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Basic model of Quantitative Genetics

Phenotypic value -- we will occasionally
also use z for this value

\

Basic model: P =G + E«< Environmental value

Genotypic value

G = average phenotypic value for that genotype
if we are able to replicate it over the universe
of environmental values, G = E[P]

Hence, genotypic values are functions of the
environments experienced.



Basic model of Quantitative Genetics
Basic model: P=G + E

G = average phenotypic value for that genotype
if we are able to replicate it over the universe
of environmental values, G = E[P]

G = average value of an inbred line over a series
of environments

G x E interaction --- The performance of a particular
genotype in a particular environment differs from
the sum of the average performance of that
genotype over all environments and the average
performance of that environment over all genotypes.
Basic model now becomes P =G + E + GE

Length (cm) E
#ears 4 21 24 8 3 11 12 15 2% 15 10 7 2

East (1911) data
on US maize
crosses

Length (cm) 17 18 9 20 21

¥ cars 1 12

-

2 14 17 9 4

12 13 14 15 16 17 18 19 20 21
145 1290 91 &3 27 17 6 1

Length(cm) 5 6 7 8

¥ cars 4 5
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Same G, Var(P) = Var(E)

S
< r

P

Length (cm) 6 9 10 11 12 13 14 15 16 17 18 19 20 21
#ears 4 21 24 8 3 11 12 15 26 15 10 7 2

Length(em) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# ears 1 12 12 14 17 9 4

Each sample (P,, P,, F;) has same G, all variation in
P is due to variation in E

All same G, hence
Var(P) = Var(E)

Length(em) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# ears 1 12 12 14 17 9 4

Variation in G
Var(P) = Var(G) +
Var(E)

Length(cm) 5 6 7 8 9 10 11 12 13 15 16 17 18 0 21
# ears 4 5 22 56 S0 145129 91 6 27 17 6 1

Var(F,) > Var(F,) due to Variation in G ‘



Johannsen (1903) bean data

e Johannsen had a series of fully inbred
(= pure) lines.

e There was a consistent between-line
difference in the mean bean size
— Differences in G across lines

e However, within a given line, size of
parental seed independent of size of
offspring speed

— No variation in G within a line
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Figure1.4 Mean offspring seed size as a function of parental seed size for some
of Johannsen's pure lines. The data for the different lines are denoted by different
symbols. If there is a heritable component to seed weight within a pure line, a line
with positive slope is expected — larger parents should yield larger offspring.
However, within each line, mean offspring size is essentially independent of the
parental phenotype. (Data from Johannsen 1903.)



The transmission of genotypes versus
alleles

e With fully inbred lines, offspring have the same genotype as
their parent, and hence the entire parental genotypic value G is
passed along

— Hence, favorable interactions between alleles (such as with
dominance) are not lost by randomization under random mating
but rather passed along.

* When offspring are generated by crossing (or random mating),
each parent contributes a single allele at each locus to its
offspring, and hence only passes along a PART of its genotypic
value

* This part is determined by the average effect of the allele

— Downside is that favorable interaction between alleles are NOT
passed along to their offspring in a diploid (but, as we will see, are
in an autoteraploid)

Genotypic values

It will prove very useful to decompose the genotypic
value into the difference between homozygotes (2a) and
a measure of dominance (d or k = d/a)

aa Aa AA

L 1 L
| | |
C-a C+d C+a
Note that the constant C is the average value of

the two homozygotes.

If no dominance, d = 0, as heterozygote value equals
the average of the two parents. Can also write d = ka,
so that G(Aa) = C + ak



Computing a and d

Suppose a major locus influences plant height, with
the following values

Genotype aa Aa AA

Trait value 10 15 16

C =[G(AA) + G(aa)l/2 = (16+10)/2 =13
a = [G(AA) - G(aa)]/2 = (16-10)/2 = 3
d = G(Aa)] - [G(AA) + G(aa)]/2

=G(Aa)] -C=15-13=2

Population means: Random mating

Let p = freq(A), g = 1-p = freg(a). Assuming
random-mating (Hardy-Weinberg frequencies),

Genotype aa Aa AA
Value C-a C+d C+a
Frequency o? 2pq p?

Mean = g?(C - a) + 2pq(C + d) + p?(C + a)

Urm = C + alp-q) + d(2pq)
A \

Contribution from Contribution from
homozygotes heterozygotes 12



Population means: Inbred cross F,

Suppose two inbred lines are crossed. If A is fixed
in one population and a in the other, thenp = g = 1/2

Genotype aa Aa AA
Value C-a C+d C+a
Frequency 1/4 1/2 174

Mean = (1/4)(C - a) + (1/2)(C + d) + (1/4)( C + a)
Ugy =C + d/2

Note that C is the average of the two parental lines, so when d
> 0, F, exceeds this. Note also that the F; exceeds
this average by d, so only half of this passed onto F,. 13

Population means: RILs from an F,

A large number of F, individuals are fully inbred, either by selfing
for many generations or by generating doubled haploids. If p an
g denote the F, frequencies of A and a, what is the expected
mean over the set of resulting RILs?

Genotype aa Aa AA
Value C-a C+d C+a
Frequency g 0 P

Ups =C + alp-9)

Note this is independent of the amount of dominance (d)
14



The average effect of an allele

e The average effect a, of an allele A is defined by the
difference between offspring that get allele A and a
random offspring.

— o, = mean(offspring value given parent transmits
A) - mean(all oftspring)

— Similar definition for a,.

* Note that while C, a, and d (the genotypic
parameters) do not change with allele frequency, a,
is clearly a function of the frequencies of alleles with
which allele x combines.

Random mating

Consider the average effect of allele A when a parent is randomly-
mated to another individual from its population

Suppose parent contributes A

Allele from other Probability | Genotype Value
parent

A 0 AA C+a

a q Aa C+d

Mean(A transmitted) = p(C + a) + q(C + d) = C + pa + qd
o, = Mean(A transmitted) - u = ga + d(g-p)]



Random mating

Now suppose parent contributes a

Allele from other Probability | Genotype Value
parent
A P Aa C+d
a g aa C-a

Mean(a transmitted) = p(C + d) + gq(C-a) = C - ga + pd

o, = Mean(a transmitted) - u = -p[a + d(g-p)]

a, the average effect of an
allelic substitution

e o =aq,-a,isthe average effect of an allelic
substitution, the change in mean trait value when an
a allele in a random individual is replaced by an A
allele

- a = a + d(g-p). Note that
e a4, =qo anda, =-po.
* Eloy) = pan + qa, = pqa - gpa =0,
* The average effect of a random allele is zero,

hence average effects are deviations from the
mean



Dominance deviations

* Fisher (1918) decomposed the contribution
to the genotypic value from a single locus as
Gij=M+0Li+ocj+6ij

— Here, n is the mean (a function of p)
— o, are the average effects

— Hence, u + o, + o is the predicted genotypic
value given the average effect (over all
genotypes) of alleles i and j.

— The dominance deviation associated with
genotype G; is the difference between its true
value and its value predicted from the sum of
average effects (essentially a residual)

Fisher's (1918) Decomposition of G

One of Fisher’s key insights was that the genotypic value
consists of a fraction that can be passed from parent to
offspring and a fraction that cannot.

In particular, under sexual reproduction, parents only
pass along SINGLE ALLELES to their offspring

Consider the genotypic value G; resulting from an
AA individual

Gij=uG+oci+ocj+6ij
Average contribution to genotypic value for allele i



Gij=MG+oci+ocj+6ij

Since parents pass along single alleles to their
offspring, the a; (the average effect of allele i)
represent these contributions

The average effect for an allele is POPULATION-
SPECIFIC, as it depends on the types and frequencies
of alleles that it pairs with

The genotypic value predicted from the individual
allelic effects is thus —

21

Gij=MG+oci+ocj+6ij

The genotypic value predicted from the individual
allelic effects is thus —

Dominance deviations --- the difference (for genotype
AA) between the genotypic value predicted from the
two single alleles and the actual genotypic value,

Gij B G\ij = 6ij

22
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Fisher's decomposition is a Regression
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Gi'=MG+ai+aj+6ij

Predicted value

A notational change clearly shows this is a regression,

G; = ug + 204 +(a, —oy) N + 9

Independent (predictor) variable N = # of A, alleles

Note that the slope a, - o, = a, the average effect

of an allelic substitution

23

Residual error

24



Intercept Regression slope
20 forN =0, e.g, A;A,
200 + (a2 —a1))N = a1 +ap forN =1, e.g, A1 Az
20 forN =2, e.g, A2A5

A key point is that the average effects change with
allele frequencies. Indeed, if overdominance is present
they can change sign with allele frequencies.

25

Allele A, common, a, > a,

x

G .Gzz

* Gy

0 1 2
N

The size of the circle denotes the weight associated with
that genotype. While the genotypic values do not change,

their frequencies (and hence weights) do.
26



Allele A, common, a, > a,

Gy, Slope = a, - o

G - Gy,

Again, same genotypic values as previous slide, but
different weights, and hence a different slope

(here a change in sign!)
27

Both A, and A, frequent, a; = a,=0

‘ G

® G

N

0 1 2

With these allele frequencies, both alleles have the same
mean value when transmitted, so that all parents have the
same average offspring value -- no response to selection

28



Average Effects and Additive Genetic Values

The a values are the average effects of an allele

A key concept is the Additive Genetic Value (A) of
an individual

A(Gij) = o, + o

J

mn

A = Z (agk) + agﬂ)

k=1

ol = effect of allele i at locus k

A is called the Breeding value or the Additive genetic

value
29

Why all the fuss over A?

Suppose pollen parent has A = 10 and seed parent has
A = -2 for plant height

Expected average offspring height is (10 - 2)/2
= 4 units above the population mean. Offspring A =
average of parental A's

KEY: parents only pass single alleles to their offspring.
Hence, they only pass along the A part of their genotypic

value G
30



Genetic Variances

Writing the genotypic value as

Gij = ug + (o + ocj) + 9;

The genetic variance can be written as

ZU CING +Z (6)

This follows since
o%(G) = 0 (uy + (o + o) + 8i5) = 0%(c; + ;) + 02(8;5)
As Cov(a,d) =0

31

Genetic Variances

o*(G) = ZU —+—a(k) -I—Za (M

Additive Genetic Variance

(or simply Additive Variance) Dominance Genetic Variance

(or simply dominance variance)

Hence, total genetic variance = additive + dominance
variances, 2

_ 2 2
oG = Ox + 0p

32



Key concepts (so far)

o, = average effect of allele i

— Property of a single allele in a particular population
(depends on genetic background)

A = Additive Genetic Value (A)

— A = sum (over all loci) of average effects

— Fraction of G that parents pass along to their offspring

— Property of an Individual in a particular population
Var(A) = additive genetic variance

— Variance in additive genetic values

— Property of a population

Can estimate A or Var(A) without knowing any of the
underlying genetical detail (forthcoming)

33

| Q,Q; Q4 Q,Q,
o4 =2E[a?]=2) o?pi 0 a(l+k) 2a
o Since E[a] =0,
Var(a) = E[(or -u,)?] = E[0?]
One locus, 2 alleles: 0% =21 214k (p1—p2) )2

Dominance alters
additive variance

When dominance present, Additive variance is an
asymmetric function of allele frequencies

34



Dominance variance Q,Q, Q,Q, Q,Q,
0 a(1+k) 2a

oh= E®] =) & pp

i=1 j=1

Equals zero if k=0

A
One locus, 2 dlleles: 0% = (2py po ak)?

This is a symmetric function of
allele frequencies

Can also be expressed in terms of d = ak

35

Additive variance, V,, with no dominance (k = 0)

.2 o.d L} L] 1

Allele frequency, p

36



Complete dominance (k = 1)

Allele frequency, p

37

Epistasis

Giju = be + (04 + aj +ag +a;) + (65 + O;)
+ (aaik + aai + aogk + aajr)
+ (adikt + adjki + adrij + adiij)
+ (80i k1)
=puc+A+D+ AA+ AD+ DD

These components are defined to be uncorrelated,
(or orthogonal), so that

084 =04+0%H+0%4+0%p +0Hp

38



Gijkl = ug + (al- + o+ ag +az) -+ (5ij + dkj)
+ (aik + aail + aogk + aogt)
+ (adirt + adjri + odkij + adiij)
+ (651']'“)
—puc+A+D+AA+ AD + DD

Additive x Additive interactions -- oo, AA
interactions between a single allele
at one locus with a single allele at another

Additive x Dominance interactions -- ad, AD
interactions between an allele at one

locus with the genotype at another, e.g.
allele A; and genotype By

Dominance x dominance interaction --- 8§, DD

the interaction between the dominance

deviation at one locus with the dominance

deviation at another. 2
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Heritability

* Central concept in quantitative genetics
* Fraction of phenotypic variance due to
additive genetic values (Breeding values)
— h2=V,/V;
— This is called the narrow-sense heritability

— Phenotypes (and hence V;) can be directly
measured

— Breeding values (and hence V,) must be
estimated
® Estimates of Vv, require known collections of
relatives



Broad-sense heritability

e Narrow-sense heritability h? applies when
outcrossing,
— h2 = Var(A)/Var(P)
— = the fraction of all trait variation due to variation

in breeding (additive genetic) values

e Broad-sense heritability H? applies when
selecting among a series of pure lines
— H2 = Var(G)/Var(P)

— = the fraction of all trait variation due to
variation in Genotypic values

Defining H? for Plant Populations

Plant breeders often do not measure individual plants
(especially with pure lines), but instead often measure a plot or
a block of individuals.

This replication can result in inconsistent measures of H? even for
otherwise identical populations.

Let z,, denote the value of the I-th replicate in plot k of genotype i
in environment j. We can decompose this value as

Zyy = G+ B + GE; + py + ey
AN

deviations of individual
Effect of the k-th plot plants within this plot

4



Suppose we replicate the genotype over e environments,
with r plots (replicates) per environment, and n individuals
per plot.

If we set our unit of measurement as the average over
all plots, the phenotypic variance for the mean of line
i becomes
2 2 2
2, > 2, 2, 9E 9% , Oe
o (z)=og+og+ —+ -
e er ern

Thus, Vp, and H2 = Vg/V,, depend on our choice of e, 1, and n

In order to compare board-sense heritabilities we need to use a
consistent design (same values of e, r, and n)

Key observations

® The amount of phenotypic resemblance
among relatives for the trait provides an
indication of the amount of genetic variation

for the trait.

e |f trait variation has a significant genetic
basis, the closer the relatives, the more
similar their appearance

* The covariance between the phenotypic
value of relatives measures the strength of
this similarity, with larger Cov = more
similarity



Genetic Covariance between relatives

Sharing alleles means having alleles that are identical by
descent (IBD): both copies can be traced back to a
single copy in a recent common ancestor.

Genetic covariances arise because two related individuals
are more likely to share alleles than
are two unrelated individuals.

A4 N/

No alleles IBD One allele IBD

Both alleles IBD



Resemblance between relatives and
variance components

* The phenotypic variance between relatives
can be expressed in terms of genetic
variance components
- Cov(z,,z,) = a,)Vp + b, Vp.

— The weights a and b depend on the nature of the
relatives x and y, and are measures of how often

they are expected to share alleles identical by
descent

— These are critical in predicting selection response

Parent-offspring genetic covariance

Cov(Gp, G,) --- Parents and offspring share
EXACTLY one allele IBD

Denote this common allele by A,

Gp = Ap+ Dp = (gt @ Dix
Go= Ao+ Do i\Dw
7

IBD allele Non-IBD alleles



Cov(Go,Gp) = Cov(ay + oz + D1z,a1 + ay + D1y
= Cov(a1, ) +C ay) +C D1y)

+Co a;)+Co ay) + , D1y)
+ z, 1) + 12,0Qy) + MLDW)

All blue covariance terms are zero.

