realized and REML estimates of the genetic correlation between daily and total flower 
number were r = 1.0. However, correlated responses to selection were inconsistent in their support of a trade-off. In 
both S- lines, correlated increases in flower number indicated a genetic correlation of r = -0.6 between flower size 
and number. In contrast, correlated responses in N+ and S+ lines were not significant, although flower size decreased 
in one N+ line. In addition, REML estimates of genetic correlations between flower size and number were positive, 
and did not differ from zero when variation in leaf area and age at first flowering were taken into account. These 
results likely reflect the combined effects of variation in genes controlling the resources available for flowering and 
genes with opposing effects on flower size and number. Our results suggest that the short-term evolution of floral 
display is not necessarily constrained by trade-offs between flower size and number, as is often assumed. 
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Flower size and number both influence the attractiveness 
of animal-pollinated plants (reviewed by de Jong and Klink- 
hamer 1994; Conner and Rush 1996; Harder and Barrett 
1996). These two components of floral display can vary wide- 
ly among populations, species and higher taxa. This obser- 
vation, along with the recognition that finite floral resources 
cannot simultaneously contribute to increased flower size and 
number, has led to the expectation that trade-offs between 
these traits profoundly influence the evolution of floral dis- 
play. Accordingly, theoretical models considering the evo- 
lution of floral display assume inverse relations between flow- 
er size and number (Cohen and Dukas 1990; Morgan 1993; 
Sakai 1995; Schoen and Ashman 1995; Harder and Barrett 
1996) or between inflorescence size and number (Schoen and 
Dubuc 1990; Fishbein and Venable 1996; Venable 1996). In 
these models, the benefits of producing multiple flowers for 
pollinator attraction are countered both by resource costs and 
the potential transfer of self pollen between open flowers. 
The latter increases selling between flowers (geitonogamy) 
and reduces pollen export (pollen discounting). Both mating 
costs are supported by convincing empirical evidence (de 
Jong et al. 1993; Harder and Barrett 1995; Snow et al. 1996). 

Despite its apparent importance for floral evolution, few 
empirical studies have revealed a trade-off between flower 
size and number. Some species with unisexual flowers (di- 
cliny) have one sex that produces smaller, more numerous 
flowers than the other (reviewed by Delph 1996). However, 
differences in allocation to flowering between the sexes may 

I Present address: Department of Botany, University of Wash- 
ington, Box 355325, Seattle, Washington 98195-5325. 

obscure trade-offs in diclinous species. Plants functioning as 
males often produce both more and larger flowers than plants 
functioning as females (Delph 1996), possibly because al- 
location to pollinator attraction is higher in males (cf. Bate- 
man 1948; Charnov 1982). The influence of trade-offs be- 
tween flower size and number on floral evolution is of par- 
ticular interest in species that are monoecious or produce 
exclusively hermaphroditic flowers because these species are 
also subject to the mating costs of producing multiple flowers. 
Few studies have examined flower size and number within 
sexes of dimorphic species or in species with hermaphroditic 
flowers. Five of the nine species investigated did not show 
clear evidence of a trade-off between flower size and number 
(Table 1). Moreover, relevant genetic correlations have only 
been calculated for one species with hermaphroditic flowers. 
Andersson (1996) reported positive genetic and phenotypic 
correlations between flower number and the size of individual 
floral parts (Table 1). Thus, no study has demonstrated ge- 
netically based trade-offs between flower size and number in 
a hermaphroditic species. 

If trade-offs between flower size and number occur gen- 
erally, the frequent observation of positive or nonsignificant 
genetic correlations between floral traits (Table 1) implies 
that genes with positive or independent effects on each trait 
may often obscure trade-offs. Certainly, genes that increase 
resource acquisition should increase both flower size and 
number (van Noordwijk and de Jong 1986; Houle 1991). In 
addition, genes with positive pleiotropic effects on both traits 
(perhaps genes controlling allocation to flowering) may mask 
negative pleiotropy (genes controlling allocation among flo- 
ral traits), unless variation in allocation to flower size versus 
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Hypothesis:	  a	  plant	  has	  finite	  resources	  that	  can	  be	  allocated	  to	  
either	  larger or	  more	  flowers	  to	  attract	  pollinators	  &	  increase	  
reproductive	  success.	  This	  will	  result	  in	  a	  negative	  correlation	  
between	  flower	  number	  and	  size.

Selection	  lines	  also	  had	  more	  flowers.
Realised genetic	  correlation:	  r	  =	  -‐0.6

Fl
ow

er
	  si
ze
	  (c
m

2 )

Apply	  selection	  to	  decrease	  
flower	  size	  for	  2	  generations

Fl
ow

er
	  n
um

be
r

• Estimated	  h2 from	  relatives	  
=	  0.48

• realised h2 from	  selection	  
response=	  0.45

Flowers	  also	  had:
more	  nectar
more	  pollen
bigger	  ovules

Water	  
hyacinth

 
Figure 1. Paternal half-sib breeding design for the quantitative genetic analysis zebrafish 
body size and shape.  
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Method	  2:	  Estimation	  in	  a	  breeding	  design

a
b

c

d

Paternal	  full-‐sib	  half-‐sib	  breeding	  design	  for	  the	  analysis	  of	  zebrafish	  body	  size	  and	  shape
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Method	  2:	  Estimation	  in	  a	  breeding	  design

To	  estimate	  genetic	  variance	  we	  use	  the	  following	  random	  effects	  general	  linear	  model	  
to	  describe	  our	  breeding	  design,	  which	  is	  actually	  a	  nested	  ANOVA:

zijk = μ +	  si +	  dij +	  eijk

where:	  

zijk is	  the	  trait	  value	  of	  the	  kth	  offspring	  of	  the	  jth dam	  which	  was	  mated	  to	  the	  ith sire,	  
μ is	  the	  population	  mean,
si is	  the	  effect	  due	  to	  the	  ith sire,
dij is	  the	  effect	  due	  to	  the	  the	  jth dam	  mated	  to	  the	  ith sire,	  and
eijk is	  the	  unexplained	  residual.	  

Sire,	  dam	  within	  sire are	  all	  RANDOM	  EFFECTS	  in	  this	  model.

Observational	  model	  

Linking	  observational	  components	  to	  causal	  genetic	  
components	  of	  (co)variance

For	  a	  single	  trait	  the	  total	  phenotypic	  variance	  is	  simply	  given	  by:

σ2z =	  σ2s	  +	  σ2d +	  σ2e	  

As	  Bruce	  showed	  you,	  we	  now	  know	  what’s	  inside	  these	  variance	  components	  in	  terms	  
of	  genetic	  effects:

Observational	  
Component

Variance	  component Causal	  Genetic	  Components

Sires σ2s ¼VA

Dams	  within	  Sires	   σ2d ¼VA	  +¼VD	  +	  VEc

Progeny	   σ2e ½VA	  +¾VD	  +	  VEw

Total σ2
s+ σ2

d+ σ2
e =	  σP VA	  + VD	  +	  VEc +VEw

h2 =	  VA/VP =	  
4	  σ2s	  

σ2s+ σ2d+ σ2e

We	  can	  now	  extend	  this	  to	  deal	  with	  covarianes
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Linking	  observational	  components	  to	  causal	  genetic	  
components	  of	  (co)variance

Observational	  
Component

Variance	  
component

Causal	  Genetic	  
Components

Covariance	  
components

Causal	  Genetic
Components

Sires σ2s ¼VA covSxy ¼covAxy

Dams	  within	  
Sires	  

σ2d ¼VA	  +¼VD	  +	  VEc

Progeny	   σ2e ½VA	  +¾VD	  +	  VEw

Total σ2s+ σ2d+ σ2e =	  σP VA	  + VD	  +	  VEc +VEw
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Or	  simply

Bivariate	  linear	  model:

zijk = μ +	  si +	  dij +	  eijk

Linking	  observational	  components	  to	  causal	  genetic	  
components	  of	  (co)variance

d
e
p
th

length

length

depth

Bivariate	  linear	  model:

zijk = μ +	  si +	  dij +	  eijk

Depth Length
Depth 0.45 0.30
Length 0.30 0.65

X	  4

rAxy !	  
#$%&'(

)&'	  ×	  )&(
� 	  

rAxy = 0.30 /(0.45x0.65)1/2 

rAxy = 0.55
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Linking	  observational	  components	  to	  causal	  genetic	  
components	  of	  (co)variance

d
e
p
th

length

length

depth

Bivariate	  linear	  model:

zijk = μ +	  si +	  dij +	  eijk

Depth Length
Depth 0.45 0.30
Length 0.30 0.65

X	  4

rAxy !	  
#$%&'(

)&'	  ×	  )&(
� 	  

rAxy = 0.30 /(0.45 x 0.65)1/2 

rAxy = 0.55

The	  genetic	  variance-‐covariance	  matrix,	  G

FAQs
“My	  estimate	  of	  the	  genetic	  correlation	  is	  greater	  than	  
1!	  Isn’t	  supposed	  to	  be	  bounded	  between	  -‐1	  and	  1?“	  

“Okay	  then	  so	  why	  can’t	  I	  just	  correlate	  sire	  means,	  it	  
would	  be	  a	  product	  moment	  correlation	  and	  won’t	  go	  
out	  of	  bounds…”

“I	  just	  about	  killed	  myself	  (my	  student)	  breeding	  
thousands	  of	  animals	  but	  my	  genetic	  correlation	  has	  a	  
huge	  standard	  error”	  
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Effect	  of	  selection	  on	  genetic	  correlations

• rAxy is	  the	  NET	  effect	  of	  many	  loci	  

Locus Trait	  X Trait	  Y

1 + +

2 + -‐

3 -‐ +

4 -‐ -‐

• Positive	  selection	  on	  both	  traits	  will	  fix	  alleles	  at	  locus	  1	  and	  4	  but	  those	  at	  2	  
and	  3	  cannot	  be	  fixed.	  