* By construction, a and D are uncorrelated

* By construction, a from non-IBD alleles are
uncorrelated

« By construction, D values are uncorrelated unless
both alleles are IBD “

Con ) {O if x #vy, i.e., not IBD
ov(ag,ay) = : :
Y Var(A)/2 ifz=vy, ie.,IBD

Var(A) = Var(a; + ay) = 2Var(a;)

so that
Var(ai) = Cov(ai,a1) = Var(A)/2

Hence, relatives sharing one allele IBD have a
genetic covariance of Var(A)/2

The resulting parent-offspring genetic covariance
becomes Cov(Gp,GO) = Var(A)/2



Half-sibs

/?.”\

Each sib gets exactly one
allele from common father,
different alleles from the
different mothers

® O

The half-sibs share no alleles IBD
* occurs with probability 1/2

Hence, the genetic covariance of half-sibs is just
(1/2)Var(A)/2 = Var(A)/4

Full-sibs

Father Mother

Each sib gets
exact one allele
from each parent

Sib 1 Sib 2

Prob(Allele from father IBD) = 1/2. Given the allele in parent

one, prob = 1/2 that sib 2 gets same allele

Prob(Allele from father not IBD) = 1/2. Given the allele in

parent one, prob = 1/2 that sib 2 gets different allele



Full-sibs

Father Mother

&

Paternal allele not IBD [ Prob = 1/2]
Maternal allele not IBD [ Prob = 1/2 ]
Prob(sibs share 0 alleles IBD) = 1/2*1/2 = 1/4

Each sib gets
exact one allele
from each parent

Father Mother

Each sib gets
exact one allele
from each parent

&

Paternal allele IBD [ Prob = 1/2]
Maternal allele IBD [ Prob = 1/2]
Prob(sibs share 2 alleles IBD) = 1/2*1/2 = 1/4

Prob(share 1 allele IBD) = 1-Pr(0) - Pr(2) = 1/2



Resulting Genetic Covariance between full-sibs

| BD alleles Probability Contr ibution
0 174 0
1 1/2 Var(A)/2
2 1/4 Var(A) + Var( D)

Cov(Full-sibs) = Var(A)/2 + Var(D)/4

Genetic Covariances for General Relatives

Let r = (1/2)Prob(1 allele IBD) + Prob(2 alleles IBD)
Let u = Prob(both alleles IBD)

General genetic covariance between relatives
Cov(G) = rVar(A) + uVar(D)

When epistasis is present, additional terms appear
r2Var(AA) + ruVar(AD) + u2Var(DD) + r3Var(AAA) +



More general relationships

* To obtain the expected covariance for any
set of relatives, we normally need only
compute r and u for that set of relatives

¢ With general inbreeding, becomes more
complex (as three other terms, in addition to
V, and Vj arise)

¢ With crosses involving inbred and/or related
parents, values for r and u are different from
those presented above.

Coeftficients of Coancestry

Suppose we pick a single allele each at random from
two relatives. The probability that these are IBD is
called ©, the coefficient of coancestry. In terms of our
previous notation, 20 = r = the coeff on Var(A)

®,, denotes the coefficient for relatives x and y

Consider an offspring z from a (hypothetical) cross

of xandy. ®,, = f,, the inbreeding coefficient of z.

Why? Because the offspring of x and y each get a
randomly-chosen allele from each parent. The probability
f, that both alleles are IBD (the probability of inbreeding)
is thus just ©,,.

20



0 and the coefficient on V,

e The coefficient on the additive variance for
the relatives x and y is just 26,,.

® To see this,

— let AA denote the two alleles in x and A/A those
iny.

— Cov(breeding values) = Pr(A, ibd A,) cov(a, o) +
Pr(A, ibd A) cov(a,a) + Pr(Aj ibd A) cov(ocj, o) +
Pr(AJ- ibd A) cov(cxj,oq) =4 GXyVar(oc)

— Since Var(A) = 2Var(a), Cov = 2 BxyVar(A)

21

©,.: The Coancestry of an individual
with itself

Self x, what is the inbreeding coefficient of its offspring?

To compute 0,,, denote the two alleles in x by A; and A,

XX

Draw A;  Draw A,
Draw A,  IBD f,

Draw A, f IBD

X

Hence, for a non-inbred individual, ©,, = 2/4 = 1/2

If x is inbred, f, = prob A, and A, IBD, O, = (1+1)/2

22



Example

A B C D Consider the following pedigree
\ / \/ Suppose A and D are fully-inbred,
E F and related, lines with 8,5 = 0.5.
\ / Further, B and C are unrelated and

G outcrossed individuals

Individual Al B C |D
F, 1 0 0 |1
0,.=1+F)21[1/2{1/2]1

23

The Parent-offspring Coancestry

Let A,, A, denote the two alleles in the offspring, where
A, is the allele from the nonfocal parent (NP), while
A, ,Ap are the two alleles in the focal parent (P)

Offspring
Draw A;  Draw A,
+qc—)= Draw A, IBD G)Pﬁ"-\.l_P
© < Prob(A,,A), the alleles
a. Draw AP f ® from the two parents are |1BD,
> P PNP

i.e., offspring is inbred
A, A, IDB if
parent is inbred

For a non-inbred individual, ®y, = 1/4
General: Opo = (1 + 1, +20p\p)/4 = (1 +1,+ 2f)/4 | 2



®,, = Parent & Offspring

Parent inbred

( fp} Offspring inbred

Paternal allele

Mother o P

@ ® @) L
. VI v |
Oftspring ) o ? f, l
1 1+ f
Opo = — Gpo=_4B Bpo = —1+jf°
1/2 = Prob random offspring allele
from father. Prob = 6, = f, that this
allele is IBD to mother giving
a contribution of f_/2
1
Opo = 2(1 + fp+ 29rr']f )
™ This is just 2f, .
From before
A B

¢ D 0pn=Opp = 1; Bgg = Bcc = 1/2;

a8 = Oac=0sc=0p= 6cp=0

N/
E F
NS
G

Consider A - E (inbred parent - offspring)
Opp = (1+f2)/4 = (1+1)/4 = 1/2. Same value for O

Consider B - E (outbred parent - offspring)
Oge = (1+fg)/4 = (1+0)/4 = 1/4. Same value for B¢

Consider E - G (outbred parent - offspring)
O = (1+f0)/4 = (1+0)/4 = 1/4. Same value for O

26



From before

A B C D
Oan=0Opp=1; Ogg = 0= 1/2;
NN -
E F O3 = Oac=0sc=0p= Ocp=0
NS
G

What about 6 ?

The randomly-chosen allele from E has equal chance
of being from A or B. Likewise for F (from C or D)

Of these four possible combinations (A&C, A&D, B&C, B&D), only

an allele from A and an allele from D have a chance of being
IBD, which is 6,5 = 1/2.

Hence, O = 0,5/4 = 1/8

27

Full sibs (x and y) from parents m and f

©=1/8+1/8=1/4 0 =2 +f,+1f)/8
/2
‘@ T ‘@ T

|
O O o O

(1/2)(1/2)(1/2) (1/2)(1/2)(1/2) [(1 +f. )/2] (1/2)(1/2) [(1 +F,)/2] (1/2)(1/2)
Unrelated, non-inbred

Unrelated, inbred
parents

parents

28



Full sibs (x and y) from parents m and f

O O f
X N

f @ f

]
o6 I

i (172)(172) O /4
Parents inbred & related.
Two additional paths to add
to @ =(2+f_+f)/8

C)

This gives |0 = (2+f_+f;+4 © /8

29

Full sibs (x and y) from parents m and f

O, = 2+1f,+f+406,)/8

\/ \/

fe= O g f =0

\/ m

Putting all th|s together gives

sm,dm

= (2 + 0O + ®Sf,df + 4®mf)/8 30

sm,dm




Example

From before

NY N eAD 12, eEF /8,
E F Op = Oac = Bgc = Bgp= Bcp = 0
"\ P
S..S,

= (2 + 0,5 + Ocp + 40;)/8

0s1,=(2+0+ 0+ 4[1/8]))/8 =(4 + 1)/16 = 5/16

31

Half-sibs

B A C A is the common parent
NSO\
E F
e Using the same arguments as above,
Ocr = (Ban + Oap + Bac + Bp0)/4
= ([1 +1,l/2 + 0,5 + O, + 0g)/4

Hence, if B and C unrelated,

32



Computing 6, -- The Recursive Method

* There is a simple recursive method for generating the elements A;
=26, of a relationship matrix (used for BLUP selection). For ease of

reading, we use the notation A(i,j) = A
Basic idea is that the founding individuals of the pedigree are

ij

assumed to be unrelated and not inbred (although this can also

be accommodated). These founders are assigned values of
Ali) = 1.

Likewise, any unknown parent of any future individual is assumed to be

unrelated to all others in the pedigree and not inbred, and they are
also assigned a value of A(i,i) = 1.

i. For this offspring A(i,i) = 1 + A(S;, D))/2

Let S, and D, denote the sire and dam (father and mother) of individual

Ali) = A = TAGS) + A(D)I2 = [A,S) + Ali,D)I/2
The recursive (or tabular) method starts with the founding parents and

then proceeds down the pedigree in a recursive fashion to fill out A for
the desired pedigree.

s

Mistletoe

7

6 Mimulus 7

A

1

Example

Lord Raglan

Champion of
England

b

Grand Duke
of Gloster

/

Royal Duke
of Gloster

O

I
11

Roan

\\

4 Duchess of 5

Gloster, 9th

|
B>
Royal

e

Gauntlet

33

Ancestors are 1 & 2

The Czar

3,4,5, 8all have
unknown parents
(only a single
arrow to them)

3: S;3=1, D3 =Unknown, A(3,3) =1+ A(S;D3)/2 =1+ A(1,unk)/2 = 1
A(1,3) = [A(1,S3) + A(1,D3)172 = [A(1,1) + A(T,unk)l/2 = 1/2.
Note also that A(1,4) = A(1,5) = 1/2, A(4,4) = A(5,5) = 1.
AB3,4) = [A(3,S,) + ABB,D, 172 = [AB3,1) + AB,unk)l/2 = (1/2+0)/2 = 1/4.

Same for A(3,5) = 1/4. 2 is unrelated to 3, 4, 5, giving A(2,3) = A(2,4) = A(2,5) = 0.
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6

1

/ e \

Champion of 4 5
Mistletoe England oster The Czar
@ j/ Gloster, 9th SO .Far
Grand Duke l/
@ 7 of Gloster 8 1 2 3 4 5
/ L1 0 1/2 1/2 1/2
4 2 0 1 0 0 0
: 10 312 0 1 1/4 1)
9 e > Va0 1
™ 5 1/2 0 1/4 1/4 1
Gauntlet 1 1
6: Sy =2,D,=3. A(6,6) =1+ A(S,, D)2=1+A23)/2=1
A6,1) = [A(1, Sp) + A(1, DIV2 = [A(1,2) + A(1,3))/2 =[0 + 1/2]/2 = 1/4
A6,2) = [A(2, Sg) + A2, DI/2 = [A(2,2) + AR3)/2=[1+0]/2=1/2
A6,3) = [A3, Sy + A3, DI’2 = [AB,2) + AB)/2=[0+1)/2=1/2
A6,4) = [A4, Sy + A4, DI/2 = [A@4,2) + A(43)1/2=[0+1/4]/2=1/8
A(6,5) = [A(5, S) + A5, DI/2 = [A(5,2) + A(5,3)]/2 = (0+1/4)/2 = 1/8
7: S;=2,D,=4. A7, 7)=1+AS;,D;)/2=1+A2,4)/2=1+0/2=1
A6,7) = [A(6, S;) + A6, D,)I/2 = [A(6, 2) + A6, 4)]/12 = (1/2 +1/8)/2 = 5/16
8: Sg=5,Dg=unk. A8,8) =1+ A(Sg Dgl/2 =1+ A(5,unk)/2 = 1.
A(6,8) = [A(6, Sg) + A6, Dg)l/2 = [A(6, 5) + A6, unk)l/2 = (1/8)/2 = 1/16
9: Sg=7,Dg=6. A9,9) =1+ A(S,, Do)/2 =1+ A(6,7)/2=1+5/32 =1.156 <- inbred!
35

Actual relatedness versus expected values from
pedigrees

Values for the coefficient of coancestry (6) and the
coefficient of fraternity (A) obtained from pedigrees
are expected values. Due to random segregation of
genes from parents, The actual value (or realization)
can be different.

For example, we expect 260 to be 2 for full subs. However,
one pair of sibs may actually be more similar (0.6) and
another less similar (say 0.35). On average, 20 is 2

for pairs of full sibs, but if we knew the actual value

of 8, we have more information. With sufficient

dense genetic markers, we can estimate these
relationships directly.

Genomic selection uses this extra information. 36



What about coefficient of coancestry 0 ?

Genotype of
Genotype of 7 1 10 00
11 1 0.5 0
10 0.5 0.5 0.5
00 0 0.5 1

One computes the coefficient of coancestry for each SNT, taking the average value over all
loci as the coefficient of coancestry for that pair of individuals. Toro et al. (2002) refer to this
as molecular coancestry. Note that we can com pare an individual with itself (i = j), which
returns 1 for each homozygouslocus and 1/2 for each heterozygous loci.

37

Genotype of 7
Genotype of 5 11 10 00
1 1 0.5 0
10 0.5 0.5 0.5
00 0 0.5 1

Indivx: 00 00 10 10 00 10 11 00 11 00

Indivy: 10 00 11 11 10 11 11 10 11 10

Locus-specific - 05 1.0 05 05 05 05 10 05 10 05

Estimated 0 is the average over all ten loci, = 0.65
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The coefficient of fraternity

e While (twice) the coefficient of coancestry gives the
weight on the additive variance for two relatives, a
related measure of IDB status among relatives gives
the weight on the dominance variance

* The probability that the two alleles in individual x are
IBD to two alleles in individual y is denoted A, , and
is called the coefficient of fraternity.

* This can be expressed as a function of the
coefficients of coancestry for the parents of (mx and
fx) of x and the parents (my and fy) of y.

- Axy - emxmyafxfy_i_ E)mxfyafxmy

39

The coefficient of fraternity (cont)

e x and y can have both alleles IBD if

— The allele from the father (fx) of x and the father (fy) of y are
IDB (probability 85,) AND the allele from the mother (mx)
of x and the mother (my) of y are IDB (probability 6 ), or
efxfy emxmy

— OR the allele from the mother (mx) of x and the father (fy) of
y are IDB (probability 0,,,4) AND the allele from the father
(fx) of x and the mother (my) of y are IDB (probability Oermy)
Oramﬁye&my

— Putting these together gives

* Axy - emxmyefxfy-l_ 0

mxmy:

mxfyefxmy

40



A,,. The Coefficient of Fraternity

A, = Prob(both alleles in x & y IBD)

Ot Oty 0

© ] O
N\
O O

Axy - emxmyefxfy

.F

X

+ emxfyefxmy

Examples of A, : Full sibs

e Full sibs share same mon, dad
- m,=m,=m, fx=fy=f

- Axy = emxmyefxfy + emxfyefxmy
- Ay = 1+ )1+)/4 + 0,7

* |f parents unrelated, 6;, = 0, giving
— A, = (14 )(1+F)/4

* If parents are unrelated and not inbred,
~ A, =1/4

y
_ 2
- 6mmeﬁ + emf

41
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Examples of A, : Half sibs

e Paternal half sibs share same dad, different
moms

-f=1f,=f me,andm,

- Axy = 8mxmyefxfy + emxfyefxmy = emxmyeﬁ‘ + emxf E)myf
- Axy = emxmy (1 -'--Fm)/2 + emxf 6my1c

e |f mothers are unrelated to each other and to
the common father, 0, = 06 = 0,6 = 0,
giving
- Axy =0

43

When is A non-zero?

* Since A, = 0,,,054 + 0
* A nonzero value for A requires either

— That the fathers of both x and y are related
AND the mothers of both x and y are
related

— OR that the father of x is related to the
mother of y AND the mother of x is
related to the father of y

mxfyefxmy

44



From before

A B C D eAA Oop=1; O35 = O = 1/2;
NS\ = 1/2, B = 1/8,
E F 9 =0pc=05c=0gp= Bcp=0
%
51,5,

What is A for the full sibs (S, and S,)?

Ay = OrmxmyOny + 0 = OgeOpr + Og”

Xy mxmy mxfyefxmy

= (1/2)(1/2) + (1/8)2
= 1/4 + 1/64 = 17/64 = 0.266

45

A,, and the coefficient on Vp

e The coefficient on the dominance variance for the
relatives x and y is just A, .

e To see this,
— let A/A denote the two alleles in x and A A, those
iny.
— Suppose that alleles i and k come from the

mothers of these two relatives and alleles j and |
from their fathers.