• What	  happens	  to	  the	  genetic	  correlation?

Are	  traits	  typically	  genetically	  
correlated?

• YES,	  “Artificial	  selection	  applied	  to	  one	  
character	  almost	  always	  leads	  to	  changes	  in	  
others”	  BOHREN ET AL.	  1966

• Reported	  for	  may	  different	  types	  of	  traits	  in	  a	  
range	  of	  taxa
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FIG. 1. Distributions of the genetic correlation for the combinations M x M and L x L. Upper panel shows distribution for signed 
values, the lower panel the distributions of the absolute values. 

likely to be negative than those between morphological traits 
(Fig. 1, Table 2). Statistical difference between combinations 
was tested for the entire data set using the x2 goodness of fit, 
giving x2 = 17.9, df = 1, P < 0.0001. For the species data set, 
the data were first arcsine square-root transformed and then 
tested using ANOVA, giving F1,32 = 3.62, P = 0.033, and also 
the Mann-Whitney test, giving x2 = 4.33, df = 1, P = 0.018 
(all tests one tailed). With respect to the proportion of negative 
values the overall ranking for the four combinations is L x L 
> L X M > B X B > M X M (Table 2). 

The Magnitude of the Genetic Correlation in Relation to 
Trait Category 

Both the sign of the genetic correlation and its magnitude 
are important for the evolution of traits. The latter shows re- 

markable uniformity among trait combinations (Table 3). 
There is no significant difference between either the means or 
the medians of the two combinations L X L and M X M 
whether the entire data set or the species set is considered (P 
> 0.05, t-test and Mann-Whitney test). Comparison of all four 
combinations does indicate significant heterogeneity (ANO- 
VA, F3 1699 = 6.92, P < 0.0001; Kruskal-Wallis, X2 = 11.7, 
df = 3, P = 0.009), but this is entirely due to the combination 
B X B (the Tukey HSD test gives two significant comparisons: 
B x B versus L X L, P < 0.0001, and B X B versus M X 
L, P = 0.02). These differences are not observed in the species 
data set. Since the number of species contributing to the com- 
bination B x B is very small, the significantly larger absolute 
genetic correlation for this combination, obtained using the 
entire data set, must be viewed with caution. 
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Extending	  genetic	  correlations

• Thus	  far	  our	  focus	  has	  been	  on	  traits	  expressed	  by	  the	  
same	  individual	  at	  a	  specific	  point	  in	  time.	  

• Genetic	  correlations	  routinely	  measured	  between:

• Growth	  stages	  

• Sexes	  

• Environments



1/17/17

19

– Falconer	  (1952)	  had	  the	  idea	  to	  treat	  the	  same	  
trait,	  measured	  in	  two	  different	  environments,	  as	  
two	  different	  traits,	  and	  estimate	  the	  genetic	  
correlation	  between	  these	  two	  “traits”

– If	  there	  is	  no	  GxE,	  rG =	  1.0
• Alleles	  (genotypes)	  have	  the	  same	  effect	  on	  the	  trait	  

(relative	  to	  the	  population	  mean)	  in	  each	  environment	  
– parallel	  reaction	  norms

• Selection	  in	  one	  environment	  will	  cause	  the	  trait	  to	  
change	  value	  in	  other	  environments	  too

What	  is	  the	  genetic	  correlation	  among	  environments?

Cross	  – Environment	  genetic	  correlations

Cross	  environment	  G	  

Body size	  in	  
High

Body size	  in	  
Environment	  
B

Body size	  in	  
Environment	  
A

Variance	  in	  
size	  within	  
Env A

Covariance
between	  size	  
in	  Env A	  &	  B

Body size	  in	  
Environment	  
B

Covariance
between	  size	  
in	  Env A	  &	  B

Variance	  in	  
size	  within	  
Env B
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Environment

(diet)

Low protein High protein

S
iz

e

Selection	  for	  bigger	  fish	  on	  
high	  protein	  diet	  will	  cause	  
correlated	  evolution	  of	  
larger	  size	  when	  the	  
population	  was	  fed	  on	  a	  
low	  protein	  diet

No	  GxE

rA =	  1

Environment

(diet)

Low protein High protein

S
iz

e

GxE

0	  <	  rA <	  1
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Summarising relationships	  between	  traits

Ax

Px

rA

Ex

rP

rE

Ay

Py

Ey

rA =	  correlation	  of	  breeding	  values	  for	  traits	  x	  and	  y.	  
Due	  to	  pleiotropy	  and	  linkage	  disequilibrium.

rE =	  correlation	  of	  environmental	  deviations for	  traits	  x	  and	  y.	  
Due	  to	  exposure	  of	  two	  traits	  to	  the	  same	  environment.
Contains	  nonadditive genetic	  effects.
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Lecture	  7:	  An	  Introduction	  to	  
Evolutionary	  Quantitative	  Genetics

Steve	  Chenoweth	  lecture	  notes
Introduction	  to	  Quantitative

Genetics
SISG,	  Brisbane
6	  – 7	  Feb	  2017

Background	  Reading:	  W&L	  v1.	  chapter	  28,	  29,
W&L	  v2:	  Chapter	  34

Additional	  Reading:	  W&L	  v1.	  Chapter	  27

1.Measuring	  natural	  selection	  on	  multiple	  traits

2.Predicting	  multi-‐trait	  responses	  to	  selection

3.Genetic	  constraints:	  when	  natural	  selection	  ≠	  adaptation

4.What	  processes	  maintain	  genetic	  variance	  in	  complex	  traits?	  	  

Outline
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Fitness

Genotype

Phenotype

1. Fitness  – Phenotype  Map
- selection  gradients  /surfaces/differentials

Two  Maps  in  Evolutionary  Quantitative  Genetics

2.  Genotype-Phenotype  Map

Indirect  
- Genetic  variance,  heritability
- heritability/genetic  correlations  (G-matrix)  

Directly  
- QTL  mapping
- Genome  Wide  Association  studies

Quantitative  Genetic  Tools

1.	  Measuring	  Natural	  Selection	  on	  Quantitative	  Traits	  
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Body  size

Fitness Fitness

Body  size

Covariance  between  trait  and  fitness

What  is  fitness?

Absolute  fitness  
Number  of  descendants  an  individual  leaves  at  the  start  of  
the  next  generation

Note:  no  info  on  the  rate  of  change  under  selection

Relative  fitness:  of  a  specific  phenotype/  genotype  is  its  
fitness  relative  to  the  weighted  average  fitness  of  all  other  
phenotypes/  genotypes  within  the  population
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Example  (phenotypic):  body  size  and  fitness  in  cane  toads  

adapted  from  Walsh,  2007

male size #mates fecundity absolute relative
#  eggs/mating fitness fitness

1 145 1 25820 25820 1.164027843
2 128 1 22670 22670 1.022018249
3 148 0 0 0 0
4 138 2 7230 14460 0.651891658
5 141 3 15986 47958 2.16206225

Absolute  fitness:

Male  4  =  2  x  7,230  =  14460

Relative  fitness

absolute  fitness(male  4)  /  mean  absolute  fitness

=  14,460  / [  (25,820  +  22,670  +  0  +  14,460  +  47,958)/5]
=  14460  /  22182
=  0.65

The  quantitative  genetic  view  of  selection

• Phenotypic Selection: Consistent  difference  in  fitness  among  
phenotypes,  acting  within  a  single  generation.  

• Response  to  selection:  Change  in  population  mean  phenotype  from  
one  generation  to  the  next.

• Thus  selection  acts  on  phenotypes but  its  effect  on  evolution  
(change  in  allele  frequencies)  depends  on  the  mapping  of  phenotype  
to  genotype.