— Cov(dominance values) = Pr(A; ibd A, A |bd A)
cov(d;, Oy) + Pr(A; ibd A A |bd Ak)cov(é )

= (054, 0rrxmy T Oty Bjxmy) Var(D) A, Var(D)

46



Estimating relationships using
molecular data

With SNP data, treat identity in state (also
called alike in state, AlS) as IBD

Suppose the genotypes of two individual at 10 SNPs are

Indivx: 00 00 10 10 00 10 11 00 11 00

Indivy: 10 00 11 11 10 11 11 10 11 10

) 1 )

3/10 loci have A, = 1, so average A, over all loci is
0.3*1=0.3 4

General Resemblance between
relatives

281:3/ = Tzy, Ugy = A:cy

CO’U(G:C, Gy) - 263;yVA + A:cy‘/D

COU(G% Gy) — 281‘yVA -+ A:z:yVD
+ (202y)°Vaa + 20yA 2y Vap + A2, Vop + - -

48



Example

A B C D
\ / \‘ ‘/ We found for full sibs S, S, that
E, F 0=5/16,hence26 =5/8;, A=17/64
N ¢
S1’SZ

Expected genetic covariance between this sibs is

(5/8)Var(A) + (17/64)\Var(D) + (5/8)2Var(AA) +
(5/8) (17/64)Var(AD) + (17/64) 2Var(DD) + -

49

Autotetraploids

Peanut, Potato, alfalfa, soybeans all examples
of crops with at least some autotetraploid
lines

With autotetraploid, four alleles per locus,
with a parent passing along two alleles to an
offspring

* As aresult, a parent can pass along the
dominance contribution in G to an offspring

Further, now there are four variance
components assocated with each locus

50



Genetic variances for
autotetraploids

e G=A+D+T+Q

— A (additive) and D (dominance, or digenic effects)

as with diploids

— T (trigenic effects) are the three-way interactions
among alleles at a locus

— Q (quadrigenic effects) are the four-way

interactions at a locus

e Total genetic variance becomes
- Vg =V, +Vp+V;+ Vg

Resemblance between
autotetraploid relatives

Relatives | V, | Vo | V7 | Vg
Half-sibs 174 | 1/36

Full-sibs 1/2 1 2/9 | 1/12 | 1/36
Parent | 472 | 1/6

-offspring

Assumes unrelated, non-inbred parents
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Lecture 3
Estimation of genetic
variances

Bruce Walsh lecture notes
Introduction to Quantitative Genetics
SISG, Brisbane
6 -7 Feb 2017

Heritability

Narrow vs. broad sense

Narrow sense: h? = V,/V,

Slope of midparent-offspring regression
(sexual reproduction)

Broad sense: H? = V/V,

Slope of a parent - cloned offspring regression
(asexual reproduction)

When one refers to heritability, the default is narrow-sense, h?2

h2 is the measure of (easily) usable genetic variation under
sexual reproduction



Why h? instead of h?

Blame Sewall Wright, who used h to denote the correlation
between phenotype and breeding value. Hence, h?is the
total fraction of phenotypic variance due to breeding values

r(AP)—a(A’P)— 031 _U_A_h
'/ gaop ocaocp oOp

Heritabilities are functions of populations

Heritability values only make sense in the content of the population
for which it was measured.

Heritability measures the standing genetic variation of a population,
A zero heritability DOES NOT imply that the trait is not genetically
determined

Heritabilities are functions of the distribution of
environmental values (i.e., the universe of E values)

Decreasing V; increases h?.

Heritability values measured in one environment
(or distribution of environments) may not be valid
under another

Measures of heritability for lab-reared individuals
may be very different from heritability in nature



Heritability and the prediction of breeding values

If P denotes an individual's phenotype, then best linear
predictor of their breeding value A is

o(P, A
AZ%(P—up)Jre:hz(P—upHe

The residual variance is also a function of h?;

oc = (1= h%)oy

The larger the heritability, the tighter the distribution of true
breeding values around the value h?(P - u;) predicted by
an individual's phenotype.

Heritability and population divergence

Heritability is a completely unreliable predictor of
long-term response

Measuring heritability values in two populations that
show a difference in their means provides no information
on whether the underlying difference is genetic



Sample heritabilities

People

hs

Height

0.80

Serum IG

0.45

Pigs

Back-fat

0.70

Weight gain

0.30

Litter size

0.05

Fruit Flies

Abdominal Bristles

0.50

Body size

0.40

Ovary size

0.3

Egg production

0.20

Traits more closely
associated with fitness
tend to have lower
heritabilities

Basic approach to estimating genetic

variances

Different crosses are made, which allow us to
express the covariance between relatives
(which are functions of the genetic variances)
with the variance between measured groups.
Between-group variances estimated by ANOVA

For example, variance between the means of
full-sib families = cov(full sibs) = Var(A)/2
+ Var(D)/4 + Var(Ec)



Types of crosses (mating designs)

* Parent-offspring

e Full sib

e Half sib

* Nested full sib/half sib

— North Carolina (NC) design one: all males
crossed to same set of females

— NC design two: males crossed to random
(different) females

e dialleles

ANOVA: Analysis of variation

e Partitioning of trait variance into within- and among
-group components
e Two key ANOVA identities
— Total variance = between-group variance +
within-group variance
e Var(T) = Var(B) + Var(W)
— Variance(between groups) = covariance (within
groups)
— Intraclass correlation, t = Var(B)/Var(T)

® The more similar individuals are within a group (higher within
-group covariance), the larger their between-group differences

(variance in the group means)



Situation 1 Situation 2

) ¢ °
- B
° H s M
° o }- !
+ -'- T
] 2 s
. ][ I
. °
[ 3 [ ] [ )
® [ ]
° H °
1 2 5 4 T2 3 4
Var(B) = 2.5 Var(B) =0
Var(W) = 0.2 _ B Var(W) = 2.7 t=0
Var(T) = 2.7 £=25/27=093  \amy =27

Why cov(within) = variance(among)?

* Letz; denote the jth member of group i.
— Herez;=u+ g+ ¢
— g; is the group effect
— ¢; the residual error

* Covariance within a group Cov(z;,z )

—=Coviu+g,+e,u+g +ey

i
— = Cov(g, g, as all other terms are uncorrelated
— Cov(g;, gy) = Var(g) is the among-group variance



Estimation: One-way ANOVA

Simple (balanced) full-sib design: N full-sib families,
each with n offspring: One-way ANOVA model

Trait value in
sib j from
family i

Deviation of sib j
Common Mean from the family

\ / mean

zij=u+fi+wij

\

Effect for family i =
deviation of mean of i from
the common mean

Mating Designs

FULL-SIB DESIGN: N full-sib families with n offspring each.

®@® 0O 00 OO

AN AN AN AN

@0 0o @000 CNONONO CNONONe

z; = phenotype of the j- th offspringof thei- th family
| = population mean
zZ.. = + 7. +wW.
y u ﬁ W’J f, = effectof thei-th family
w;; = residual error (segregation, dominance, environmental contribution)

within - family vaiance

SoV df SS MS EMS

" 2 2
Among-families  N-1 SSf _ ”E,—(Ei. _5)2 SSy/dfy, GW(FS) + no~f

- . _ =52
Within-families  n(N-1) SS,, = Ei,f (Zij z, )" SS/dfy,

2
O,Fs)




Covariance between members of the same group
equals the variance among (between) groups

Cov/(Full Sibs)

(25, 2ik )

[(u+ fi+wij), (n+ fi + wi)]

(fis fi) + o(fi,wir ) + o(wiz, fi) + o(wij, wik )
2

f

o
o
o
o

Hence, the variance among family effects equals the
covariance between full sibs

0% =04/2+0%/4+ 0%,

The within-family variance o2, = 0% - 0%,

oursy =0p — (04/2+0p/4+0k.)
=04i+0b+ot—(04/2+0b/4+ o%.)
= (1/2)0% + (3/4)0b + o — 0%,



One-way Anova: N families with n

sibs, T = Nn
Factor Degrees of Sums of Mean sum of | E[ MS ]
freedom, df Squares (SS) squares
(MS)
Among-family | N-1 ssF; SS/IN-D | 02, +nOZ
nY  (zi—z)
i=1
Within-family | T-N SSy = $S,/(T-N) ozw
N n
33 (e i
i=1 j=1
17
Estimating the variance components:
MS f— MSw
Var(f) =
n
Var(w) =
Var(z) =V ( ) + Var(w)

Since 0% =0%/2+ 0pH /4 + 0

2Var(f) is an upper bound for the additive variance



Assigning standard errors ( = square root of Var)

Fun fact: Under normality, the (large-sample) variance
for a mean-square is given by

2(MS )2

2 x

0" (MS,) ~ df_+2
2(MS,,)?
T—N+2

Var| Var(w(F'S)) | = Var(MS,,) =~

Var[ Var(f)] = Var [Msf ;Msw]

2 ((MS,f | (S,)

Estimating heritability

V. 1 02, /4 + o2
tpg = a’r(f) _ —h2—|— D/ E.

Var(z) 2 o2

Hence, h? < 2t

An approximate large-sample standard error
for h? is given by

SE(h?) ~ 2(1 — trs)[1 + (n — 1)trs]V/2/[Nn(n — 1)]

20



Worked example

10 full-sib families, each with 5 offspring are measured

Factor Df SS MS EMS
Among-familes 9 SS; = 405 45 0.2W +5 0_2f
Within-families 40 SS,, = 800 20 2

0%y

MSfy— MS, 45— 20
Var(f) = —1—" =~

Var(w) = MS,, =20
Var(z) = Var(f) + Var(w) =25

=5 — V,<10

h2< 2 (5/25) = 0.4

SE(h2) =~ 2(1 — 0.4)[1 + (5 — 1)0.4]/2/[50(5 — 1)] = 0.312

21

Same approach works
using half-sib families

22



Mating Designs

HALF-SIB DESIGN: N half-sib families with n offspring each.

AN AN AN
PITT T TIIT

z; = phenotype of the j- th offspringof the i - th family
Zij = U+ ]fl + Wij W = population mean
—_— — f; = effectof thei- th family
w; = residual error (segregation, dominance, environmental contribution)

within - family varnance

SoV df sS MS EMS
Among-families  N-1 - = SSy/df 2 2

° SS; = nE[(Zi, -z} /o O,rs) THO;
Within-families  n(N-1) SIS = Ei j(Zi/' _ 5,-.)2 55,/df,, szv(FS)

23

Mating Designs

HALF-SIB DESIGN: N half-sib families with n offspring each.

z; = phenotype of the j- th offspringof thei- th family
W = population mean
Z.=Uu+J. +w.
y s L y f, = effectof thei-th family
w;; = residual error (segregation, dominance, environmental contribution)

within - family varance

SoV df sS MS EMS
Among-families  N-1 S SS./df 2 2

° S8, = ”E,-(Zi. -z} /ety O.rs) THO
Within-families  n(N-1)  SS = El_ ,.(Z,j —Zz,)?  ss/dfy, OVZV(FS)

MS, -MS,
Varlf)= == == val)_uet 1,

HS

Var(w)=MS, Varz) ol 4
Var(z)= Var(f )+ Var(w) W =4t

24



Nested designs

Under a nested design, several types of relatives are
jointly considered, typically full- vs. half-sibs

Under the North Carolina Design one (NC I), males
are crossed to a random series of unrelated females
— No common females (each unique to a cross)

Under NC Il, males are crossed to a set of common
(but unrelated) females
— All males crossed to the same set of females

Under a diallel, a (full or partial) set of all pairwise
crosses is made.

25

Full sib-half sib design: Nested ANOVA

0’; O: On On O



Estimation: Nested ANOVA (NC )

Balanced full-sib / half-sib design: N males (sires)
are crossed to M dams each of which has n offspring:
Nested ANOVA model for NC | is

Effect of dam j of sire i
= dewatlon
of mean of dam j from
sire and overall
Overall mean mean

Value of the kth \ j

offspring from

the jth dam for —)ZIJk = M + Si + dIJ -+ WIJI(

sire i /
ire i \ Within-family

Effect of sire i =

deviation deviation of kth
of mean of i's offspring from the
family from mean of the
overall mean ij-th family
27

Mating Designs

NORTH CAROLINA DESIGN I: Each male (N sire) is mated to several

unrelated females (M dams) to produce n offspring per dam.

905 g2ee

Note no common females between crosses

z;, = phenotype of the k - th of fspring from the family of the i - th sire and j- th dam
W = population mean

=Uu+ ‘i + dj(i) + Wijk s, = effectof thei - th sire
d;; = effectof the j- th dam mated to the i - th sire

w;, = residual error (within - family variance deviations)

28



Nested ANOVA model (for NC I):

0%, = between-sire variance = variance in sire family means

0?4 = variance among dams within sires =
variance of dam means for the same sire

0?,, = within-family variance

2 — 2 2 2
0% = 02, + 024 + 024,

29

Mating Designs

NORTH CAROLINA DESIGN [: Each male (N sire) is mated to several

unrelated females (M dams) to produce n offspring per dam.

Zy =M+ +dg+ Wy,

SoV df sS MS EMS
Sires N1 oSS = M”Eij(z: -z ) M/ o2+ no + Mno!?
2 2
Dams(Sire)  NM-1)  SS, = Ei ; (z,; — z,)? Msydf, O, + N0,

[\

Sibs(dams)  T-NM SSW = Ei i (Zijk _ Eij.)2 MS, /df, O’W

Var(s)= MSs = MS, _ Var(s)_joi _1,,
ST M 5 var(z)  o? 4
MS, -MS,, Vo2 12 2 2 2
Var(d )= —4 =2 . Var(s)+ Var(d)_ hoy+op+op 1 £ Jiop+0p,
n s = = > =_ Sb_—fe
Var(w)= MS, Var(z) o 2 logs

Var(z)= Var(s )+ Var(d )+ Var(w) h = A pys 30



Estimation of sire, dam, and family variances:

- MSs - MSd
Var(s) = Mn
Var(d) = MSq ;MSw

Translating these into the desired variance components
e Var(Total) = Var(between FS families) + Var(Within FS)
— 0%, = 0%, - Cov(FS)
¢ Var(Sires) = Cov(Paternal half-sibs)

2 _,2__2_ 2
Ogqg =0, Og Ow

= o(FS) — o(PHS) 31

Summarizing,

o3 = o(PHS) 0§ =02—0%2—-02

02 = o2 — o(FS) = o(FS) — o(PHS)

Expressing these in terms of the genetic and environmental variances,

0220—’24
° 4
2 2
2~ %A |, 9D 2
Ta= Ty Ty TR
o 30
0,22 ¥ 1o}

32



Intraclass correlations and estimating heritability

_ Cov(PHS) _ Var(s) _ . At = h?
tpHs Var(z) Var(z) oS
tr = Cov(FS) _ Var(s)+ Var(d) _ | h2 < 2tee

Var(z) Var(z)

Note that 4tpps = 2trg implies no dominance
or shared family environmental effects

33

Worked Example:
N = 10 sires, M = 3 dams, n = 10 sibs/dam

Factor Df Ss MS EMS
Sires 9 4,230 470 03) + 100(2i+ 300.3
Dams(Sires) 20 3,400 170 0.2 4 100.5
w
Within Dams 270 5,400 20 2
0'!1)
0%, = MS, =20

Q.IO

MSd—MSw 170—20 04 = 40?2 =40
= 10 =15 / /

MSS " us, _470-170 _ o /

30 .

v
>
L™
|
|Q
o
Il
Il
o
o
©

—as+ad—i—aw—4a

og=15= 1/4 Joi + (1/4)od + 0%,

+(14)oh+03, —> | oh+40E =20

34



Mating Designs

NORTH CAROLINA DESIGN lI: A rou§> of sires (N sires) are mated to an
t

independent group of dams (N, dams) to produce n offspring

W
19991

Note same set of females in all crosses

OO0 OOO OOO OOO

. = phenotype of the k - th offspringfrom the familyof the i - th sire and j- th dam
1 = population mean
s, = effectof thei- th sire
y k  d; =effectof the j-th dam