NATURAL  
SELECTION

Phenotypic  Selection Genetic  response

Selection  gradient   genetic  variation
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The	  three	  forms	  of	  phenotypic	  selection	  

Kingsolver  and  Pfennig,  2007
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Combinations  of  forms  may  exist

A
B

C

W

Z

Endler,  1986

Correlational  selection

Beak  length

Beak  curvature

A

B

C

Endler,  1986
Can  lead  to  the  evolution  of  highly  correlated  traits
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Correlational  selection

fitness

Trait 2Trait 1

How  can  we  compare  natural  selection  across  
traits,  species  and  populations?
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-‐ Landmark	  paper	  in	  evolutionary	  genetics	  (2930	  citations)
-‐ Uses	  multiple	  linear	  regression	  to	  estimate	  “selection	  gradients”
-‐ Easy	  to	  collect	  data	  and	  compare	  selection	  
-‐ Use	  to	  predict	  evolution

Russ  Lande

Steve  Arnold

Fitness	  is	  a	  surface:	  w	  =	  f(z)	  +	  error

What	  is	  the	  form	  of	  f(z)	  ?	  Linear,	  flat,	  bumpy

Schluter  2000
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DDiirreeccttiioonnaall	  	  sseelleeccttiioonn	  	  ggrraaddiieennttss

re
la
tiv
e  
fit
ne
ss
  (w
)

trait	  value,	  z

w  =  a +  bz  +  e

Simple  linear  regression

w  =  a +  b1z1 +  b2z2 +  bnzn +  e

Multiple  linear  regression

Univariate:  single  trait

Multivariate:  multiple  traits

bb =  
b1
b2
b3
bn

Selection  is  represented  as  a  vector
of  partial  regression  coefficients

Lande  and  Arnold  1983  Evolution36:1210-1226

w

z2z1

b b =	  cov(z,w)	  /	  var(z)

+  

=  

Flat  tailed  horned  lizard
Phrynosoma  mcalli

Loggerhead  shrike
Lanius  ludovicianus

How the Horned Lizard
Got Its Horns

Kevin V. Young,1 Edmund D. Brodie Jr.,1 Edmund D. Brodie III2*
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Visualisations

 
 

 
 

 
 

Interpretation	  

• w	  =	  a +	  bz	  +	  e

Survival	  	  =	  0.0945	  x	  squamosal	  horn	  length	  +	  intercept
P	  =	  0.007

Survival	  	  =	  0.0549	  x	  parietal	  horn	  length	  +	  intercept
P	  =	  0.055

• An	  increase in	  one	  phenotypic	  standard	  deviation	  in	  squamosal	  horn	  length	  increases survival	  by	  9%

DDiirreeccttiioonnaall	  	  sseelleeccttiioonn	  	  ggrraaddiieennttss

Survival

horn  length

squamosal
parietal

b =	  cov(z,w)	  /	  var(z)
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Quadratic	  and	  correlational	  selection	  gradients

re
la
tiv
e  
fit
ne
ss
  (w
)

trait value, z

w  =  a +  bz  +  g/2  z2

Quadratic  regression

w  =  a +  b1z1 +  b2z2 +  g1/2  z1 +  g2/2z22 +  g12z1z2

Univariate:  single  trait

Multivariate:  multiple  traits

gg =  
g11    g12    g13
g21    g22    g23
g31    g32    g33

Nonlinear  selection  is  represented  as  a  MATRIX
of  partial  regression  coefficients

g <  0  convex

g >  0  concave

w

z2z1

Correlational  selection:  Garter  Snakes  
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How	  strong	  is	  selection	  in	  nature?
vol. 157, no. 3 the american naturalist march 2001

The Strength of Phenotypic Selection in Natural Populations

J. G. Kingsolver,1,* H. E. Hoekstra,1 J. M. Hoekstra,1,† D. Berrigan,1,‡ S. N. Vignieri,1 C. E. Hill,1,§ A. Hoang,1

P. Gibert,1,k and P. Beerli2

Table 3: Number of estimates of linear selection in the database as a function of taxon,
trait type, and fitness component

Taxon Trait Fitness component

Estimates of linear selection gradientsa

Invertebrates 333 Morphology 815 Mating success 407
Plants 363 Life history/phenology 128 Survival 288
Vertebrates 297 Principal component 33 Fecundity 271

… … Behavior 14 Total fitness 19
… … Interaction NA Net reproductive rate 3
… … Other 3 Other 5

Estimates of linear selection differentialsb

Invertebrates 233 Morphology 594 Mating success 267
Plants 183 Life history/phenology 125 Survival 293
Vertebrates 337 Principal component 21 Fecundity 142

… … Behavior 10 Total fitness 34
… … Interaction NA Net reproductive rate 12
… … Other 3 Other 5

Note: NA p not applicable.
a total estimates.N p 993
b total estimates.N p 753

Table 1: Summary of the database of phenotypic
selection studies (1984–1997)

Number of items
in the database

Studies 63
Records 1,582
Species 62
Genera 51
Taxon type:

Invertebrates (I) 534 records (19 studies)
Plants (P) 587 records (18 studies)
Vertebrates (V ) 461 records (27 studies)

Study type:
Cross-sectional (C) 14 studies
Longitudinal (L) 51 studies

Kingsolver,	  J.	  G.,H.	  E.	  Hoekstra,	  J.	  M.	  Hoekstra,	  D.	  Berrigan,	  S.	  N.	  Vignieri,	  C.	  E.	  Hill,	  A.	  Hoang,	  P.	  Gibert,	  P.	  Beerli.	  2001.	  The	  strength	  of	  phenotypic	  selection	  in	  natural	  populations.	  The	  
American	  Naturalist	  157:245-‐261.
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Morphology	  >	  Life	  history

Sexual	  selection	  is	  surprisingly	  strong	  in	  nature
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Disruptive	  selection	  appears	  as	  common	  as	  stabilising	  selection

Figure 8: Frequency distribution (in %) of the quadratic selection gradient estimates (g) binned at 0.10 value intervals ( estimates). TheN p 465
distributions are stacked according to the statistical significance (at the level) of each individual estimates: black indicates significantlyP p .05
different from 0; grey indicates not significant.

Kingsolver,  J.  G.  and  D.  W.  Pfennig.  2007.  
Patterns  and  power  of  phenotypic  selection  
in  nature.  Bioscience  57:561-571.
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NATURAL  
SELECTION

Phenotypic  Selection Genetic  response

Dz  =  VA  bb

Selection  gradientGenetic  variance

Predicting	  the	  response	  to	  selection	  

Dz =	  h2S,

NATURAL	  
SELECTION

Phenotypic	  Selection Genetic	  response

Dz  =  G bb

=
Dz1
Dz2
Dz3

var(z1) cov(z1,z2)	  	  	  cov(z1,z3)
cov(z1,z2)	  	  var(z2) cov(z2,z3)
cov(z1,z3)	  	  cov(z2,z3)	  	  	  var(z3)

bb 1
bb 2
bb 3

Additive	  genetic	  variance-‐covariance	  matrix,	  G

The  Lande equation

Multiple	  traits
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DDzz	  	  ==	  	  GGbb

• Predicts the	  evolutionary response	  to	  directional	  selection
• Directional	  selection	  one	  trait	  or	  on	  multiple traits

• Describes	  the	  way	  in	  which	  G biases	  the	  response	  to	  selection	  away	  
from	  the	  direction	  of	  selection

• Whenever	  G does	  not	  describe
• equal	  variance	  in	  all	  traits	  
• Zero	  covariance	  among	  traits

evolution	  cannot proceed	  at	  the	  same	  rate	  in	  all	  directions	  of	  
phenotypic	  space.

• The	  effect	  of	  G on	  the	  rate	  and	  direction	  of	  response	  to	  selection	  
depends	  on	  the	  alignment of	  G and	  the	  selection	  surface

• Individual	  traits	  can	  change	  in	  value	  in	  the	  opposite direction	  to	  the	  selection	  
applied	  to	  them

• Populations	  might	  not	  evolve	  higher	  fitness	  because	  the	  among-‐trait	  
correlations	  prevent	  it
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The	  adaptive	  landscape
• A	  heuristic	  for	  thinking	  

about	  how	  populations	  
evolve
• Developed	  by	  Simpson	  

in	  1944,	  and	  used	  by	  
Lande (1979)

Arnold	  et	  al.	  2001

• No	  covariance	  between	  traits,	  
evolution	  proceeds	  directly	  uphill	  for	  
maximum	  increase	  in	  fitness	  (i.e.,	  
along	  β)

• Complete	  covariance	  (+1	  or	  -‐1), only	  
one	  trait	  increases	  in	  fitness,	  and	  
the	  population	  never	  climbs	  the	  
peak

• Moderate	  covariance	  (+0.5	  or	  -‐0.5)	  
the	  population	  takes	  a	  curved	  path,	  
and	  approaches	  the	  peak	  much	  
more	  slowly	  (each	  arrow	  head	  =	  a	  
generation	  of	  change)

Walsh	  &	  Lynch	  Fig.	  32.2.	  
http://nitro.biosci.arizona.edu/zbook/NewV
olume_2/newvol2.html#2B

• Circles	  =	  fitness	  isoclines	  
(everything	  along	  the	  line	  has	  
equal	  fitness

• Two	  traits,	  with	  equal	  variance
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Genetic	  Constraints

• The	  genetic	  variance	  shared	  among	  traits	  (their	  covariance)	  can	  
markedly	  affect	  the	  RATE	  and	  DIRECTION	  of	  total	  phenotypic	  
evolution,	  and	  the	  response	  of	  individual	  traits

• If	  selection	  favours a	  trait	  combination	  with	  little	  genetic	  variance,	  the	  
rate	  of	  evolution	  will	  be	  slow
• Populations	  might	  become	  extinct	  before	  gaining	  sufficient	  absolute	  fitness

Trait	  mean

tim
e

• Occurs	  in	  finite	  populations	  – proportional	  to	  Ne
• Causes	  population	  mean	  phenotypes	  to	  diverge
• Variation	  among	  populations	  at	  time	  t

proportional	  to	  G at	  time	  0

RRaannddoomm	  	  GGeenneettiicc	  	  DDrriifftt
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• Greatest	  divergence	  in	  direction of	  most	  genetic	  variance

Tr
ai

t	  2

Trait	  1

Tr
ai

t	  2

Trait	  1

RRaannddoomm	  	  GGeenneettiicc	  	  DDrriifftt

X X

Trait	  1
Tr

ai
t	  2 X

What	  maintains	  
(quantitative)	  genetic	  

variation	  within	  
populations?