=u+s; +d +[ +w

lij = effectof the interaction between the i - th sire and the j- th dam

W = residual error (within - family variance deviations)

35

Estimation: Nested ANOVA (NC II)

Balanced full-sib / half-sib design: N males (sires)

are crossed to M common dams each of which has n offspring:
Nested ANOVA model

Interaction between

effects of sire i and dam |
Overall mean

Value of the kth \ l/

offspring from
the th dam for —> Zjjik = W TS, +d + | Wik
sire i / x
Effect of sire i = ) \ Within-family
deviation Effect of dam | deviation of kth
of mean of i's offspring from the
family from mean of the
overall mean ij-th family

The d; term under NC | is replaced in NC Il by d, + |;

36



Mating Designs

NORTH CAROLINA DESIGN II: A group of sires (N sires) are

mated to an independent group of dams (N dams) to produce n

offspring
=u+s; +d +I + Wy,
SoV df SS EMS
Sires Ng-1 = 7 -7 2 2 2
s, =nN, Y (. -z ) o, +no; +nN 0,
_ _ 2 2 2
Dams N1 SS, =nN, Ej (z ; —zm) o, +no; +nN o,
L o, 22 2
Interaction (N&-T)(Ng-1) SS[ = Ei ; (ZU -z, —Z,; — Z) Ow + nG]
Sib: N Ny4(n-1 — = )2 2
ibs sNy(n-1) SS,, = Ei,j,k (Z(/k —Z!.j_) o,
ho; Ji03 405, + O %o
leps == lyps=—""—"> ===
o’ o’ o 37

Mating Designs

DIALLELS: A group of individuals (N) are mated to the same set of individuals
(N) to produce n offspring

O O O O
AN AN AN AN

PTLr ITTT PITT I

Full Diallele (all selfed and reciprocal crosses are made)
Incomplete Diallele — no selfed crosses
Incomplete Diallele — no selfed, no reciprocal crosses

= phenotype of the k - th offspringfrom the i - th and j- th parents and j- th dam
| = population mean
g, = general combining ability of parenti-th
=U-+ & + g] + S + Wyk g; = general combining ability of parent j- th

s; = specific combining ability of parentsi-th and j-th

W, = residual error (within - family vatiance deviations) 38



Mating Designs

DIALLELS: A group of individuals (N) are mated to the same set of
individuals (N) to produce n offspring. Analysis for incomplete
diallele without selfed or reciprocal crosses.

Zjp = U+ &+ 8, +8,; + Wy

SoV of ss EMS
GCA  N-1 n(N -1 - 2 2 2
SS6eq = (N_2)z l-(Zi.. _Z...)z O, +NO0gg, + n(N - 2)J-GCA
o 2 2

SCA  N(N-3)/2 SSe, = nEki(ZU' —zm) -SSocs O, +NOg,

2
i - - - — 2
Sibs  (-DINN-/2-1] - S = Ekj’k (z,s—Z,)° O,
_ A o
loca = ot Tsca = 47213
: o, 39

Parent-offspring regression

Single parent - offspring regression
Zo; = I+ bojp(2p, — p) + €

The expected slope of this regression is:

0(20,2p) ., (04/2) + 0(Eo, Ep) _ 12 | o(Eo, Ep)

E(bo|P): 0’2(Zp) - 02 2 o2

Residual error variance (spread around expected values)

h2
02 = (1 —2> o2

40



The expected slope of this regression is:

N

Shared environmental values

To avoid this term, typically regressions are male-offspring, as
female-offspring more likely to share environmental values

41

Midparent - offspring regression

Zmi + Zf;
Zoi = L+ bo| P —a K + e;

) _ Cov]zo, (2m + 25)/2]
MMP = "Nar((zm + 27)/2]

[Cov(zo, 2m) + Cov(2o,27)] /2

[Var(z) + Var(z)]/4
~

The expected slope of this regression is h?

Residual error variance (spread around expected values)

h2
ag = (1 — 7) (72 )



Standard errors
Single parent-offspring regression, N parents, each with n offspring

Squared regression slope

N\

n(t—b2,) +(1—t)

olp

N

Var(b,|p) = -
\Tofal number of offspring

tus = h?/4 for half-sibs
op +0of
2

z

Var(h?) = Var(2b,p) = 4Var (bop)

Sib correlation t = {

trs = h?/2 + for full sibs

43

Midparent-offspring regression,
N sets of parents, each with n offspring

2[n(trs — b2arp/2) + (1 —trs)))
Nn

Var(h?) = Var(b,|vp) =

* Midparent-offspring variance half that of single parent-offspring variance

Var(h?) = Var(2b,|,) = 4Var(b,|p)

44



Parent-Offspring Regression

Regression one parent — offspring (one offspring or the mean of multiple offspring).

o6, ) 2k2). i i oeas)_ L,

1
o’le,) o’ 5

2
, h"=2b,,

Regression one parent on offspring — no environment correlation among parent and offspring.

gtz

z

W, h=2b,,

Regression mid parent on offspring — no environment correlation among parent and

ff

° sprl O(Zo’ p) O(Zoa/zpl +/ZP2) KOG+ 0 o L
olp = 2 2 h ho=b P
! o (Z (/ZP1+/ZP2) Yo ’

Regression parent -offspring inbreeding — no environment correlation.

E@ )= G(ZSO’ZSOI) GA + /GD + /0131 + GAA < B
501150 2(2 p >
S0

z

= bso:uso
45

Estimating Heritability in Natural Populations

Often, sibs are reared in a laboratory environment,
making parent-offspring regressions and sib ANOVA
problematic for estimating heritability

Let b’ be the slope of the regression of the values of lab-raised
offspring regressed in the trait values of their parents in the
wild

A lower bound can be placed of heritability using
parents from nature and their lab-reared offspring

Var, ( 2) <—Trait variance in nature
h?rbm - (b:;|i\fIP) V&I';L(A)

S~ Additive variance in lab

46



Why is this a lower bound?

Covariance between
breeding value in nature
and BV in lab

/

» Varn(z) [Covz,n(A)} ? Varn(z)

(bojrrp) Vari(A) | Varn(z) | Van(A)

_ Cov n(A)
\/ Var,,(A)Var;(A)

where Y

is the additive genetic covariance between
environments and hence Y2 < 1

47

Defining H? for Plant Populations

Plant breeders often do not measure individual plants (especially
with pure lines), but instead measure a plot or a block of
individuals. This can result in inconsistent measures of H?

even for otherwise identical populations

Interaction
between Genotype i
Genotype i and environment j

\ <
Zijke = Gi + E; + GEyj + Diji + €ijke

/' /
Environment | [

Effect of plot k for
Genotype i
in environment j deviations of individual
plants within this plot

48



Zijke = Gi + Ej + GEij + Dijk + €ijke

2 2 2
o o o
2 2 2 GE P
0°(z)=0Gg+0og + + = 4 —=
e er erm

e = number of environments

r = (replicates) number of plots/environment
n = number of individuals per plot

Hence, Vp, and hence H?, depends on our choice of e, r, and n

49

Mixed Models

* The above designs only compare a small set of relatives (e.g.,
sibs, parent-offspring). More generally, esp. in plant breeding,
we may have much richer sets of relatedness. Further, designs
are usually unbalanced, unequal numbers of relatives

® The framework of mixed models (BLUP for estimation of genetic
effects, REML for estimation of genetic variances) handles such
completely general designs.

— A relationship matrix A for the 8 values for all individuals is

used to allow us to extract the maximal amount of
information.

— Easily handles unbalanced designs
— Mixed Models covered later in the course.

50



The general mixed model

Vector of fixed effects (to be estimated),
e.g., year, location and treatment effects

Vector of
observations Incidence matrix for random effects
(phenotypes)
Y = XB +7Zu+ e Vector of residual errors
(random effects)
|ﬂCid?ﬂCG Vector of random
matrlx for effects, such as
fixed effects individual
genetic values (to
be estimated)
51
The general mixed model
Vector of fixed effects
Vector of
observations Incidence matrix for random effects
(phenotypes)
Y = XB +7Zu+e Vector of residual errors
Incidence Vector of random
matrix for effects
fixed effects
Observe y, X, Z. Assume Cov(u) = Var(A)*A

Estimate fixed effects

Estimate random effects u, e 52



Lecture 4
Short-Term Selection
Response: Breeder’s equation

Bruce Walsh lecture notes
Introduction to Quantitative Genetics
SISG, Brisbane
6 -7 Feb 2017

Response to Selection

e Selection can change the distribution of
phenotypes, and we typically measure this by
changes in mean

— This is a within-generation change
e Selection can also change the distribution of
breeding values

— This is the response to selection, the change in
the trait in the next generation (the between-
generation change)



The Selection Differential and the
Response to Selection

¢ The selection differential S measures the
within-generation change in the mean

-S=u -
* The response R is the between-generation
change in the mean

— R(t) = w(t+1) - u(t)

Parental Generation Truncation selection

Uppermost fraction

/ p saved

B 5 u
<>
Offspring Generation
/ x

Yo 4



The Breeders’ Equation: Translating S into R

Recall the regression of offspring value on midparent value

2
yo = up + h° ( —5 — 1P

Averaging over the selected midparents,
E[ (P;+ P.,)/2]=u*,
Likewise, averaging over the regression gives

Ely,-w]l=h?(ux-u)="h?S

Since E[ y, - u ] is the change in the offspring mean, it
represents the response to selection, giving:

R=h2S The Breeders' Equation (Jay Lush)

e Note that no matter how strong S, if h? is
small, the response is small

® S is a measure of selection, R the actual
response. One can get lots of selection but
no response

e |f offspring are asexual clones of their
parents, the breeders’ equation becomes
~ R=H2S

e |f males and females subjected to differing
amounts of selection,

_ S=(S;+S.)/2

— Example: Selection on seed number in plants -- pollination
(males) is random, so that S = S/2



Pollen control

e Recall that S = (S5, +S.)/2

* An issue that arises in plant breeding is pollen
control --- is the pollen from plants that have also
been selected?

e Not the case for traits (i.e., yield) scored after
pollination. In this case, S, = 0, so response only
half that with pollen control

e Tradeoff: with an additional generation, a number of
schemes can give pollen control, and hence twice
the response

— However, takes twice as many generations, so
response per generation the same

Selection on clones

* Although we have framed response in an outcrossed
population, we can also consider selecting the best
individual clones from a large population of different
clones (e.g., inbred lines)

e R = HZ2S, now a function of the board sense
heritability. Since H? > h?, the single-generation
response using clones exceeds that using outcrossed
individuals

e However, the genetic variation in the next
generation is significantly reduced, reducing
response in subsequent generations

— In contrast, expect an almost continual response for several
generations in an outcrossed population.



Price-Robertson identity

e S =cov(w,2z)
e The covariance between trait value z and

relative fitness (w = W/Wbar, scaled to have
mean fitness = 1)

VERY! Useful result
R = cov(w,A,), as response = within
generation change in BV

— This is called Robertson’s secondary theorem of
natural selection

Correcting for Reproductive Differences: Effective Selection Differentials

In artificial selection experiments, Sis usually estimated as the difference between themean
of the selected adults and the sample mean of the population before selection. Selection
need not stop at this stage. For example, strong artificial selection to increase a character
mightbe countered by natural selection due to a decrease in the fertility of individuals with
extreme character values. Biases introduced by such differential fertility can be removed
by randomly choosing the same number of offspring from each selected parent, ensuring
equal fertility.

Alternatively, biases introduced by differential fertility can be accounted for by using
effective selection differentials, S,,

”,,
S, = LZ (%) (25 — p1=) (10.8)
i=1

where 2; and n; are the phenotypicvalue and total number of offspring of the ith parent, n,,
the number of parents selected to reproduce, 7 the average numberof offspring for selected
parents, and . is the mean before selection. If all selected parents have the same number
of offspring (n; = m for all ), then S, reduces to S. However if there is variation in the
number of offspring n; among selected parents, S. can be considerably different from S.
This corrected differential is also referred to as the realized selection differential.



Suppose pre-selection mean = 30, and we select top
5. In the table z; = trait value, n;= number of offspring

i % n; ni/n
| 45 | 0.3125
2 40 2 0.6250
3 35 3 0.0375
4 33 5 1.563
5 32 5 1.563

1 &/ n
—_ — ) 2z = 34.69
([ :Zz:l ( n ) !

Hence. S, = 4.69. for an expected response of I = (.3 4.69 = 1.4. In this case. not
using the effective differential results in an overestimation of the expected response.

Unweighted S = 7, predicted response = 0.3*7 = 2.1
offspring-weighted S = 4.69, pred resp = 1.4

Response over multiple generations

 Strictly speaking, the breeders’ equation only holds
for predicting a single generation of response from
an unselected base population

* Practically speaking, the breeders’ equation is usually
pretty good for 5-10 generations

e The validity for an initial h? predicting response over
several generations depends on:

— The reliability of the initial h? estimate

— Absence of environmental change between
generations

— The absence of genetic change between the
generation in which h? was estimated and the
generation in which selection is applied



The selection differential is a function of both
the phenotypic variance and the fraction selected

20% selected

) Vp =1,S=
50% selected 20% selected 1.4
V,=4,5= V,=4,5=28 \
1.6

The Selection Intensity, i

As the previous example shows, populations with the
same selection differential (S) may experience very
different amounts of selection

The selection intensity i provides a suitable measure
for comparisons between populations,




Truncation selection

e A common method of artificial selection is truncation

selection --- all individuals whose trait value is above
some threshold (T) are chosen.

e Equivalent to only choosing the uppermost fraction p

of the population

Individuals Individuals
culled allowed to
reproduce
T-p .
|
” T P

Selection Differential Under

Truncation
Individuals Individuals
culled allowed to
reproduce
1-p .
b
B T Uk
Likewise, =5 _
a

Selection

S=u*-u

R code for i: dnorm(gnorm(1l-p))/p



Truncation selection

* The fraction p saved can be translated into an
expected selection intensity (assuming the trait is
normally distributed),

— allows a breeder (by setting p in advance) to
chose an expected value of i before selection, and
hence set the expected response

. . Height of a unit normal at the
S '»9(3 [1 _p]) D threshold value corresponding to p

P 0.5 0.2 0.1 0.05 0.01 | 0.005

[ 0.798 | 1.400 | 1.755 | 2.063 | 2.665 | 2.892

R code fori: dnorm(gnorm(1-p))/p

Selection Intensity Version of the Breeders'
Equation
S

R=h?S =h? — op =1 h?2 Tp
(‘TI)

Since hZOP = (OZA/OZP) Op = OA(OA/OP) =h Oa

R:IhOA

Since h = correlation between phenotypic and breeding
values, h = rp,

Response = Intensity * Accuracy *

When we select an individual solely on their phenotype,
the accuracy (correlation) between BV and phenotype is h



Accuracy of selection

More generally, we can express the breeders
equation as

R= | FUAO'A

Where we select individuals based on the
index u (for example, the mean of n of their

sibs).

r,a = the accuracy of using the measure u to
predict an individual's breeding value =
correlation between u and an individual's BV, A

19

Example 10.4.  Progeny testing. using the mean of a parent’s offspring to predict the
parent’s breeding value. is an alternative predictor of an individual’s breeding value. In
this case. the correlation between the mean 2 of n offspring and the breeding value A of

(. A n , 4 — b2
W, A) = . where a= -
Al ’ n -+ a e 2

From Equation 10.11. the response to selection under progeny testing is

P n ) h2n
=ia, —io Ay | —m ——
A n+a A 44+ h2(n—1)

Note that for very large n that the accuracy approaches one. Progeny testing gives a

the parent is

larger response than simple selection on the phenotypes of the parents (mass selection)

n o1 . 4—h?
T T T

. - 2 !
In particular, n > 4, 5, and 7, for i* = 0.1, 0.25, and 0.5. Also note that the ratio of
response for progeny testing ( R,,Ij to mass selection ( [2),.) is just

R;,, - 1 /IQN - n
Rms W\ 4+02(n—1) \4+h2(n-1)

which approaches 1/ for large n.

when




Improving accuracy

* Predicting either the breeding or genotypic
value from a single individual often has low
accuracy --- h? and/or H? (based on a single
individuals) is small

— Especially true for many plant traits with
high Gx E

— Need to replicate either clones or relatives
(such as sibs) over regions and years to
reduce the impact of G x E

— Likewise, information from a set of relatives
can give much higher accuracy than the

measurement of a single individual
21

Stratified mass selection

® |n order to accommodate the high
environmental variance with individual plant
values, Gardner (1961) proposed the method
of stratified mass selection

— Population stratified into a number of different
blocks (i.e., sections within a field)

— The best fraction p within each block are chosen

— Idea is that environmental values are more similar
among individuals within each block, increasing
trait heritability.