How	  does	  genetic	  variance	  evolve	  within	  populations?

Maintenance	  of	  genetic	  variance	  remains	  a	  major	  
unresolved	  question	  in	  Quantitative	  Genetics
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1. selection	  on	  traits	  is	  common,	  and	  fairly	  strong:
“phenotypic	  selection	  in	  many	  natural	  populations	  is	  strong	  
enough	  to	  cause	  substantial	  evolutionary	  changes	  in	  tens	  to	  
hundreds	  of	  generations,	  which	  is	  a	  very	  short	  timescale	  in	  
evolutionary	  terms”	  PG 565	  KINGSOLVER AND PFENNIG 2007

2. Traits	  are	  heritable:
“If	  one’s	  sole	  interest	  in	  performing	  a	  quantitative-‐genetic	  
analysis	  is	  to	  demonstrate	  that	  the	  character	  of	  interest	  is	  
heritable,	  there	  is	  probably	  little	  point	  in	  expending	  the	  effort.	  
The	  outcome	  is	  virtually	  certain.	  Almost	  every	  character	  in	  
almost	  every	  species	  that	  has	  been	  studied	  intensely	  exhibits	  
nonzero	  heritability.”	  PG 174	  LYNCH AND WALSH 1998

Conflicting	  observations

Practical	  Importance

• AGRICULTURE:	  How	  genetic	  variance	  is	  maintained	  will	  affect	  how	  we	  
can	  apply	  artificial	  selection,	  and	  what	  the	  responses	  will	  be

• BIOMEDICAL:	  The	  nature	  of	  genetic	  variation	  will	  affect	  how	  we	  can	  
go	  about	  identifying	  causal	  genetic	  variants	  of	  human	  diseases
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Predicating	  the	  effects	  of	  evolutionary	  process	  on	  GG

We	  cannot	  exactly	  predict	  the	  evolution	  of	  G because	  it	  
depends	  on	  unknown details	  of	  the	  genetic	  architecture	  
underpinning	  G
• Frequencies	  of	  alleles
• Number	  of	  loci
• Effects	  of	  alleles	  on	  phenotypic	  trait	  of	  interest	  AND	  on	  

fitness

• Do	  many	  loci	  with	  many	  alleles	  of	  small	  effect	  
contribute	  to	  a	  trait?
• Each	  allele	  would	  be	  under	  weak	  selection,	  and	  change	  

little	  in	  frequency,	  resulting	  in	  the	  maintenance	  of	  high	  
levels	  of	  variance

• Do	  mutations	  change	  the	  effect	  of	  an	  allele	  relative	  to	  
the	  effect	  before	  mutation, or	  are	  all	  allelic	  effects	  
possible?

Phenotypic	  effect	  of	  allele

X* **X* ** #### # #
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Models	  of	  the	  evolution	  of	  VA

• Mutation	  – drift	  balance
• Selection	  models
• Balancing	  selection	  models
• Mutation	  – stabilising selection	  models

A	  veritable	  plethora	  of	  theoretical	  models	  have	  been	  
developed	  (see	  Bruce’s	  Chapter!!)	  .	  We’ll	  just	  look	  at	  the	  
general	  features	  of	  a	  few	  classes	  of	  these.

Mutation	  – Drift	  Balance
• Simplest	  model	  of	  the	  evolutionary	  dynamics	  of	  VA

• Mutations	  arise,	  and	  either	  are	  lost	  from	  the	  
population	  or	  increase	  in	  frequency
• At	  mutation	  – drift	  equilibrium:	  VA ~	  2NeVM
• h2 ~	  0.5,	  h2

M ~0.005
• Predicts	  Ne =	  50

Problem:
• Predicts	  VA >>	  than	  observed	  for	  moderate	  to	  large	  Ne

• h2 ~	  0.2	  – 0.6	  irrespective	  of	  population	  size
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Mutation	  – Drift	  Balance
• Drift	  cannot	  be	  the	  whole	  story,	  but:
• Alleles	  are	  considered	  “effectively	  neutral”	  (fate	  

determined	  by	  drift,	  not	  selection)	  when:
s	  <	  1/2Ne

• Estimates	  of	  s	  from	  new	  mutations:
• s <	  ~0.01	  for	  those	  affecting	  morphological	  traits
• s ~	  0.02	  for	  those	  affecting	  fitness	  components

• Chance	  sampling	  of	  alleles	  under	  weak	  selection	  
(mildly	  deleterious	  effects	  on	  fitness)	  likely	  
contributes	  to	  the	  maintenance	  of	  standing	  genetic	  
variance	  in	  finite	  populations

For	  Ne	  =	  50,	  mutational	  
fate	  determined	  by	  drift	  
when	  s <	  0.01	  

Models	  with	  Selection
Classical	  View	  (MSB) – T.	  H.	  
Morgan	  &	  Hermann	  Muller

Balancing	  View – Theodosius	  
Dobzhansky

Fig.	  1.30.	  Barton	  et	  al.	  2007	  “Evolution” Fig.	  1.36.	  Barton	  et	  al.	  2007	  “Evolution”

• Balancing	  selection	  
maintains	  variation
• Allows	  rapid	  adaptation	  

to	  ever	  changing	  
environment

• Wildtype allele	  has	  highest	  
fitness	  in	  any	  particular	  
environment
• Variation	  due	  to	  recurrent	  

deleterious	  mutations
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Models	  with	  Selection
1. Selection	  maintains variation	  – balancing	  selection

models
• Rare	  alleles	  favoured
• Need	  to	  understand	  how	  alleles	  become	  fitter	  as	  they	  

become	  rarer.
a. Heterozygote	  advantage
• Rare	  alleles	  will	  mostly	  be	  present	  in	  heterozygotes
• q2 vs 2pq

• Several	  specific	  examples,	  e.g.	  Sickle	  cell	  anemia	  in	  the	  
presence	  of	  malaria

• Can’t	  be	  the	  only mechanism	  -‐ haploid	  taxa	  have	  abundant	  
genetic	  variance
• Can’t	  have	  heterozygotes	  with	  only	  one	  copy	  of	  the	  gene

b. Frequency-‐dependent	  selection
• Rare	  alleles	  are	  directly	  favoured
• Inbreeding	  avoidance	  mating	  incompatibilities
• Batesian mimicry	  predator	  avoidance
• Intra-‐specific	  competition	  avoidance

c. Fluctuating	  selection
• spatial	  or	  temporal	  variation	  in	  the	  alleles	  with	  the	  

highest	  fitness	  can	  maintain	  polymorphism	  of	  the	  
population
• Requires	  some	  fairly	  restrictive	  simplifying	  assumptions,	  

• Includes	  fitness	  differences	  of	  alleles	  in	  females	  versus	  
males
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2. Mutation-‐Selection	  Balance
Considered	  the	  most	  generally	  applicable	  quantitative	  
genetic	  model	  of	  the	  maintenance	  of	  additive	  genetic	  
variance
• Rate	  at	  which	  genetic	  variation	  is	  removed	  by	  selection	  is	  

exactly	  matched	  by	  the	  rate	  at	  which	  it	  is	  introduced	  by	  
mutation

• Assumes population	  is	  under	  stabilising selection
• Few	  studies	  report	  significant	  stabilising selection	  in	  

contemporary	  populations	  (Kingsolver et	  al.)
• Phenotypes	  (morphology)	  stay	  the	  same	  over	  long	  periods	  of	  

time

fi
tn

e
s
s

phenotype

directional	  selection
(adaptation)

fi
tn

e
s
s

phenotype

stabilising selection
mutation

• Stabilising selection	  =	  variance	  reducing	  selection
• Assume	  that	  the	  average	  trait	  value	  in	  the	  population	  has	  the	  

greatest	  fitness,	  and	  therefore	  all	  mutations	  reduce	  fitness,	  and	  
are	  eliminated	  
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VA =	  2VMVS

• VS is	  the	  variance	  in	  the	  fitness	  curve
• Related	  to	  quadratic	  selection	  gradient:	  VS /	  VP =	  -‐1/2γ
• Large	  VS =	  wide	  curve	  =	  weak	  selection
• Small	  VS =	  narrow	  curve	  =	  strong	  selection

fi
tn

e
s
s

phenotype

fi
tn

e
s
s

phenotype

Weak	  selection
Wide	  variance
Large	  VS

Strong	  selection
Narrow	  variance
Small	  VS

Drift:	  VA =	  2NeVM

How	  much	  genetic	  variance	  can	  be	  maintained	  
by	  MSB?

Scenario:
• h2 =	  50%	  (VG =	  VE)
• Approx.	  observed	  value	  for	  many	  traits

• h2
M =	  0.0125
• Estimates	  ~	  0.005	  – 0.01

• VS =	  20VE
• Individual	  deviates	  from	  optimum	  by	  1	  environmental	  SD,	  

has	  fitness	  reduced	  by	  2.5%
• Kingsolver	  et	  al.	  median	  VS ~	  10VE	  (i.e.,	  is	  stronger	  than	  we	  

are	  assuming).