22



Overlapping Generations

L, = Generation interval for sex x
= Average age of parents when progeny are born

The yearly rate of response is

im T 2
P

R =
oL+ L

Trade-offs: Generation interval vs. selection intensity:

If younger animals are used (decreasing L), i is also lower,

as more of the newborn animals are needed as replacements
23

Computing generation intervals

OFFSPRING | Year 2 Year 3 Year 4 Year 5 total
Number 60 30 0 0 90
(sires)
Number 400 600 100 40 1140
(dams)
2-60+3-30
= — =9
Ls 60 + 30 sl

L 2-400 +3-600+4-100+5-40 ]1
d = 400 + 600 + 100 + 40 T

24



Generalized Breeder’s Equation

I+
m f
_ ruaOa
Ry =
L. + L

Tradeoff between generation length L and
accuracy r

The longer we wait to replace an individual, the more
accurate the selection (i.e., we have time for progeny

testing and using the values of its relatives) .

Example10.8. As an example of the tradeoff between accuracy and generation intervals,
consider a trait with #%2 = 0.25 and selection only on sires. One scheme is to simply
select on the sire's phenotype, which results in a sire generation interval of 1.5 vears.
Alternatively, one might perform progeny testing to improve the accuracy of the selected
sires. This results in an increase of the sire generation interval to (sav) 2.5 vears. Suppose
in both cases, the dam interval is steady at 1.5 years.

Since the intensity of selection and additive genetic variation are the same in both schemes,
the ratio of response under mass selection to response under progeny testing is just

R(Sire phenotype)  p(A. Sire phenotype) /( Ly + Ly)

R (progeny mean) B (A, progeny mean]l,f"[ Ls+ La)

Here, p( A. Sire phenotype) = h = V.25 = 0.5, with generation intervals Ly + L4 =
1.541.5 = 3. With progeny testing, (Example 10.4)

n n
(A, progeny mean) = = ‘
n+a n+15

as @ = (4 — h?)/(h?) = 15, with a total generation interal of Ly + Lg = 2.541.5 = 4.
Hence.

R(progeny mean) B n_ /) 3 n

If (say) 1 = 2 progeny are tested per sire, this ratio is 1.95. giving a much larger rate of
response under sire-only selection. For n = 12, the ratio is exactly one, while for a very
large number of offspring tested per sire, the ratio approaches 2/3. or a 1.5-fold increase in
the rate of response under progeny testing, despite the increase in sire generation interval.



Permanent Versus Transient
Response

Considering epistasis and shared environmental values,
the single-generation response follows from the
midparent-offspring regression

oo S [03, AA
R=h*S5+ —,(ﬁ_;l -+ % +-+ n—'.’,E.\n‘» .E,, ) + Of Eli'l??x~£"'.:l>
gz 2 ) v

R f . . Response from shared
' esponse from epistasis .
Breeder's P P environmental effects

Equation

Transient component of response --- contributes
to short-term response. Decays away to zero
over the long-term

Permanent component
of response

27

Permanent Versus Transient
Response

The reason for the focus on h?S is that this
component is permanent in a random-mating
population, while the other components are
transient, initially contributing to response, but

this contribution decays away under random mating

Why? Under HW, changes in allele frequencies
are permanent (don't decay under random-mating),
while LD (epistasis) does, and environmental

values also become randomized
28



Response with Epistasis

The response after one generation of selection from
an unselected base population with A x A epistasis is

2
R=S <l12 — ﬁ"f‘)
202

The contribution to response from this single generation
after T generations of no selection is

R(14+7)=S <;,2 +(1— dr&)

202

c is the average (pairwise) recombination between loci
involved in A x A

29

Response with Epistasis

.
R(1+7)=3S (h? +(1- «)T—”*‘*})
202

Response from additive effects (h? S) is due to changes in
allele frequencies and hence is permanent. Contribution
from A x A due to linkage disequilibrium

Contribution to response from epistasis decays to zero as
linkage disequilibrium decays to zero

30



Why breeder’s equation assumption of an unselected base population?
If history of previous selection, linkage disequilibrium may be present
and the mean can change as the disequilibrium decays

For t generation of selection followed by
T generations of no selection (but recombination)

R(t+7)=1th%*S

Raa has a limiting
value given by

Time to equilibrium a
function of c

4
c=005 —»
c=0.1
3
Z 12
g c=1/2
2 2
w
o~
=4
1
— Response under
1o epistasis
0
0 1 2 3 4 5 6 7

~ ! 2
Raa= tlim Raalt) =~ (5 UAé)
o . p

t, Generation of selection

+(1—¢)" Raa(t)

20

—1In(2)
In(1 —¢)
Decay half-life

trja =

2
1 g 744
c 202

Fixed incremental difference
that decays when selection
stops

What about response with higher-order epistasis?

So?(A') /o2, AA
R(1) 0.500
Limit 1.000

% R(1)/limit 50.0

AAA AAAA AAAAA
.250 0.125 0.063
333 0.143 0.067
5.0 87.5 93.8



Response in autotetraploids

* Autotetraploids pass along two alleles at
each locus to their offspring

* Hence, dominance variance is passed along

* However, as with A x A, this depends upon
favorable combinations of alleles, and these
are randomized over time by transmission, so
D component of response is transient.

33

Autotetraploids

P-O covariance Single-generation
response
02 ()"‘Z 02
( \ 7 A > D ~ 2 D

R(t) =th?S + Rp(t
Response to t generations of (¢) "S5 + Rp(t)

selection with constant
selection differential S 3 1\* 0%
Rp(t)=5S5|1-1|5 .

W

Response remaining after t generations of selection
followed by t generations of random mating

th?S + (tl/"".g)r Rp(t)
<

Contribution from dominance
quickly decays to zero 34



General responses

e For both individual and family selection, the
response can be thought of as a regression of some
phenotypic measurement (such as the individual
itself or its corresponding selection unit value x) on
either the offspring value (y) or the breeding value R,
of an individual who will be a parent of the next
generation (the recombination group).

* The regression slope for predicting
— y from xis o (x,y)/0%(x)
— BV R, from x o (x,R,)/0%(X)

e With transient components of response, these
covariances now also become functions of time ---

e.g. the covariance between x in one generation and
y several generations later

Maternal Effects:

Falconer's dilution model

z=QG + + e

G = Direct genetic effect on character
G=A+D+1 E[A] = (Aje + Agam)/2

maternal effect passed from dam to offspring is
just a fraction m of the dam’s phenotypic value

The presence of the maternal effects means that response
is not necessarily linear and time lags can occur in response

m can be negative --- results in the potential for
a reversed response



Parent-offspring regression under the dilution model

In terms of parental breeding values,

44('1(1"77'1 flSiTG
E ( 20 | Adam, Asire, Cda.m) = 9 + 9 + M Zdam

Regression of BV on phenotype

A=pa+ba(z--pz)+e

The resulting slope becomes b,, = h? 2/(2-m)

With no maternal effects, b,, = h?

37

Parent-offspring regression under the dilution model

With maternal effects, a covariance between BV
. . 9 ) \
and maternal effect arises, with capr =moa /(2 —m)

The response thus becomes

“

) h?
+m | + Ssire ;
2—m

A,U-: = Sdam <

2 m

38



Response to a single generation of selection

h2 =0.11, m = -0.13 (litter size in mice)

0.10 9

0.05 1

-0.05 4

Cumulative Response to Selection
(in terms of S)
(=]
8

Recovery of genetic response after
/ initial maternal correlation decays

Reversed response in 1st
generation largely due to

negative maternal correlation
masking genetic gain

Generation

39

Selection occurs for 10 generations and then stops

Cumulative Response (in units of S)

h? =0.35

0 5 10 15 20
Generation

40



Additional material

Unlikely to be covered in class

41

Selection on Threshold Traits

Response on a binary trait is a special case of
response on a continuous trait

Assume some underlying continuous value z, the
liability, maps to a discrete trait.

z<T character state zero (i.e. no disease)

z>T  character state one (i.e. disease)

Alternative (but essentially equivalent model) is a
probit (or logistic) model, when p(z) =
Prob(state one | z). Details in LW Chapter 14.

42



Threshold T =0
Character & | O Character

Observe: trait values
absent present .
are either 0,1. Pop
Before selection
mean = q (frequency
of the 1 trait)
! P
z J-'-t

Frequency of trait
After selection
Want to map from

g onto the underlying

%= ”iy/‘\

* . o]
: Ht liability scale z, where
After reproduction breeﬁzer Sheqléatlon
Hiyg = ”t+h28t RZ = SZ olas

/

|
Hi4+q Frequency of character state on
in next generation 43

Threshold T =0

Character & | o Character
absent present
Before selection
9
Llablllty scale @ Hi ) Mean liability before selection

After selection

Selection differential @

on liability scale

After reproduction
Mir) = By +hs,
|
P+
. ol . . 44
Mean liability in next generation

t+1

z



Threshold T =0

Character & | o Character
absent present

Before selection

After selection

After reproduction

Meet = py+hlsy

z

P+
Mean liability in next generation

45

Steps in Predicting Response to Threshold Selection

i) Compute initial mean y,
P(trait) =Pz>0) =P@z-u > -w) = P(U > -u)
U is a unit normal

Hence, z - ug is a unit normal random variable

We can choose a scale where the liability
z has variance of one and a threshold T =0

General result: u = -z,

For example, suppose 5% of the pop shows the trait. P(U > 1.645) =
0.05, hence w = -1.645. Note: in R, Zpyq = , with
gnorm(0.95) returning 1.644854 46



Steps in Predicting Response to Threshold Selection

i) The frequency g, of the trait in the next
generation is just

PU > - [h2S + w,])

Qt+1 = P(U > - Witq ) =
= P(U > - hZS - Z[»]_q])

iii) Hence, we need to compute S, the selection
differential for the liability z

Let p, = fraction of individuals chosen in
generation t that display the trait

ui = (1 —po)E(z

z 2 0, p)

2 < 0,p) +peE(2

i =1 —p)E(z|z<0,p) + peE(2] 2 > 0, py)

.-* A

This fraction does not display This fraction displays
the trait, hence z < 0 the trait, hence z >0

When z is normally distributed, this reduces to

St=1 =1¢(Trt) pt: =
“a 17 q

Height of the unit normal density function
at the point u,

Hence, we start at some initial value given h? and
g, and iterative to obtain selection response

47
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Initial frequency of g = 0.05. Select only on adults
showing the trait (p, = 1)

225 [ 100

2.00 ] F 90

175 ] S 9 (80 3
:
| 1.50 ] 5
= - =
5 ] 60 )
5 125 i s
= 50 >
° 1.00 1 i §
5 o g
Al
3 0.5 [30 £
2 ] =
©n 0.50 0 &

025 ] F 10

0.00 T T T T O

0 5 10 15 20 25
Generation
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Ancestral Regressions

When regressions on relatives are linear, we can think of the response as
the sum over all previous contributions

For example, consider the response after 3 gens:

R(3) =8 03050 +408315 +208325

. A r,
8 great-grand parents 2 parents
Sy is there selection 4 grandparents
differential Selection diff S,

B3 o is the regression
coefficient for an
offspring at time 3

on a great-grandparent
From time O

B3 1 is the regression
of relative in generation
3 on their gen 1 relatives

50



Ancestral Regressions

More generally,

T-1
RT) =3 2" 67,5, B = cov(zr.z)
t=0
The general expression cov(z,z), where we keep track of the actual
generation, as oppose to cov(z, zr,;) -- how many generations
separate the relatives, allows us to handle inbreeding, where the
regression slope changes over generations of inbreeding.

Unless 2 /3,4 remains constant as t increases, the contribution to cumulative response
from selection on adults in generation 7 changes over time. For example, when loci are
strictly additive (no dominance or epistasis), 0 (7 + t.7) = 27 0% (7) and thus 2 3, , , =
h?, the standard resultfrom the breeders’ equation. However, unless 2 o (7 +t.7) remains
constant, any response contributed decays. Hence any term of o (7 +t. 7) that decreases
by more than 1/2 each generation contributes only to the transient response.

Changes in the Variance under Selection

The infinitesimal model --- each locus has a very small
effect on the trait.

Under the infinitesimal, require many generations
for significant change in allele frequencies

However, can have significant change in genetic
variances due to selection creating linkage disequilibrium

Under linkage equilibrium, freq(AB gamete) =
freq(A)freq(B)

With positive linkage disequilibrium, f(AB) > f(A){(B), so
that AB gametes are more frequent
With negative linkage disequilibrium, f(AB) < f(A)(B),

so that AB gametes are less frequent
52



Additive variance with LD:

Additive variance is the variance of the sum of allelic effects,

Genic variance: value of Var(A)
in the absence of disequilibrium
function of allele frequencies

n :
o2 ( (a(lkh | “I_ZA 1)) _ QZUZ G”ikl) y JZU(“[H‘”IRI)
k=1 ? k=1 k<j A
: i n
=2 ( kk%’* 4 Z ("jk
k=1 M k<j
2 2
........................ > T4 T, { d‘...

Additive variance
Disequilibrium contribution. Requires covariances

between allelic effects at different loci
53

Key: Under the infinitesimal model, no
(selection-induced) changes in genic
variance o2,

Selection-induced changes in d change 02, 62,, h?

o3 (t) = of +oh +oh(t) = oF +d(1)

PN
9
b
e
o
—
~
—

(t)
(t) o +d(t)

. o
h%(t) = =
o

[V}

¢

Dynamics of d: With unlinked loci, d loses half its value each
generation (i.e, d in offspring is 1/2 d of their parents,

d(t
d(t +1) = - f-) )
e 54




Dynamics of d: Computing the effect of selection in generating d

Consider the parent-offspring regression

h? h?

Zo = M T(:m — ) 5 (zf —p) te

4
ol (1— h—) o?
2 ~

Taking the variance of the offspring given the selected parents gives

a?(z,) = $ [02(.‘.,’,’1) + azil.:})] + o2
rt o, rtY o,
— 57[0: } ()(fr“)] + (l — .’_T) o
h-
a, ?r)(ﬁ )
Change in variance from selection 55

Change in d = change from recombination plus
change from selection

o d(t) ht 1) 404
(i 4 — - — [t I t - 2
d(t +1) = = + 5 5(o?) = e+ %) }-_E ) 5 (USH:.)
Recombination Selection
Ad(t) = Aa'f”:, = Adi(t)
In terms of change in d, __d) R, ()
- 2 2 N “z(t)

This is the Bulmer Equation (Michael Bulmer), and it is
akin to a breeder’s equation for the change in variance

At the selection-recombination o
H H et d=h*s(c?)
equilibrium, N



Application: Egg Weight in Ducks

Rendel (1943) observed that while the change
mean weight weight (in all vs. hatched) as
negligible, but their was a significance decrease
in the variance, suggesting stabilizing selection

Before selection, variance = 52.7, reducing to
43.9 after selection. Heritability was h? = 0.6

d=h"0(07) =0.62(43.9 - 52.7) = -3.2

Var(A) = 0.6*52.7= 31.6. If selection stops, Var(A)
is expected to increase to 31.6+3.2= 34.8

Var(z) should increase to 55.9, giving h? = 0.62 57
Specitic models of selection-induced
changes in variances

Proportional reduction model: o2 = (1—r)o?
constant fraction k of
variance removed 5(0?) = 0% — 0? = —ro?
I ’1|t) "',2. 2
Bulmer equation simplifies dt 1) == =gt oal)
to dt) ko2 +d(t)]?
T2 2 g 4d)
Closed-form solution = =l VIR (1= ).
. . |

to equilibrium h? 2r (1 - h?)

58



Disruptive Selection Stabilizing Selection

. Pz,
AN - N

Saved culled

Directional Truncation Selection: Uppermost (or lowermost) p saved

p= s (y Cus) _ I p]) =7 (7= 21p)

p p

Stabilizing Truncation Selection: Middle fraction p of the distribution saved

- 22 Cuppepm) 221w
P

DisruptiveTruncation Selection: Uppermost and lowermost p/2 saved

2¢ (211-p/21) *1-ps2
P

K=—

Equilibrium h? under direction
truncation selection

e h2=075
» —
= 0.71 - ______—————”‘—__
B
= 0.67
= 2
E 0‘5_— __________ l! _:1)15_() ___________________ —
-]
=
2 041
]|
S Al
03 h2=025
0.2 : , - - -
0 20 40 60 80 100

Fraction saved, p (in percentage) o



Directional truncation selection

=T (7= %)

Example 13.2. Suppose directional truncationselection is performed (equally onbothsexes)
on a nommally distributed character with fo =100, h?2 = 0.5, and p = 0.20 (the upper 20
percent of the population is saved). From nommal distribution tables,

Pr(U <0.84) = 0.8, hence 20.5) = 0.84
Likewise, evaluating the unit normal gives ¢(0.84) = 0.2803, so that (Equation 10.26a)
7=(0.84)/p = 0.2803/0.20 = 1.402
From Equation 13.15b, the fraction of variance removed by selection is
k= 1.402(1.402 — 0.84) = 0.787.
Hence, Equation 13.12 gives

d(t) [50 + d(t) ]2

1t = —-0.3

dit+1) == N 00T a0
Generation 0 1 2 3 4 5 X
d(t) 0.00 —9.84 —11.96 —12.45 —12.56 —12.50 —12.59
rr%1 (1) 50.00  40.16 38.04 37.55 3744 3741 37.41
h2(t) 0.50 0.45 0.43 0.43 0.43 0.43 0.43

Changes in the variance = changes in h?
and even S (under truncation selection)

R(t) = h2(t) S(t)

How does this red uction in 024 infl
selection 7 is unchanged (being
and rr'f change over time, E

nee the per-generation change in mean, I?(#)? Since the
tirely a function of the fraction p of adults saved), but h?
Gtion 10.6b gives the response as

R(t) = /,2( 1.40202(t) /o2 + d(t) = 1.402 h2(t) /100 + d(t)

Response dedines from aninitial value of R =1.4- 05 10= 7 to an asympotic per-generation

valueof [? = 1.4- 0.43 /8741 =5.6. Thus ifwe simply used the Breeders’ equation to predict
change in mean over several generations without accounting for the Bulmer effect, we would
have overestimated the expected responseby 25 percent.
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Lecture 5
Inbreeding and
Crossbreeding

Bruce Walsh lecture notes

Introduction to Quantitative Genetics
SISG, Brisbane
6 -7 Feb 2017

Inbreeding

Inbreeding = mating of related individuals
Often results in a change in the mean of a trait
Inbreeding is intentionally practiced to:

— create genetic uniformity of laboratory stocks

— produce stocks for crossing (animal and plant
breeding)

Inbreeding is unintentionally generated:

— by keeping small populations (such as is found
at zoos)

— during selection



Genotype frequencies under inbreeding

e The inbreeding coefficient, F

e F = Prob(the two alleles within an individual
are IBD) -- identical by descent

* Hence, with probability F both alleles in an
individual are identical, and hence a
homozygote

e With probability 1-F, the alleles are
combined at random

AIIeIesIBDy /CFI)v
AR T AIAL

y Random matlng A A

Alleles IBD A2A?

Genotype | Alleles IBD | AllelesnotIBD | frequency

AA, Fp (1-F)p? p? + Fpq
ALA, 0 (1-F)2pq (1-F)2pq
AA Fq (1-F)g? 9 + Fpq




Changes in the mean under inbreeding

Genotypes A A AA, ALA,
0 a+d 2a

freq(A;) = p, freq(A) = q

Using the genotypic frequencies under inbreeding, the
population mean ug under a level of inbreeding F is
related to the mean p, under random mating by

Ur = U - 2Fpgd

For k loci, the change in mean is

k
HEF = Ho — 2FZ Pigidi = py — BF
Here B is the reduction in mean under

complete inbreeding (F=1) , where B=2 Z Pigi d;

e There will be a change of mean value if dominance is present (d not 0)

e Forasingle locus, if d >0, inbreeding will decrease the mean value of
the trait. If d <0, inbreeding will increase the mean

* For multiple loci, a decrease (inbreeding depression) requires
directional dominance --- dominance effects d; tending to be positive.

* The magnitude of the change of mean on inbreeding depends on gene

frequency, and is greatest when p =q=0.5
6



Inbreeding Depression and Fitness
traits

Example for maize height



Fitness traits and inbreeding depression

e Often seen that inbreeding depression is
strongest on fitness-relative traits such as
yield, height, etc.

e Traits less associated with fitness often show
less inbreeding depression

e Selection on fitness-related traits may
generate directional dominance

Why do traits associated with fitness
show inbreeding depression?

* Two competing hypotheses:

— Overdominance Hypothesis: Genetic variance for fitness is
caused by loci at which heterozygotes are more fit than both
homozygotes. Inbreeding decreases the frequency of
heterozygotes, increases the frequency of homozygotes, so
fitness is reduced.

— Dominance Hypothesis Genetic variance for fitness is caused
by rare deleterious alleles that are recessive or partly recessive;
such alleles persist in populations because of recurrent mutation.
Most copies of deleterious alleles in the base population are in
heterozygotes. Inbreeding increases the frequency of
homozygotes for deleterious alleles, so fitness is reduced.



Inbred depression in largely
selting lineages

* Inbreeding depression is common in outcrossing
species

e However, generally fairly uncommon in species with
a high rate of selfing

* One idea is that the constant selfing have purged
many of the deleterious alleles thought to cause
inbreeding depression

e However, lack of inbreeding depression also means a
lack of heterosis (a point returned to shortly)

— Counterexample is Rice: Lots of heterosis but
little inbreeding depression

Variance Changes Under Inbreeding

Inbreeding reduces variation within each population

Inbreeding increases the variation between populations
(i.e., variation in the means of the populations)

EDIEHIEH

F=0



Between-group variance increases with F

Within-group variance decreases with F

Implications for traits

* A series of inbred lines from an F, population
are expected to show

— more within-line uniformity (variance about the
mean within a line)

* Less within-family genetic variation for
selection

— more between-line divergence (variation in the
mean value between lines)

® More between-family genetic variation for
selection



Variance Changes Under Inbreeding

General F=1 F=0

Between lines 2FV, 2V, 0

Within Lines (1 —F) \/A 0 VA

Total (1+F)V, [2V, |V,

The above results assume ONLY additive variance
i.e., no dominance/epistasis. When nonadditive
variance present, results very complex (see WL Chpt 3).

Line Crosses: Heterosis

When inbred lines are crossed, the progeny show an increase in mean
for characters that previously suffered a reduction from inbreeding.

This increase in the mean over the average value of the
parents is called hybrid vigor or heterosis

WP + P>
2

A cross is said to show heterosis if H > 0, so that the
F; mean is larger than the average of both parents.

Hp = HF1 —



Expected levels of heterosis

If p; denotes the frequency of G, in line 1, let p; + dp; denote
the frequency of Q; in line 2.

The expected amount of heterosis becomes

n
Hr = ) (6pi)?ds
=1
 Heterosis depends on dominance: d =0 = no inbreeding depression and no

Heterosis. As with inbreeding depression, directional dominance is required for heterosis.

e H is proportional to the square of the difference in allele frequencies

between populations H is greatest when alleles are fixed in one population and
lost in the other (so that 18pl = 1). H =0 if 3p = 0.

e H is specific to each particular cross. H must be determined empirically,
since we do not know the relevant loci nor their gene frequencies. 17

Heterosis declines in the F,

In the F,, all offspring are heterozygotes. In the F,,
random mating has occurred, reducing the frequency
of heterozygotes.

As a result, there is a reduction of the amount of
heterosis in the F, relative to the F,,

+ op)2d |H

Since random mating occurs in the F, and subsequent
generations, the level of heterosis stays at the F, level.



Agricultural importance of heterosis

Crosses often show high-parent heterosis, wherein the

F, not only beats the average of the two parents

(mid-parent heterosis), it exceeds the best parent.

Crop % planted % yield Annual Annual Annual land
as hybrids | advantage added added savings
yield: % yield: tons
Maize 65 15 10 55 x 10¢ 13 x 10¢ ha
Sorghum 48 40 19 13 x 106 9 x 10%ha
Sunflower 60 50 30 7 x 108 6 x 10%ha
Rice 12 30 4 15 x 106 6 x 10%ha

Hybrid Corn in the US

19

Shull (1908) suggested objective of corn breeders
should be to find and maintain the best parental
lines for crosses

Initial problem: early inbred lines had low seed set

Solution (Jones 1918): use a hybrid line as the seed

parent, as it should show heterosis for seed set

1930's - 1960's: most corn produced by double crosses

Since 1970’'s most from single crosses

20




A Cautionary Tale

1970-1971 the great Southern Corn Leaf Blight almost
destroyed the whole US corn crop

Much larger (in terms of food energy) than the great potato
blight of the 1840’s

Cause: Corn can self-fertilize, so to make hybrids either have to
manually detassle the pollen structures or use genetic tricks that
cause male sterility.

Almost 85% of US corn in 1970 had Texas cytoplasm Tems, a
mtDNA encoded male sterility gene

Tems turned out to be hyper-sensitive to the fungus

Helminthosporium maydis. Resulted in over a billion dollars
of crop loss

Crossing Schemes to Reduce the
Loss of Heterosis: Synthetics

Take n lines and construct an F, population by
making all pairwise crosses

Allow random mating from the F, on to produce a
synthetic population

Fo> = F

H/n
1

21

Hp, =Hp | 1—— Only 1/n of heterosis

n lost vs. 1/2

22



Synthetics

® Major trade-off

— As more lines are added, the F, loss of
heterosis declines

— However, as more lines are added, the
mean of the F, also declines, as less elite
lines are used

— Bottom line: For some value of n, F, - H/n
reaches a maximum value and then starts
to decline with n

23

Types of crosses

* The F, from a cross of lines A x B (typically
inbreds) is called a single cross

e A three-way cross (also called a modified
single cross) refers to the offspring of an A
individual crossed to the F1 offspring of B x
C

— Denoted A x (B x C)

e A double (or four-way) cross is (A x B) x (C x
D), the offspring from crossing an A x B F,
witha Cx D F,.

24



Predicting cross performance

* While single cross (offspring of A x B) hard to
predict, three- and four-way crosses can be
predicted if we know the means for single
crosses involving these parents

® The three-way cross mean is the average mean
of the two single crosses:

— mean(A x {B x C}) = [mean(A x B) + mean(A x C)]/2

e The mean of a double (or four-way) cross is the

average of all the single crosses,

— mean({A x B} x {C x D}) = [mean(AxC) + mean(AxD) +
mean(BxC) + mean(BxD)]/4

25

Individual vs. Maternal Heterosis

e Individual heterosis
— enhanced performance in a hybrid individual

e Maternal heterosis

— enhanced maternal performance (such as
increased litter size and higher survival rates of
offspring)

— Use of crossbred dams

— Maternal heterosis is often comparable, and can
be greater than, individual heterosis



Individual vs. Maternal Heterosis in Sheep traits

Trait Individual H | Maternal H total
Birth weight 3.2% 5.1% 8.3%
Weaning weight 5.0% 6.3% 11.3%
Birth-weaning 9.8% 2.7% 12.5%
survival
Lambs reared 15.2% 14.7% 29.9%
per ewe
Total weight 17.8% 18.0% 35.8%
lambs/ewe
Prolificacy 2.5% 3.2% 5.7%

Estimating the Amount of
Heterosis in Maternal Effects

Contributions to mean value of line A

| M M ©
ZA=Z 1T Ogan tOa + On

I N

Individual Maternal Grandmaternal

genetic genetic genetic effect (BV)
effect (BV) effect (BV)



Consider the offspring of an A sire and a B dam

Individual genetic

value is the Contribution
average of both from (individual)
parental lines heterosis

\ \
| |
ZAB=2+L_;(£+9'§/I +gg/lo+h,|A\B

N

Maternal and
grandmaternal
effects
from the B mothers

| |
+ OB M M © |
ZAB=Z+L2q—+g3 + g + hag

Now consider the offspring of an B sire and a A dam

L
4 BTGB

+ +h
5 AB

ZB A

Difference between the two line means estimates
difference in maternal + grandmaternal effects
in Avs. B



Hence, an estimate of individual heteroic effects is

ZAB + ZBA — ZAA + ZBB N
= NaB
2 2

The mean of offspring from a sire in line C crossed to
a dam from a A X B cross (B = granddam, AB = dam)

Genetic maternal effect

Average indiVi?Uil glenetic value (average of maternal BV for both
average of the line BV's i
( 9 ) lines) Grandmaternal
\ \ genetic effect
\
| | | | | M M I
20c + ga t+ OR h + h + o T
ZC AB = . + CA2 cB . 9A 295+hXB+g|\B/|+ ;b
New individual Maternal genetic /
heterosis of C x AB heteroic effect
cross “Recombinational loss” ---
decay of the F, heterosis

in the F,
One estimate (confounded) of maternal heterosis

ZCA + ZCB M rab
ZC AB = > = hag +—;




Lecture 6: Correlated Characters

Background Reading: L&W chapter 21
Additional Reading: W&L Chapter 34
(Correlated response sections)

Steve Chenoweth lecture notes
Introduction to Quantitative
Genetics
SISG, Brisbane
6—7 Feb 2017

Many quantitative traits are correlated
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Life History Evolution

A)

Survival

B)

Fecundity

Fabian, D. & Flatt, T. (2012) Life History Evolution. Nature Education Knowledge 3(10):24

Many quantitative traits are correlated
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Why do we care about trait covariance in
guantitative genetics?

* Describing the genetic basis of traits

* how quantitative genetic variance is
maintained

* how quantitative traits respond to
artificial (and natural) selection evolve

What covariances do we care about in quantitative
genetics and evolution?

depth

P = variance covariance
matrix describing
phenotypic variation

Variance trait 1 Covarian?g\
between traits
Covariance @
between traits

1/17/17



P — the phenotypic variance-covariance matrix

Estimated directly from the observed phenotype
recorded for each individual

Underlies the estimation of partial regression

coefficients of selection:

g =P 1s

(%]
I

selection differential,
mean of selected individuals — population mean

More on this in the next lecture...

What covariance matrices do we care about in
guantitative genetics and evolution?

P=E+G
COVP = COVG
00
O ° . °
| @ ° ~ 0,
*é .. ° = é o ®
o % o
Trait 1 Trait 1
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Environmental effects

* Variation among individuals in their
environmental experience can generate
phenotypic differences, and affect multiple

traits

— E.g., nutrition environment

* Typically difficult to know and measure the
environmental variation

E=P-G
e Partition out environmental causes to focus on

genetic

What covariance matrices do we care about in
guantitative genetics and evolution?

P=E+G
cov, = covp +
~ O ¢ O N .. O
~'§ ... = '(_E ... +
o O o ®

Trait 1

Trait 1

1/17/17
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Cause of genetic covariance

1. Linkage -alleles at
different loci found
together in same
genotype more often

than expected by

chance

* Physical

e Selection

* Nonrandom mating

Gamete production

Cause of genetic covariance

2. Pleiotropy -same
genes affecting both

. depth] ——=depth
traits T e
* Pleiotropy is y
considered primary Val ( > depth
cause of genetic -y '
. lcovA:<
covariance LA T length
— more persistent than =
linkage, which can ¢ s
readily be broken tail (caudal)
down by q depth

recombination




Genotype phenotype maps

m

Modular

Fat content
Body Mass
Growth rate

Genotype phenotype maps

1 1 1

Pleiotropic

Fat content
Body Mass
Growth rate

1/17/17



Genotype phenotype maps

iy

®© @

Fat content
Body Mass
Growth rate

Antagonistic Pleiotropy

From an allele-centric viewpoint

Recall that with no dominance, for a single locus that:

V= 2pqa?

across all variable trait-affecting loci we get:
V, = 22pqa?