VA =	  2VMVS
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MSB
Can	  work	  quite	  well	  (predict	  genetic	  variance	  of	  
plausible	  magnitude)	  when	  we	  think	  about	  a	  single	  trait	  
BUT
• Many	  traits	  individually	  under	  (weak)	  stabilising

selection,	  fitness	  implausibly	  low	  
fi
tn

e
s
s

phenotype

-‐2.5%	  fitness	  for	  trait	  1
-‐2.5%	  fitness	  for	  trait	  2

-‐2.5%	  fitness	  for	  trait	  3

MSB
• Mutation	  rate	  to	  allow	  ~50%	  h2 is	  fairly	  high
• Implies	  many	  loci	  affect	  each	  trait	  (per	  locus	  mutation	  rates	  

are	  much	  lower)
• If	  each	  gene/mutation	  affected	  each	  trait	  independently,	  

there	  aren’t	  enough	  genes

• Pleiotropy	  must be	  pervasive
• The	  same	  allele	  (mutation)	  affects	  multiple	  traits,	  and	  

fitness
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If	  pleiotropy	  is	  pervasive…
Imagine:
• Each	  allele	  affects	  your	  trait	  of	  interest,	  and	  also	  

decreases	  fitness	  [assuming	  stabilising selection]
VG =	  VM/s average	  selection	  against	  alleles

Estimates	  of	  s from	  new	  mutations:
s <	  ~0.01	  to	  ~	  0.02

Estimates	  of	  VM:
VM	  ~0.005	  – 0.01

For	  h2 =	  50%,	  av s must	  be	  ~	  0.001	  to	  0.01

MSB	  works	  if	  average	  
selection	  is	  a	  little	  weaker	  
than	  we	  think	  it	  might	  be,	  
or	  if	  mutational	  variance	  
is	  a	  little	  greater	  than	  we	  
think	  it	  might	  be.

Maintenance	  of	  Quantitative	  Genetic	  
Variance
• No	  theoretical	  model	  predicts	  observed	  levels	  of	  VA for	  realistic	  values	  

of	  other	  parameters	  (VM,	  VS,	  Ne),	  with	  realistic	  simplifying	  
assumptions
• Some	  models	  of	  MSB	  seem	  plausible,	  but	  we	  really	  don’t	  know	  

enough	  about	  the	  mutation	  rate	  or	  fitness	  effects	  of	  new	  mutations
• Is	  evidence	  that	  BS	  maintains	  variance	  in	  at	  least	  some	  traits
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Balancing	  selection	  or	  mutation?

Unknown	  whether	  the	  high	  levels	  of	  VA in	  populations	  is	  due	  to:
• Balancing	  selection	  maintaining	  variation
• Mutation	  – selection	  balance

Key	  predictions	  that	  allow	  us	  to	  distinguish	  between	  them
• Allele	  frequencies
• Allelic	  effects	  on	  fitness

Key	  predictions	  distinguishing	  between	  
models	  with	  selection

Balancing	  selection:	  alleles	  at	  
intermediate	  frequencies
• Rare	  alleles	  have	  positive	  

effects	  on	  fitness
• Selection	  increases	  their	  

frequency
• When	  they	  are	  no	  longer	  rare,	  

they	  cease	  to	  be	  under	  
positive	  selection
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•Mutation-‐selection	  balance: most	  alleles	  
will	  be	  at	  low	  frequency
•Most	  alleles	  =	  new	  mutations
• By	  definition,	  new	  mutations	  are	  rare

•Most	  alleles	  =	  low	  fitness
• Selection	  is	  keeping	  them	  rare,	  eliminating	  

them

Key	  predictions	  distinguishing	  between	  
models	  with	  selection

Under	  MSB	  model, standing	  
genetic	  variance	  must	  be	  
made	  up	  of	  many	  low	  
frequency	  alleles,	  and	  few	  
high	  frequency	  alleles
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Key	  predictions	  distinguishing	  between	  
models	  with	  selection
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What	  do	  we	  know	  about	  
allele	  frequencies?

Allele	  frequency	  distribution	  in	  
Steve’s	  population	  of	  D.	  serrata

molecular	  genetic data	  generally	  support	  many	  rare	  
allele	  distribution,	  consistent	  with	  MSB

“minor”	  allele	  =	  2nd most	  frequent	  allele;	  has	  to	  be	  <0.5

Allele	  frequency	  distribution	  of	  loci	  affecting	  
gene	  expression	  variation	  in	  mustard	  
relative	  – Josephs	  et	  al.	  2016	  
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Recent genomic data have found that many genes show
the signal of selection. How many of these genes are
undergoing heterozygote advantage selection is only
beginning to be known. Initial genomic surveys have
suggested that only a small proportion of loci have
polymorphisms maintained by heterozygote advantage
and this is consistent with the few examples generated
from other approaches within given species. Unless
further studies provide large numbers of loci with het-
erozygote advantage, it appears that loci with heterozy-
gote advantage must be considered only a small
minority of all loci in a species. This is not to say that
some heterozygote advantage loci do not have impor-
tant adaptive functions, but that their role in overall
evolutionary change might be more of an unusual phe-
nomenon than a major player in adaptation.

      

       

         

        

      

         

        

       

      

       

        

        

       

       

     

        

            

      

     

      

        

        

      

     

         

      

        

      

         

         

      

         

 

          

      

       

       

        

     

        

          

       

        

     

     

      

      

        

       

         

          

         

        

    

       

        

      

       

        

       

        

          

        

        

         

         

        

           

        

       

         

       

        

         

        

      

    

                        

     

 

  

      

        

         

     

       

        

    

        

      

        

       

       

            

       

        

        

      

      

       

         

        

      

         

        

       

      

       

        

        

       

       

     

        

            

      

     

      

        

        

      

     

         

      

        

      

         

         

      

         

 

          

      

       

       

        

     

        

          

       

        

     

     

      

      

        

       

         

          

         

        

    

       

        

      

       

        

       

        

          

        

        

         

         

        

           

        

       

         

       

        

         

        

      

    

              Trends in Ecology and Evolution, December 2012, Vol. 27, No. 12

What is the evidence  for heterozygote
advantage  selection?
Philip W. Hedrick

      

        

         

     

       

        

    

        

      

        

       

       

            

       

        

        

      

      

       

         

        

      

         

        

       

      

       

        

        

       

       

     

        

            

      

     

      

        

        

      

     

         

      

        

      

         

         

      

         

 

          

      

       

       

        

     

        

          

       

        

     

     

      

      

        

       

         

          

         

        

    

       

        

      

       

        

       

        

          

        

        

         

         

        

           

        

       

         

       

        

         

        

      

    

                        

What’s	  the	  fitness	  effects	  of	  
these	  alleles?
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Frequency	  of	  “risk”	  alleles	  – alleles	  that	  increase	  the	  likelihood	  that	  
you	  will	  get	  the	  disease	  
• Distributions	  are	  left	  skewed	  – more	  alleles	  that	  increase	  risk	  

occur	  at	  low	  frequencies

From	  Park	  et	  al.	  2011	  PNAS.	  108:18026–18031	  

Genetic	  variation	  is	  less	  in	  the	  direction	  of	  high	  
fitness	  than	  in	  the	  direction	  of	  low	  fitness
Artificial	  selection	  for	  decreased	  fitness	  causes	  
more	  evolution	  than	  selection	  for	  increased	  fitness

Frankham (1990)
• 30  bi-directional  
artificial  selection  
experiments  on  
fitness  (components)

• 80%  report  greater  
response  for  
decreased  fitnessFalconer,	  D.	  S.	  1953.	  Selection	  for	  large	  and	  small	  size	  in	  mice.	  Journal	  

of	  Genetics	  51:470-‐501.

~	  3g

~  7g
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Asymmetry	  of	  selection	  responses	  is	  consistent	  with	  
mutation-‐selection	  balance

• More	  genetic	  variance	  to	  decrease	  fitness	  than	  to	  increase	  fitness	  
BECAUSE
• persistent	  selection	  under	  stable	  conditions	  has	  pushed	  advantageous	  alleles	  

to	  high	  frequency	  and	  disadvantageous	  alleles	  to	  low	  frequency
• most	  new	  mutations	  are	  deleterious	  with	  respect	  to	  fitness,	  so	  input	  of	  new	  

variance	  for	  low	  fitness	  by	  low	  frequency	  alleles	  (mutations)

Consequences	  of	  MSB
If	  MSB	  is	  truly	  the	  way	  that	  genetic	  variance	  is	  
maintained	  for	  quantitative	  traits
• Finding	  causal	  alleles	  will	  be	  hard
• Hard	  to	  find	  something	  rare

• Most	  of	  the	  genetic	  variance	  in	  the	  population	  is	  
deleterious.
• Evolutionary	  potential?
• Mutation	  load?
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Lecture 8 
QTL and Association mapping 

Bruce Walsh lecture notes 
Introduction to Quantitative Genetics 

SISG, Brisbane 
6 – 7 Feb 2017 

Part I 
QTL mapping and the use of

 inbred line crosses 
•  QTL mapping tries to detect small (20-40 cM)

 chromosome segments influencing trait
 variation 
–  Relatively crude level of resolution 

•  QTL mapping performed either using inbred
 line crosses or sets of known relatives 
–  Uses the simple fact of an excess of parental

 gametes 

2 
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Key idea:  Looking for marker-trait 
associations in collections of relatives  

If (say) the mean trait value for marker 
genotype MM is statistically different 
from that for genotype mm, then the M/m 
marker is linked to a QTL  

One can use a random collection of such 
markers spanning a genome (a genomic 
scan) to search for QTLs  

4 

Experimental Design:  Crosses 

P1  x  P2 

F1 F1 x F1 

F2 

F2 design 
F1 

B1 

Backcross design 

B2  Backcross design 
F1 

Fk 

F2 

F1 

Advanced intercross 
Design (AIC, AICk) 

RILs = Recombinant 
inbred lines (selfed F1s) 
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Experimental Designs: Marker
 Analysis 

Single marker analysis 

Flanking marker analysis (interval mapping) 

Composite interval mapping 

Interval mapping plus additional markers 

Multipoint mapping 

Uses all markers on a chromosome simultaneously 
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Conditional Probabilities of
 QTL Genotypes 

The basic building block for all QTL methods is 
Pr(Qk | Mj ) --- the probability of QTL genotype 
Qk given the marker genotype is Mj.  

P r ( Q k | M j ) = 
P r ( Q k M j ) 
P r ( M j ) 

Consider a QTL linked to a marker (recombination 
Fraction = c).  Cross MMQQ x mmqq.  In the F1, all 
gametes are MQ and mq 

In the F2, freq(MQ) = freq(mq) = (1-c)/2, 
                freq(mQ) = freq(Mq) = c/2 
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 Hence, Pr(MMQQ) = Pr(MQ)Pr(MQ) = (1-c)2/4 

Pr(MMQq) = 2Pr(MQ)Pr(Mq) = 2c(1-c) /4 

Why the 2?  MQ from father, Mq from mother, OR 
MQ from mother, Mq from father 

Since Pr(MM) = 1/4, the conditional probabilities become 

Pr(MMqq) = Pr(Mq)Pr(Mq) = c2 /4 

Pr(QQ | MM) = Pr(MMQQ)/Pr(MM) = (1-c)2  

Pr(Qq | MM) = Pr(MMQq)/Pr(MM) = 2c(1-c)  

Pr(qq | MM) = Pr(MMqq)/Pr(MM) =  c2 

How do we use these? 
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Expected Marker Means 
The expected trait mean for marker genotype Mj 
is just 

For example, if QQ = 2a, Qq = a(1+k), qq = 0, then in  
the F2 of an MMQQ/mmqq cross, 

• If the trait mean is significantly different for the 
genotypes at a marker locus, it is linked to a QTL 

• A small MM-mm difference could be (i) a tightly-linked 
  QTL of small effect or (ii) loose linkage to a large QTL   
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Linear Models for QTL Detection 
The use of differences in the mean trait value 
for different marker genotypes to detect a QTL  
and estimate its effects is a use of linear models. 

One-way ANOVA. 

10 

Detection:  a  QTL is linked to the marker if at least  
one of the bi is significantly different from zero 

Estimation: (QTL effect and position):  This requires 
relating the bi to the QTL effects and map position  
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Detecting epistasis 
One major advantage of linear models is their 
flexibility.  To test for epistasis between two QTLs, 
use  ANOVA with an interaction term 
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Detecting epistasis 

• At least one of the ai significantly different from 0 
 ---- QTL linked to first marker set 

• At least one of the  bk significantly different from 0 
 ---- QTL linked to second marker set 

• At least one of the  dik significantly different from 0 
 ---- interactions between QTL in sets 1 and two 

Problem:  Huge number of potential interaction terms 
(order m2, where m = number of markers) 
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Maximum Likelihood Methods  
ML methods use the entire distribution of the data, not 
just the marker genotype means. 

More powerful that linear models, but not as flexible 
in extending solutions (new analysis required for each model) 

Basic likelihood function: 

Trait value given
 marker genotype is

 type j 

This is a mixture model 

14 

Maximum Likelihood Methods  

enter 
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ML methods combine both detection and estimation 
of QTL effects/position. 

Test for a linked QTL given from by the Likelihood 
Ratio (or  LR ) test 

A typical QTL map from a likelihood analysis 
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Interval Mapping with Marker
 Cofactors 

i i+1 i+2 i-1 

Consider interval mapping using the markers i and i+1. QTLs linked
 to these markers, but outside this interval, can contribute (falsely) to
 estimation of  QTL position and effect 

Now suppose we also add the two markers flanking the 
interval (i-1 and i+2) 

Interval being mapped 
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i i+1 i+2 i-1 

Inclusion of markers i-1 and i+2 fully account 
for any linked QTLs to the left of i-1 and the 
right of i+2 

Interval mapping + marker cofactors is called  
Composite Interval Mapping (CIM) 

CIM also (potentially) includes unlinked markers to 
account for QTL on other chromosomes. 

CIM works by adding an additional term to the 
linear model, 
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Power and Precision 

While modest sample sizes are sufficient to 
detect a QTL of modest effect (power), large  
sample sizes are required to map it with any 
precision 

With 200-300 F2, a QTL accounting for 5% of 
total variation can be mapped to a 40cM interval 

Over 10,000 F2 individuals are required to map 
this QTL to  a 1cM interval 
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Power and Repeatability:  The
 Beavis Effect 

QTLs with low power of detection tend to have their 
effects overestimated, often very dramatically   

As power of detection increases, the overestimation 
of detected QTLs becomes far less serious  

This is often called the Beavis Effect, after Bill 
Beavis who first noticed this in simulation studies. 
This phenomena is also called the winner’s curse in 
statistics (and GWAS)  
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Beavis Effect 
Also called the “winner’s curse” in the GWAS literature 

True value 

Distribution of 
the realized value of an 
effect in a sample 

Significance  
threshold 

High power setting:  Most realizations are to the 
right of the significance threshold.  Hence, the 
average value given the estimate is declared significant  
(above the threshold) is very close to the true value. 
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True value 

In low power settings, most realizations are below 
the significance threshold, hence most of the time the

 effect is scored as being nonsignificant 

Significance  
threshold 

However, the mean of those declared significant 
is much larger than the true mean 

Mean among  
significant results 
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Inflation can be significant, esp. with low power 

Inflation at 
lower power 
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Beavis simulation:  actual effect size is 1.6% of 
variation.  Estimated effects (at significant markers) 

much higher 
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Model selection 
•  With (say) 300 markers, we have (potentially) 300

 single-marker terms and 300*299/2 = 44,850 epistatic
 terms  
–  Hence, a model with up to p= 45,150 possible parameters 
–  2p possible submodels = 1013,600 ouch! 

•  The issue of Model selection becomes very important. 
•  How do we find the best model? 

–  Stepwise regression approaches 
•  Forward selection (add terms one at a time) 
•  Backwards selection (delete terms one at a time) 

–  Try all models, assess best fit 
–  Mixed-model (random effect) approaches 

26 

Model Selection 

Model Selection: Use some criteria to choose  among a  
number of candidate models.  Weight goodness-of-fit  
(L, value of the likelihood at the MLEs) vs.  number of  
estimated parameters (k) 

AIC = Akaike’s information criterion  
AIC = 2k - 2 Ln(L) 

BIC = Bayesian information criterion (Schwarz criterion) 
BIC = k*ln(n)/n - 2 Ln(L)/n 
BIC penalizes free parameters more strongly than AIC 

For both AIC & BIC, smaller value  is better 
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Model averaging 
Model averaging:  Generate a composite model by weighting 
(averaging) the various models, using AIC, BIC, or other 

Idea:  Perhaps no “best” model, but several models 
all extremely close.  Better to report this “distribution” 
rather than the best one 

One approach is to average the coefficients on the 
“best-fitting” models using some scheme to return 
a composite model 
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Shrinkage estimators 
Shrinkage estimates:   Rather than adding interaction   
terms one at a time, a shrinkage method starts with all 
interactions included, and then shrinks most back to zero.  

Under a Bayesian analysis, any effect is random.  One can 
assume the effect for (say) interaction ij  is drawn from  
a normal with mean zero and variance σ2

ij 

Further, the interaction-specific variances are themselves  
random variables drawn from a hyperparameter distribution,  
such as an inverse chi-square.   

One then estimates the hyperparameters and  uses these  
to predict the variances, with effects with  small variances  
shrinking back to zero, and effects with large variances  
remaining in the model.    
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What is a “QTL” 
•  A detected “QTL” in a mapping experiment

 is a region of a chromosome detected by
 linkage. 

•  Usually large (typically 10-40 cM) 
•  When further examined, most “large” QTLs

 turn out to be a linked collection of locations
 with increasingly smaller effects 

•  The more one localizes, the more subregions
 that are found, and the smaller the effect in
 each subregion 

•  This is called fractionation 
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Limitations of QTL mapping 
•  Poor resolution (~20 cM or greater in most designs

 with sample sizes in low to mid 100’s) 
–  Detected “QTLs” are thus large chromosomal regions 

•  Fine mapping requires either 
–  Further crosses (recombinations) involving regions of

 interest (i.e., RILs, NILs) 
–  Enormous sample sizes   

•  If marker-QTL distance is 0.5cM, require sample sizes
 in excess of 3400  to have a 95% chance of 10 (or
 more) recombination events in sample 

• 10 recombination events allows one to separate
 effects that differ by ~ 0.6 SD 
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•  “Major” QTLs typically fractionate  
–  QTLs of large effect (accounting for  > 10% of the

 variance) are routinely discovered. 
–  However, a large QTL peak in an initial experiment

 generally becomes a series of smaller and smaller
 peaks upon subsequent fine-mapping. 