For pairs of traits:
Cova(x,y) = 2pqa,a,
and genome-wide we get:

Cova(x,y) = 22pqa,a,

Just like genetic variances, genetic covariances can also change when
allele frequencies change.

1/17/17
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Covariance or Correlation?

* Covariances are on a scale of trait products, like a
variance is on a scale of trait values squared.

— Hard to think about and compare

* Difficult to compare them directly so we often think
about them in terms of correlations:

— Correlations more intuitive and easier to compare

cov(x, y)

J var(x) x var(y)

r,=

Interpreting Genetic Correlations

® Genetic correlations are bound between -1 and 1

* The sign indicates only the net directionality of pleiotropic
effects. Whether standing variation affects trait 1 and trait 2 in
similar ways.

e The magnitude indicates how much genetic variation is
shared between traits.




Interpreting Genetic Correlations

r,>07?

Genetic variance in both traits controlled by some genes which are the same.
These variable loci cause an increase in trait 1 and an increase in trait 2.

ry,=17?
Perfectly shared control, essentially the “same trait” from a genetic perspective
r,<0?

Partially shared genetic basis, BUT genes which increase trait 1 lead to a
decrease in trait 2

r,=07?
No genes which exhibit genetic variance affect trait 1 and trait 2 together.

BUT remember it’s the net effect cross loci, there may indeed be pleiotropy
but opposing effects cancel each other out,

How do we estimate genetic
correlations?

* Method 1: Artificial selection experiments
— Correlated responses to direct selection

— Genetic covariance among traits affects the evolution
of trait means

* Method 2: Using the same statistical machinery
as to estimate V,, we can estimate cov,
— Phenotypic data on >1 trait + pedigree
— Breeding values:

* V, =variance in breeding values
* cov, = covariance in breeding values of two traits

1/17/17
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Method 1: Selection of vs. for

Selection for small
balls results in
selection of small,
blue balls

There is a correlated
response in colour to
selection for size

Sober, E. 1984. The Nature of Selection.

Nagai et al 1978 selected for
nursing ability and body weight in
mice

Indirect

A Nursing ability
------ Weight (42 days)

= s 509 . .
t . Solid: index of both
E § 40
g % 30
g€ i
z T 20+ o .
A Indirect

10 - - f"

0.0 +

o e e e e S S

[ 2 4 6 8 10 12

GENERATION

GENERATION

Nagai et al. 1978, Genetics, 88,761-780.

1/17/17
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, CR,
r A(nursing,weight) = R R
n

Where:

R = response to selection

CR = correlated response to selection
CRy=iyhyhyrd opy

Where

iy = selection intensity

h? = realised heritability (R = Sh? thus, h° = R/S)
opy = phenotypic variance in Trait Y

Empirically CR can be estimated from the selection response in the indirectly selected trait

See Also Falconer & Mackay 1996, Chapter 19

Response Nursing 0.080 0.134
Response weight 0.197 0.680

1/2
CR, CR,

' A(nursing,weight) [ R, TWJ
= [(0.134/0.080) x (0.197/0.680)] *

=0.485%

=0.70

Nagai et al. 1978, Genetics, 88,761-780.

1/17/17
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EVOLUTION OF FLORAL DISPLAY IN EICHHORNIA PANICULATA
(PONTEDERIACEAE): DIRECT AND CORRELATED RESPONSES TO SELECTION ON
FLOWER SIZE AND NUMBER

Water ||

Evolution, 54(5). 2000, pp. 15331545
ANNE C. WORLEY! AND SPENCER C. H. BARRETT? h inth
Department of Botany, University of Toronto, 25 Willcocks Street, Toronto ON, MSS-3B2, Canada | NYACINT
2E-mail: barrett@botany.utoronto.ca

Hypothesis: a plant has finite resources that can be allocated to
either larger or more flowers to attract pollinators & increase
reproductive success. This will result in a negative correlation
between flower number and size.

http://labs.eeb.utoronto.ca/barrett/Phi

107 Apply selection to decrease

Ng 9 ﬂ flower size for 2 generations 7.5

- | a |

Se * Estimated h? from relatives g 7.0 { {
5 ] =0.48 g 6.57

S 71 &% * realised h? from selection £ 6.0+

6 — response= 0.45 2 5.5

Flowers also had: 5.0-

momneﬁm Selection lines also had more flowers.

n"_nore potien Realised genetic correlation: r =-0.6
bigger ovules

Method 2: Estimation in a breeding design

42 Sires

2 Dams per sire

Females Males

3 offspring per sex/dam

Paternal full-sib half-sib breeding design for the analysis of zebrafish body size and shape

1/17/17
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Method 2: Estimation in a breeding design

Observational model

To estimate genetic variance we use the following random effects general linear model
to describe our breeding design, which is actually a nested ANOVA:

Z=p+s;+ d,j + €k
where:
Z;is the trait value of the kth offspring of the jth dam which was mated to the ith sire,
u is the population mean,
s;is the effect due to the ith sire,

djis the effect due to the the jth dam mated to the ith sire, and
ejis the unexplained residual.

Sire, dam within sire are all RANDOM EFFECTS in this model.

Linking observational components to causal genetic
components of (co)variance

For a single trait the total phenotypic variance is simply given by:
02, =0%+0%+ 0%,

As Bruce showed you, we now know what’s inside these variance components in terms
of genetic effects:

Observational Variance component Causal Genetic Components
Component
Sires GFs WV,
Dams within Sires oy WV +%Vp + Vi
Progeny o?, YiVa+%Vp+ Ve
Total 0%, 0%, 0% =0p Va+Vp+ Ve +Vg,
402,
h? = Vy/Vp = :
P 0% 0% 0%

We can now extend this to deal with covarianes

14



Linking observational components to causal genetic
components of (co)variance

depth )

Observational Variance Causal Genetic Covariance  Causal Genetic
Component component Components components Components
Sires (<2 AN COVsy 4COV pyy
Dams within 0% YV + %Vp + Ve,
Sires
Progeny 02, YVa+%Vp + Vg,
Total 0%, 0%, 0%, =0p Va+Vp+ Vg +Vg,
COVAxy
N
Ax =54y Bivariate linear model:
Or simply Zy=p+s;+d;+ey

COvsxy

Vg, =
Axy [Osx X Osy

Linking observational components to causal genetic
components of (co)variance

depth

Bivariate linear model:

Zy =pU+s;+ d,-j+ €k

X4
Depth Length VAxy:\/ymiAij
Ax A
Depth 045  0.30 i
Length 0.30  0.65 74 = 0.30 /(0.45%0.65)'2

T4y = 0.55

1/17/17
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Linking observational components to causal genetic
components of (co)variance

depth )

Bivariate linear model:

Zy =P +s;+ d,j+ €k

X4
Depth Length rAw=m%
Vo aexv
Depth | 045  0.30 m
Length 030  0.65 4y = 030 /(0.45 x 0.65)12
2 iy = 0.5

The genetic variance-covariance matrix, G

FAQs

“My estimate of the genetic correlation is greater than
1! Isn’t supposed to be bounded between -1 and 1?“

“Okay then so why can’t | just correlate sire means, it
would be a product moment correlation and won’t go
out of bounds...”

“I' just about killed myself (my student) breeding
thousands of animals but my genetic correlation has a
huge standard error”

1/17/17
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Effect of selection on genetic correlations

® Iay is the NET effect of many loci

Trait X Trait Y

 Positive selection on both traits will fix alleles at locus 1 and 4 but those at 2
and 3 cannot be fixed.

e What happens to the genetic correlation?

Are traits typically genetically
correlated?

, “Artificial selection applied to one
character almost always leads to changes in
others” BOHREN ET AL. 1966

* Reported for may different types of traits in a
range of taxa

1/17/17
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Roff, D.A. 1996. Evolution 50: 1392-1403

L = life history M= morphology
12
Genetic correlations
10F B LxL
Bl MxM
>
0 7 .
& 6 | 1
= | ‘N
O I ; | !
@ Mmoo ‘ ; i
LL5 4 m L ;1 "1 r
0ol HURERIL
: BRI F 1L
1%

=105 =180 L 6 4 D 0 2 4 .6 .8 0

Extending genetic correlations

* Thus far our focus has been on traits expressed by the
same individual at a specific point in time.

* Genetic correlations routinely measured between:
* Growth stages
* Sexes

* Environments

1/17/17
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What is the genetic correlation among environments?

— Falconer (1952) had the idea to treat the same
trait, measured in two different environments, as
two different traits, and estimate the genetic
correlation between these two “traits”

— If thereis no GxE, r;=1.0

* Alleles (genotypes) have the same effect on the trait
(relative to the population mean) in each environment
— parallel reaction norms

¢ Selection in one environment will cause the trait to
change value in other environments too

Cross — Environment genetic correlations

Cross environment G

Body size in Body size in
High Environment
B

Body size in Variance in Covariance
Environment  size within between size
A Env A inEnvA&B
Body size in Covariance Variance in
Environment  between size  size within

B inEnvA&B Env B

1/17/17
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No GxE

Selection for bigger fish on
high protein diet will cause

° correlated evolution of

& larger size when the
population was fed on a

- low protein diet
=
rpa=1
Low‘protein High ‘protein

Environment
(diet)

GxE =
< 1
-p<
o)
N
(7))
< _=q < g
<=
= 0<r,<1
Low ‘protein High ‘protein
Environment
(diet)

1/17/17
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Summarising relationships between traits
fp

P, P,
A, E, A, E,
I re

r, = correlation of breeding values for traits x and y.
Due to pleiotropy and linkage disequilibrium.

re = correlation of environmental deviations for traits x and y.
Due to exposure of two traits to the same environment.
Contains nonadditive genetic effects.

1/17/17
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Lecture 7: An Introduction to
Evolutionary Quantitative Genetics

Background Reading: W&L v1. chapter 28, 29,
W&L v2: Chapter 34
Additional Reading: W&L v1. Chapter 27

Steve Chenoweth lecture notes
Introduction to Quantitative
Genetics
SISG, Brisbane
6—7 Feb 2017

Outline

1.Measuring natural selection on multiple traits
2.Predicting multi-trait responses to selection
3.Genetic constraints: when natural selection # adaptation

4.What processes maintain genetic variance in complex traits?
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Two Maps in Evolutionary Quantitative Genetics

Quantitative Genetic Tools

1. Fitness — Phenotype Map
- selection gradients /surfaces/differentials

Phenotype 2. Genotype-Phenotype Map

Indirect
- Genetic variance, heritability
- heritability/genetic correlations (G-matrix)

Directly
- QTL mapping
- Genome Wide Association studies

Genotype

1. Measuring Natural Selection on Quantitative Traits
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Covariance between trait and fithess

e ® ®
; @
Fitness (©) ° Fitness P
@
P @
Body size Body size

Absolute fithess

Number of descendants an individual leaves at the start of
the next generation

Note: no info on the rate of change under selection

Relative fitness: of a specific phenotype/ genotype is its
fitness relative to the weighted average fitness of all other
phenotypes/ genotypes within the population
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Example (phenotypic): body size and fithess in cane toads

male size #mates fecundity absolute relative
# eggs/mating fithess fitness

1 145 1 25820 25820 1.164027843

2 128 1 22670 22670 1.022018249

3 148 0 0 0 0

4 138 2 7230 14460 0.651891658

5 141 3 15986 47958 2.16206225

Absolute fithess:
Male 4 =2 x 7,230 = 14460
Relative fitness

absolute fitness(male 4) / mean absolute fitness

=14,460/[ (25,820 + 22,670 + 0 + 14,460 + 47,958)/5]

= 14460 /22182

=0.65

The quantitative genetic view of selection

Selection gradient

* Phenotypic Selection: Consistent difference in fithess among

genetic variation

phenotypes, acting within a single generation.

* Response to selection: Change in population mean phenotype from
one generation to the next.

» Thus selection acts on phenotypes but its effect on evolution
(change in allele frequencies) depends on the mapping of phenotype

to genotype.
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The three forms of phenotypic selection

Directional selection

Before selection

Stabilizing selection

Disruptive selection

04 M 0. I 0. 1
B @
°S® » » .
53
‘2 20. — L 20. — - 0. .
5 2
2 < 0. v s 0. sy 1 0. ey I
- - . ‘ |
T3 4 e 8 oW omom T3 4 8 8 oW omom T3 4 8 8w ouon
During selection
B o o o
w
02 P
* ? . . . ™ ” e . 0 2 . 2
After selection
® « “
- v
o = "
J4 g * . ®
D 2.
E:2 “
3% L " 1o M
! 4 | S— = & | ) .
- [) 2 K L) 8 0 ” 4 e 4 L) L 0 1 4 o 2 4 L) L) L) ” “

Phenotype under selection
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Combinations of forms may exist

Correlational selection

Beak curvature

lE Beak length

Can lead to the evolution of highly correlated traits
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How can we compare natural selection across
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Evolution, 31(6), 1983, pp. 1210-1226

THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS

RUSSELL LANDE' AND STEVAN J. ARNOLD?
! Department of Biophysics and Theovetical Biology and * Department of Biology,
The University of Chicago, Chicago, Illinois 60637

Received June 25, 1982, Revised January 31, 1983

Russ Lande

Steve Arnold

- Landmark paper in evolutionary genetics (2930 citations)
- Uses multiple linear regression to estimate “selection gradients”

- Easy to collect data and compare selection
- Use to predict evolution

Fitness is a surface: w = f(z) + error

What is the form of f(z) ? Linear, flat, bumpy
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Directional selection gradients

Univariate: single trait

w=a+tpz+e

relative fitness (w)

-

trait value, z

Simple linear regression

B =cov(z,w) /var(z)

Multivariate: multiple traits w
w=at Bzt fozyt Bz, te
7

Multiple linear regression 2]
o B
Selection is represented as a vector B = By
of partial regression coefficients Bs
Bn

How the Horned Lizard
Got Its Horns

Kevin V. Young," Edmund D. Brodie Jr.,' Edmund D. Brodie IlI%*

&

Loggerhead shrike
Lanius ludovicianus

Flat tailed horned lizard
Phrynosoma mcalli

www.sciencemag.org SCIENCE VOL 304 2 APRIL 2004 65
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Visualisations

0.8

0.8

0.4

Expected survival

0.24

: , X shrike-killed
0.04 VS ve

25 -14 03 -08 18 29
Residual parietal horn length

Expected survival

e " shrike-killed

0.01 —_— —=live
-34 22 -4 -0.0 1.1 22

Residual squamosal horn length

Directional selection gradients

squamosal

Survival
/ parietal

horn length

Interpretation

c w=oa+fiz+e

Survival =0.0945 x squamosal horn length + intercept
P =0.007

Survival =0.0549 x parietal horn length + intercept
P =0.055

* Anincrease in one phenotypic standard deviation in squamosal horn length increases survival by 9%

B =cov(z,w) / var(z)

10
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Quadratic and correlational selection gradients

y > 0 concave
Univariate: single trait

w=o+pz+y22° ¥ < 0 convex

relative fitness (w)

Quadratic regression

trait value, z

Multivariate: multiple traits w

W=+ ByZy+ BoZy+ yi/2 2y + y/22)7 + y15242;

Z; Z;
Y11 V12 713
Nonlinear selection is represented as a MATRIX y = | 721 722 723
of partial regression coefficients V31 V32 Vs3

Correlational selection: Garter Snakes

Evolution, 46(5), 1992, pp. 1284-1298

11
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High fitness —spotted
snake that reverses

High fitness —striped
snake that doesn't reverse

e QN

54

43

33

Fitness

11

0.1
Striped

s Few

Spotted Froquent
reversals

reversals

2 g

How strong is selection in nature?

VOL. 157, NO. 3 THE AMERICAN NATURALIST MARCH 2001

The Strength of Phenotypic Selection in Natural Populations

J. G. Kingsolver,"" H. E. Hoekstra,' J. M. Hoekstra,"' D. Berrigan,"* S. N. Vignieri,' C. E. Hill,"* A. Hoang,'
P. Gibert,"! and P. Beerli*

Table 3: Number of estimates of linear selection in the database as a function of taxon,

trait type, and fitness component

Taxon Trait

Fitness component

Estimates of linear selection gradients*

Table 1: Summary of the database of phenotypic Invertebrates 333 Morphology 815  Mating success 407
selection studies (1984-1997) Plants 363 Life history/phenology 128  Survival 288
Number of items Vertebrates 297  Principal component 33 Fecundity 271
in the database ... Behavior 14 Total fitness 19
Studics P Interaction NA  Net reproductive rate 3
Records 1,582 ... Other 3 Other 5
Species 6 Estimates of linear selection differentials
Genera 51
Taxon type: . Invertebrates 233 Morphology 594  Mating success 267
L‘l‘vc:m:’}r’:m 0 ;z; "“"3’ ﬁz s:“‘:f“; Plants 183 Life history/phenology 125  Survival 293
ants records (18 studies . .
Vertebrates (V) 161 records (27 studies) Vertebrates 337 PrmcxPal component 21  Fecundity 142
Study type: ... Behavior 10 Total fitness 34
Cross-sectional (C) 14 studies . Interaction NA  Net reproductive rate 12
Longitudinal (L) 51 studies Other 3 Other 5

Note: NA = not applicable.
* N = 993 total estimates.
" N = 753 total estimates.

Kingsolver, J. G.,H. E. Hoekstra, J. M. Hoekstra, D. Berrigan, S. N. Vignieri, C. E. Hill, A. Hoang, P. Gibert, P. Beerli. 2001. The strength of phenotypic selection in natural populations. The

American Naturalist 157:245-261.
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Morphology > Life history

04

o s /1

Frequency

o
o

—— Morphology

| - = - -Life history/phenology

0.25 0.5

0.75 1
Linear Selection Gradients |g|

Sexual selection is surprisingly strong in nature

04
\
\
\
034 !
\
> \
o \
< \
@ \
3 02 \
-4 \\
o )
18
01
0
0

— Fecundity
- - - -Mating
— — Survival

Figure 5: Frequency distribution of the absolute values of the linear selection gradient estimates (|/3|) binned at 0.05 value intervals, for selection
via three different components of fitness: fecundity (solid line, N = 271), mating success (short dashes, N = 407), and survival (long dashes, N =
288).

0.25 05 075 1

Linear Selection Gradients |B|

14



1/23/17

Disruptive selection appears as common as stabilising selection

0.4

03

02

Frequency

08

O Mon-significant
W Significant

Quadratic Selection Gradients (y)

Figure 8: Frequency distribution (in %) of the quadratic selection gradient estimates (y) binned at 0.10 value intervals (N = 465 estimates). The
distributions are stacked according to the statistical significance (at the P = .05 level) of each individual estimates: black indicates significantly

different from 0; grey indicates not significant.

Kingsolver, J. G. and D. W. Pfennig. 2007.
Patterns and power of phenotypic selection
in nature. Bioscience 57:561-571.

Patterns and Power of
Phenotypic Selection in Nature

JOEL G. KINGSOLYER AND DAVID W, FFENNKE
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Predicting the response to selection

‘ Genetic variance ‘ ‘ Selection gradient ‘

Az = h3S,

Multiple traits

The Lande equation

Az=Gp

A

Az, var(z,) cov(z,z,) cov(z,z;)
Az, = |cov(z,z,) var(z;)  cov(z,z,) ,6‘2
Az, cov(z,,z3) cov(z,z;) var(zs) Bs

1

Additive genetic variance-covariance matrix, G

16
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Az=Gf

* Predicts the evolutionary response to directional selection
* Directional selection one trait or on multiple traits

* Describes the way in which G biases the response to selection away
from the direction of selection

* Whenever G does not describe
* equal variance in all traits
* Zero covariance among traits

evolution cannot proceed at the same rate in all directions of
phenotypic space.

* The effect of G on the rate and direction of response to selection
depends on the alignment of G and the selection surface

* Individual traits can change in value in the opposite direction to the selection
applied to them

* Populations might not evolve higher fitness because the among-trait
correlations prevent it

17
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The adaptive landscape

* A heuristic for thinking Arnold et al. 2001
about how populations o
evolve ‘

* Developed by Simpson
in 1944, and used by
Lande (1979)

NI

6

Walsh & Lynch Fig. 32.2.
http://nitro.biosci.arizona.edu/zbook/NewV
olume_2/newvol2.html#2B

* No covariance between traits,
evolution proceeds directly uphill for
maximum increase in fitness (i.e.,
along B)

* Complete covariance (+1 or -1), only
one trait increases in fitness, and
the population never climbs the
peak

* Moderate covariance (+0.5 or -0.5)
the population takes a curved path,
and approaches the peak much
more slowly (each arrow head = a
generation of change)

* Circles = fitness isoclines
(everything along the line has
equal fitness

* Two traits, with equal variance

18
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Genetic Constraints

* The genetic variance shared among traits (their covariance) can
markedly affect the RATE and DIRECTION of total phenotypic
evolution, and the response of individual traits

* |f selection favours a trait combination with little genetic variance, the
rate of evolution will be slow

* Populations might become extinct before gaining sufficient absolute fitness

Random Genetic Drift

* Occurs in finite populations — proportional to N,
* Causes population mean phenotypes to diverge
* Variation among populations at time t
proportional to G at time 0

time
[ )
[ ]
[ )
L
o°® o®
[ )

Trait mean

19
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Random Genetic Drift

Greatest divergence in direction of most genetic variance

Oo'
2| el ~ o °
= E £
ojf® o %
Trait 1 Trait 1

What maintains
(quantitative) genetic
variation within
populations?

How does genetic variance evolve within populations?

Maintenance of genetic variance remains a major
unresolved question in Quantitative Genetics

20
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Conflicting observations

1. selection on traits is common, and fairly strong:

“phenotypic selection in many natural populations is strong
enough to cause substantial evolutionary changes in tens to
hundreds of generations, which is a very short timescale in

H n
evolutionary terms” pg ses INGSOLVER AND PFENNIG 2007
2. Traits are heritable:

“If one’s sole interest in performing a quantitative-genetic
analysis is to demonstrate that the character of interest is
heritable, there is probably little point in expending the effort.
The outcome is virtually certain. Almost every character in
almost every species that has been studied intensely exhibits

y o=
nonzero heritability.” »G 174 yncH AND WALSH 1998

Practical Importance

* AGRICULTURE: How genetic variance is maintained will affect how we
can apply artificial selection, and what the responses will be

* BIOMEDICAL: The nature of genetic variation will affect how we can
go about identifying causal genetic variants of human diseases
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Predicating the effects of evolutionary process on G

We cannot exactly predict the evolution of G because it
depends on unknown details of the genetic architecture
underpinning G

* Frequencies of alleles

* Number of loci

* Effects of alleles on phenotypic trait of interest AND on
fitness

* Do many loci with many alleles of small effect
contribute to a trait?

* Each allele would be under weak selection, and change
little in frequency, resulting in the maintenance of high
levels of variance

* Do mutations change the effect of an allele relative to
the effect before mutation, or are all allelic effects
possible?

Phenotypic effect of allele
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Models of the evolution of V,

e Mutation — drift balance

* Selection models
* Balancing selection models
* Mutation — stabilising selection models

A veritable plethora of theoretical models have been
developed (see Bruce’s Chapter!!) . We'll just look at the
general features of a few classes of these.

Mutation — Drift Balance

* Simplest model of the evolutionary dynamics of V,

* Mutations arise, and either are lost from the
population or increase in frequency

* At mutation — drift equilibrium: V, ~ 2N _V,,
* h2~0.5, h?,, ~0.005
* Predicts N, = 50

Problem:
* Predicts V, >> than observed for moderate to large N,
* h2~ 0.2 — 0.6 irrespective of population size
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Mutation — Drift Balance

* Drift cannot be the whole story, but:

* Alleles are considered “effectively neutral” (fate
determined by drift, not selection) when:

s<1/2Ne For Ne = 50, mutational
fate determined by drift
when s <0.01

* Estimates of s from new mutations:
* 5 <~0.01 for those affecting morphological traits
* s~ 0.02 for those affecting fitness components

* Chance sampling of alleles under weak selection
(mildly deleterious effects on fitness) likely
contributes to the maintenance of standing genetic
variance in finite populations

Models with Selection

Classical View (MSB) —T. H. Balancing View — Theodosius
Morgan & Hermann Muller Dobzhansky
* Wildtype allele has highest ¢ Balancing selection
fitness in any particular maintains variation
environment . .
o * Allows rapid adaptation
* Variation due to recurrent to ever changing

deleterious mutations environment

A

Fig. 1.30. Barton et al. 2007 “Evolution” Fig. 1.36. Barton et al. 2007 “Evolution”
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Models with Selection

1. Selection maintains variation — balancing selection
models

* Rare alleles favoured

* Need to understand how alleles become fitter as they
become rarer.

a. Heterozygote advantage
* Rare alleles will mostly be present in heterozygotes
* g% vs2pq

Several specific examples, e.g. Sickle cell anemia in the
presence of malaria

* Can’t be the only mechanism - haploid taxa have abundant
genetic variance
* Can’t have heterozygotes with only one copy of the gene

b. Frequency-dependent selection

* Rare alleles are directly favoured
* Inbreeding avoidance mating incompatibilities
* Batesian mimicry predator avoidance
* Intra-specific competition avoidance

c. Fluctuating selection

* spatial or temporal variation in the alleles with the
highest fitness can maintain polymorphism of the
population
* Requires some fairly restrictive simplifying assumptions,

* Includes fitness differences of alleles in females versus
males
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2. Mutation-Selection Balance

Considered the most generally applicable quantitative
genetic model of the maintenance of additive genetic

variance

* Rate at which genetic variation is removed by selection is
exactly matched by the rate at which it is introduced by

mutation

* Assumes population is under stabilising selection

* Few studies report significant stabilising selection in
contemporary populations (Kingsolver et al.)

* Phenotypes (morphology) stay the same over long periods of

time

directional selection
(adaptation)

»
>

fithess

—

\

phenotype

stabilising selection

»
>

fitness

mutation

\ 4

phenotype

* Stabilising selection = variance reducing selection
* Assume that the average trait value in the population has the
greatest fitness, and therefore all mutations reduce fitness, and

are eliminated
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V, =2V, V. Drift: V, = 2N V),
* V, is the variance in the fitness curve
* Related to quadratic selection gradient: Vs / V, =-1/2y

* Large V. = wide curve = weak selection
* Small Vi = narrow curve = strong selection

Strong selection

Weak selection
Narrow variance

Wide variance

Large Vi Small Vg
(2] ()]
[} [%2]
[} (]
= £
phenotype " phenotype

How much genetic variance can be maintained
by MSB?

Scenario:
* h?=50% (Vg = V)
* Approx. observed value for many traits
. th =0.0125
* Estimates ~ 0.005-0.01
* V=20V,
* Individual deviates from optimum by 1 environmental SD,

has fitness reduced by 2.5%
* Kingsolver et al. median V5~ 10V, (i.e., is stronger than we

are assuming).
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MSB

Can work quite well (predict genetic variance of

plausible magnitude) when we think about a single trait

BUT

* Many traits individually under (weak) stabilising
selection, fitness implausibly low

-2.5% fitness for trait 1
-2.5% fitness for trait 2
-2.5% fitness for trait 3

fitness

>

phenotype

MSB

» Mutation rate to allow ~50% h? is fairly high
* Implies many loci affect each trait (per locus mutation rates

are much lower)
* If each gene/mutation affected each trait independently,

there aren’t enough genes
* Pleiotropy must be pervasive
* The same allele (mutation) affects multiple traits, and
fitness
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If pleiotropy is pervasive...

Imagine:

* Each allele affects your trait of interest, and also
decreases fitness [assuming stabilising selection]

Ve = \FM/S average selection against alleles

Estimates of s from new mutations:
$§<~0.01to~0.02
Estimates of V\,:
V,,~0.005-0.01

MSB works if average
selection is a little weaker
than we think it might be,
or if mutational variance
is a little greater than we
think it might be.

For h? = 50%, av s must be ~

0.001 to 0.01

Maintenance of Quantitative Genetic

Variance

* No theoretical model predicts observed levels of V, for realistic values

of other parameters (V,,, Vs, N,), with realistic simplifying

assumptions

* Some models of MSB seem plausible, but we really don’t know

enough about the mutation rate or fitness effects of new mutations

* |s evidence that BS maintains variance in at least some traits
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Balancing selection or mutation?

Unknown whether the high levels of V, in populations is due to:
* Balancing selection maintaining variation
* Mutation — selection balance

Key predictions that allow us to distinguish between them
* Allele frequencies
* Allelic effects on fitness

Key predictions distinguishing between
models with selection

Balancing selection: alleles at
intermediate frequencies

»
'

* Rare alleles have positive
effects on fitness

* Selection increases their
frequency

* When they are no longer rare,
they cease to be under

proportion of alleles

positive selection 0.0 0.5 1.0
allele frequency, p
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Key predictions distinguishing between
models with selection

* Mutation-selection balance: most alleles
will be at low frequency
* Most alleles = new mutations
* By definition, new mutations are rare

* Most alleles = low fitness

* Selection is keeping them rare, eliminating
them

Key predictions distinguishing between
models with selection

Under MSB model, standing
genetic variance must be
made up of many low
frequency alleles, and few
high frequency alleles

»
>

proportion of alleles

0.0 0.5 10
allele frequency, p

31



1/23/17

What do we know about
allele frequencies?

molecular genetic data generally support many rare
allele distribution, consistent with MSB

“minor” allele = 2" most frequent allele; has to be <0.5

Allele frequency distribution in
Steve’s population of D. serrata

; \l - |ﬂ‘CY§IL‘HIC

8 = Intronic

= Exonic

i kLLLLLLLLLLLLL;L;-

Allele frequency distribution of loci affecting
gene expression variation in mustard
relative — Josephs et al. 2016

030 -

0z |
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Trends in Ecology and Evolution, December 2012, Vol. 27, No. 12

What is the evidence for heterozygote
advantage selection?

Philip W. Hedrick

Recent genomic data have found that many genes show
the signal of selection. How many of these genes are
undergoing heterozygote advantage selection is only
beginning to be known. Initial genomic surveys have
suggested that only a small proportion of loci have

polymorphisms maintained by heterozygote advantage

and this is consistent with the few examples generated
from other approaches within given species. Unless
further studies provide large numbers of loci with het-

erozygote advantage, it appears that loci with heterozy-

gote advantage must be considered only a small

minority of all loci in a species. This is not to say that
some heterozygote advantage loci do not have impor-
tant adaptive functions, but that their role in overall
evolutionary change might be more of an unusual phe-
nomenon than a major player in adaptation.

What’s the fitness effects of

these alleles?
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From Park et al. 2011 PNAS. 108:18026-18031

Cancers Crohn's Disease Type-1 Diabetes Type-ll Diabetes

b .. .}, L.,

02 04 08 08 05 005 02 04 00 08 03 005 02 08 08 08

Frequency of “risk” alleles — alleles that increase the likelihood that

you will get the disease

* Distributions are left skewed — more alleles that increase risk
occur at low frequencies

Genetic variation is less in the direction of high
fitness than in the direction of low fithess

Artificial selection for decreased fitness causes
more evolution than selection for increased fitness

Frankham (1990)

“38  « 30 bi-directional
artificial selection
experiments on
fitness (components)

» 80% report greater

W e 4 response for

- decreased fitness

1~ 79

Falconer, D. S. 1953. Selection for large and small size in mice. Journal
of Genetics 51:470-501.
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Asymmetry of selection responses is consistent with
mutation-selection balance

* More genetic variance to decrease fitness than to increase fitness
BECAUSE
* persistent selection under stable conditions has pushed advantageous alleles
to high frequency and disadvantageous alleles to low frequency
* most new mutations are deleterious with respect to fitness, so input of new
variance for low fitness by low frequency alleles (mutations)

Consequences of MSB

If MSB is truly the way that genetic variance is
maintained for quantitative traits

* Finding causal alleles will be hard
* Hard to find something rare

* Most of the genetic variance in the population is
deleterious.
* Evolutionary potential?
* Mutation load?
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Lecture 8
QTL and Association mapping

Bruce