•  The Beavis effect: 
–  When power for detection is low, marker-trait

 associations declared to be statistically significant
 significantly overestimate  their true effects. 

–  This effect can be very large (order of magnitude)
 when power is low. 

Limitations of QTL mapping (cont) 

II:  
 QTL mapping in Outbred

 Populations 
and Association Mapping 

•  Association mapping uses a set of very dense
 markers in a set of (largely) unrelated
 individuals 

•  Requires population level LD 
•  Allows for very fine mapping (1-20 kB) 

32 



QTL mapping in outbred
 populations 

• Much lower power than line-cross QTL
 mapping 

•  Each parent must be separately
 analyzed 

• We focus on an approach for general
 pedigrees, as this leads us into
 association mapping 

33 
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General Pedigree Methods 
Random effects (hence, variance component) method 
for detecting QTLs in general pedigrees 

The model is rerun for each marker 
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The covariance between individuals i and j is thus 

Fraction of chromosomal
 region shared IBD 

between individuals i and j. 

Resemblance
 between
 relatives

 correction 

Variance
 explained by
 the region of

 interest 

Variance
 explained by

 the
 background
 polygenes 
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Assume z is MVN, giving the covariance matrix as 

A significant σA
2 indicates a linked QTL. 
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Association & LD mapping 

Mapping major genes (LD mapping) vs. trying to 
Map QTLs (Association mapping) 

Idea:  Collect random sample of individuals, contrast 
trait means over marker genotypes 

If a dense enough marker map, likely population level 
linkage disequilibrium (LD) between closely-linked  
genes 
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D(AB) = freq(AB) - freq(A)*freq(B).   
LD = 0 if A and B are independent.  If LD not zero, 
correlation between A and B in the population 

LD:  Linkage disequilibrium 

If a marker and QTL are linked, then the marker and 
QTL alleles are in LD in close relatives, generating 
a marker-trait association. 

The decay of D:  D(t) = (1-c)t D(0) 
here c is the recombination rate.  Tightly-linked genes 
(small c) initially in LD can retain LD for long periods of 
time 
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Dense SNP Association Mapping 
Mapping genes using known sets of relatives can be 
problematic because of the cost and difficulty in 
obtaining enough relatives to have sufficient power. 

By contrast, it is straightforward to gather large 
sets of unrelated individuals, for example a large 
number of cases (individuals with a particular  
trait/disease) and controls (those without it). 

With the very dense set of SNP markers (dense = 
very tightly linked), it is possible to scan for markers 
in LD in a random mating population with QTLs, simply 
because c is so small that LD has not yet decayed 
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These ideas lead to consideration of a strategy of 
Dense SNP association mapping.   

For example, using 30,000 equally spaced SNP in 
The 3000cM human genome places any QTL within 
0.05cM of a SNP.  Hence, for an association created 
t generations ago (for example, by a new mutant 
allele appearing at that QTL), the fraction of 
original LD still present is at least (1-0.0005)t ~ 
1-exp(t*0.0005).  Thus for mutations 100, 500, 
and 1000  generations old (2.5K, 12.5K, and 25 K 
years for humans), this fraction is 95.1%, 77.8%, 60.6%,  

We thus have large samples and high disequilibrium, 
the recipe needed to detect linked QTLs of small effect  
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Association mapping 
•  Marker-trait associations within a population of unrelated

 individuals 
•  Very high marker density (~ 100s of markers/cM) required 

–  Marker density no less than the average track length of
 linkage disequilibrium (LD) 

•  Relies on very slow breakdown of initial LD generated by a new
 mutation near a marker to generate marker-trait associations 
–  LD decays very quickly unless very tight linkage 
–  Hence, resolution on the scale of LD in the population(s) being studied

 ( 1 ~ 40 kB) 
•  Widely used since mid 1990’s.  Mainstay of human genetics,

 strong inroads in breeding, evolutionary genetics 
•  Power a function of the genetic variance of a QTL, not its mean

 effects 

Manhattan plots 
•  The results for a Genome-wide Association study (or

 GWAS) are typically displayed using a Manhattan
 plot. 
–  At each SNP, -ln(p), the negative log of the p

 value for a significant marker-trait association is
 plotted. Values above a threshold indicate
 significant effects 

–  Threshold set by Bonferroni-style multiple
 comparisons correction 

–  With n markers, an overall false-positive rate of p
 requires each marker be tested using p/n. 

–  With n = 106 SNPs,  p must exceed 0.01/106 or
 10-8 to have a control of 1% of a false-positive   

42 
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Candidate Loci and the TDT 

Often try to map genes by using case/control contrasts,  
also called association mapping. 

The frequencies of marker alleles are measured in both a 
    case sample -- showing the trait (or extreme values) 
    control sample -- not showing the trait 

The idea is that if the marker is in tight linkage, we might 
expect LD between it and the particular DNA site causing 
the trait variation. 

Problem with case-control approach (and association 
mapping in general):  Population  Stratification can give 
false positives. 
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Gm+ Total % with diabetes 

Present 293 8% 

Absent 4,627 29% 

When population being sampled actually consists of  several distinct
 subpopulations we have lumped together, marker alleles may provide
 information as to which group an individual belongs.  If there are other
 risk factors in a group, this can create a false association btw marker
 and trait 

Example.  The Gm marker was thought (for biological reasons) to be
 an excellent candidate gene for  diabetes in the high-risk population
 of Pima Indians in the American Southwest.  Initially a very strong
 association was observed: 
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Gm+ Total % with diabetes 

Present 293 8% 

Absent 4,627 29% 

Problem:  freq(Gm+) in Caucasians (lower-risk diabetes 
Population) is 67%, Gm+ rare in full-blooded Pima 

Gm+ Total % with diabetes 

Present 17 59% 

Absent 1,764 60% 

The association was re-examined in a population of Pima 
that were 7/8th (or more) full heritage: 

48 

Linkage vs. Association 
The distinction between linkage and association 
is subtle, yet critical 

Marker allele M is associated with the trait if 
Cov(M,y) is not 0 

While such associations can arise via linkage, they 
can also arise via population structure. 

Thus, association DOES NOT imply linkage, and
 linkage is not sufficient for association 
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Transmission-disequilibrium test (TDT) 
The TDT accounts for population structure.  It requires 
sets of relatives and  compares the number of times a  
marker allele is transmitted (T) versus not-transmitted  
(NT)  from a marker  heterozygote parent to affected   
offspring.   

Under the hypothesis of no linkage, these values  
should be equal, resulting in a chi-square test for 
lack of fit: 
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Allele T NT χ2  p 

228 81 45 10.29 0.001 

230 59 73 1.48 0.223 

240 36 24 2.30 0.121 

Scan for type I diabetes in Humans.  Marker locus 
D2S152 



Accounting for population structure 

•  Three classes of approaches proposed 
–  1) Attempts to correct for common pop structure

 signal (genomic control, regression/ PC methods)  
–  2) Attempts to first assign individuals into

 subpopulations and then perform association
 mapping in each set (Structure) 

–  3) Mixed models that use all of the marker
 information (Tassle, EMMA, many others) 

•  These can also account for cryptic relatedness in the
 data set, which also causes false-positives. 
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Genomic Control 
Devlin and Roeder (1999).  Basic idea is that association tests (marker
 presence/absence vs. trait presence/absence) is typically done with a
 standard 2 x 2 χ2 test. 

When population structure is present, the test statistic now follows
 a scaled χ2, so that if S is the test statistic, then S/λ ~ χ2

1  (so S ~
 λχ2

1) 

The inflation factor λ is given by 

Note that this departure from a χ2 increases with sample size n 
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Genomic Control 

 λ = 1 + nFST Σk (fk-gk)2 

Assume n cases 
and controls 

Population 
substructure 

Fraction of cases 
in kth population 

Fraction of controls 
in kth population 

Genomic control attempts to estimate λ directly 
from our distribution of test statistics S 
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Estimation of λ 
The mean of a χ2

1 is one.  Hence, since S ~ λχ2
1  and we expect most

 test statistic values to be from the null (no linkage), one estimator of
 λ is simply the mean of S, the mean value of 
the test statistics. 

The problem is that this is not a particular robust estimator, as a
 few extreme values of S (as would occur with linkage!) can inflate
 λ over its true value. 

A more robust estimator is offered from the medium 
(50% value) of the test statistics, so that for m tests 
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Structured Association Mapping 

Pritchard and Rosenberg (1999) proposed 
Structured Association Mapping, wherein 
one assumes k subpopulations (each in Hardy- 
Weinberg). 

Given a large number of markers, one then attempts 
to assign individuals to groups using an MCMC  
Bayesian classifier  

Once individuals assigned to groups, association mapping 
without any correction can occur in each group. 
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Regression Approaches 

A third approach to control for structure is 
simply to include a number of markers, outside 
of the SNP of interest, chosen because they 
are expected to vary over any subpopulations 

How might you choose these in a sample?  Try 
those markers (read STRs) that show the largest 
departure from Hardy-Weinberg, as this is expected 
in markers that vary the most over subpopulations. 
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Variations on this theme (eigenstrat) --- use all of the  
marker information to extract a set of significant 
PCs, which are then included in the model as cofactors 

Mixed-model approaches 
• Mixed models use marker data to  

– Account for population structure 
– Account for cryptic relatedness 

•  Three general approaches: 
– Treat a single SNP as fixed 

• TASSLE, EMMA 

– Treat a single SNP as random 
• General pedigree method 

– Fit all of the SNPs at once 
• GBLUP 
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 Structure plus Kinship Methods 
Association mapping in plants offer occurs by first taking  
a large  collection of lines, some closely related, others  
more distantly related.  Thus, in addition to this collection  
being a series of subpopulations (derivatives from a  
number of founding lines), there can also be additional  
structure within each subpopulation (groups of more  
closely related lines within any particular  lineage).  

Y = Xβ + Sa + Qv + Zu + e 

Fixed effects in blue, random effects in red 

This is a mixed-model approach. The program TASSEL 
runs this model.  
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 Q-K method 

Y = Xβ + Sa + Qv + Zu + e 

 β = vector of fixed effects 

 a = SNP effects 

 v = vector of subpopulation effects (STRUCTURE) 
Qij = Prob(individual i in group j).  Determined 
from STRUCTURE output 

u = shared polygenic effects due to kinship.   
Cov(u) = var(A)*A, where the relationship matrix 
A estimated from marker data matrix K, also called a 
GRM – a genomic relationship matrix 



Which markers to include in K? 

•  Best approach is to leave out the marker
 being tested (and any in LD with it) when
 construction the genomic relationship matrix 
–  LOCO approach – leave out one chromosome

 (which the tested marker is linked to) 

•  Best approach seems to be to use most of
 the markers 

•  Other mixed-model approaches along these
 lines  
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GBLUP 
•  The Q-K method tests SNPs one at a time,

 treating them as fixed effects 
•  The general pedigree method (slides 35-36)

 also tests one marker at a time, treating
 them as random effects 

•  Genomic selection can be thought of as
 estimating all of the SNP effects at once and
 hence can also be used for GWAS 
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BLUP, GBLUP, and GWAS 
•  Pedigree information gives EXPECTED value 

of shared sites (i.e., ½ for full-sibs) 
–  A matrix in BLUP 
–  The actual realization of the fraction of shared 

genes for a particular pair of relatives can be 
rather different, due to sampling variance in 
segregation of alleles 

–  GRM, genomic relationship matrix (or K or marker 
matrix M)  

–  Hence “identical” relatives can differ significantly 
in faction of shared regions 

–  Dense marker information can account for this 
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The general setting 
•  Suppose we have n measured individuals (the n x 1

 vector y of trait values)  
•  The n x n relationship matrix A gives the relatedness

 among the sampled individuals, where the elements
 of A are obtained from the pedigree of measured
 individuals 

•  We may also have p (>> n) SNPs per individual,
 where the n x p marker information matrix M
 contains the marker data, where Mij = score  for SNP
 j (i.e., 0 for 00, 1 for 10, 2 for 11) in individual i.  



Covariance structure of random effects 

•  A critical element specifying the mixed model is the
 covariance structure (matrix) of the vector u of
 random effects 

•  Standard form is that Cov(u) = variance component *
 matrix of known constants 
–  This is the case for pedigree data, where u is typically the

 vector of breeding values, and the pedigree defines a
 relationship matrix A, with Cov(u) = Var(A) * A, the additive
 variance times the relationship matrix 

–  With marker data,  the covariance of random effects are
 functions of the marker information matrix M.   

•  If u is the vector of p marker effects, then Cov(u) =
 Var(m) * MTM, the marker variance times the covariance
 structure of the markers. 

Y = Xβ + Zu + e 

Pedigree-based BV estimation:  (BLUP)   
unx1 = vector of BVs, Cov(u) = Var(A) Anxn 

Marker-based BV estimation:  (GBLUP) 
unx1 = vector of BVs, Cov(u)  = Var(m) MTM (n x n) 

GWAS:  upx1 = vector of marker effects, 
Cov(u)  = Var(m) MMT  (p x p) 

Genomic selection: predicted vector of breeding values  
from marker effects (genetic breeding values),  
GBVnx1 = Mnxpupx1.  
Note that Cov(GBV)  = Var(m) MTM (n x n)  

Many variations of these general ideas by adding 
additional assumptions on covariance structure. 



GWAS Model diagnostics 
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Genomic control λ as a diagnostic tool 

•  Presence of population structure will inflate the λ
 parameter 

•  A value above 1 is considered evidence of additional
 structure in the data 
–  Could be population structure, cryptic relatedness, or both 
–  A lambda value less that 1.05 is generally considered benign 

•  One issue is that if the true polygenic model holds (lots of
 sites of small effect), then a significant fraction will have
 inflated p values, and hence an inflated λ value. 

•  Hence, often one computes the λ following attempts to
 remove population structure.  If the resulting value is
 below 1.05, suggestion that structure has been largely
 removed. 
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P – P plots 

•  Another powerful diagnostic tool is the p-p plot. 
•  If all tests are drawn from the null, then the

 distribution of p values should be uniform. 
–  There should be a slight excess of tests with very

 low p indicating true positives 
•  This gives a straight line of a log-log plot of

 observed (seen) and expected (uniform) p values
 with a slight rise near small values 
–  If the fraction of true positives is high (i.e., many

 sites influence the trait), this also bends the p-p
 plot 
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A few tests 
are significant Great excess of 

Significant tests 

Price et al. 2010 Nat Rev Gene 11: 459 
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Great excess of 
Significant tests 

As with using λ, one should construct p-p following  
some approach to correct for structure & relatedness 
to see if they look unusual.  
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Power of Association mapping 
Q/q is the polymorphic site contributing to trait 
variation, M/m alleles (at a SNP) used as a marker 

Let p be the frequency of M, and assume that 
Q only resides on the M background (complete 
disequilibrium) 

Haloptype Frequency effect 

QM rp a 

qM (1-r)p 0 

qm 1-p 0 
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Haloptype Frequency effect 

QM rp a 

qM (1-r)p 0 

qm 1-p 0 

Genetic variation associated with Q = 2(rp)(1-rp)a2  

~ 2rpa2  when Q rare. Hence, little power if Q rare 

Genetic variation associated with marker M is 
2p(1-p)(ar)2 ~ 2pa2r2  

Effect of m = 0 

Effect of M = ar  

Ratio of marker/true effect variance is ~ r 

Hence, if Q rare within the A class, even less power! 
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Common variants 
•  Association mapping is only powerful for common

 variants   
–  freq(Q) moderate 
–  freq (r) of Q within M haplotypes modest to large 

•  Large effect alleles (a large) can leave small signals. 
•  The fraction of the actual variance accounted for by

 the markers is no greater than ~ ave(r), the average
 frequency of Q within a haplotype class 

•  Hence, don’t expect to capture all of Var(A) with
 markers, esp. when QTL alleles are rare but markers
 are common (e.g. common SNPs, p > 0.05) 

•  Low power to detect G x G, G x E interactions 
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“How wonderful that we have met with a 
paradox.  Now we have some hope of 
making progress”   -- Neils Bohr 
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The “missing heritability” pseudo-paradox 
•  A number of GWAS workers noted that the sum of

 their significant marker variances was much less
 (typically 10%) than the additive variance estimated
 from biometrical methods 

•  The “missing heritability” problem was birthed from
 this observation. 

•  Not a paradox at all 
–  Low power means small effect (i.e. variance) sites

 are unlikely to be called as significant, esp. given
 the high stringency associated with control of
 false positives over tens of thousands of tests 

–  Further, even if all markers are detected, only a
 fraction ~ r (the frequency of the causative site
 within a marker haplotype class) of the underlying
 variance is accounted for. 
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Dealing with Rare Variants 
•  Many disease may be influenced by rare

 variants. 
–  Problem:  Each is rare and thus overall gives a

 weak signal, so testing each variant is out (huge
 multiple-testing problem) 

–   However, whole-genome sequencing (or just
 sequencing through a target gene/region) is
 designed to pick up such variants 

•  Burden tests are one approach 
–  Idea:  When comparing case vs. controls, is there

 an overdispersion of mutations between the two
 categories? 
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Solid = random distribution over cases/controls 
Blue = observed distribution 

A:  Variants only increase disease risk (excess at high values) 

B: Variants can both increase (excess high values) and  
decrease risk (excess low values) --- inflation of the variance 
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C(α) test 
•  Idea:  Suppose a fraction p0 of the sample are

 controls, p1 = 1-p0 are cases.  Note these varies
 are fixed over all variants 

•  Let ni be the total number of copies of a rare
 variant i. 

•  Under binomial sampling, the expected number
 of variant i  in the case group is ~ Bin(p1,ni) 

•  Pool the observations of all such variants over a
 gene/region of interest and ask if the variance in
 the number in cases exceeds the binomial
 sampling variance nip1(1-p1) 
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C(α) test (cont). 
•  Suppose m variants in a region, test statistic is of the

 form 
•   Σi (yi  - nip1)2 - nip1 (1-p1) 
•  yi = number of variant I in cases. 
•  This is observed variance minus binomial prediction 
•  This is scaled by a variance term to give a test

 statistic that is roughly normally distributed 




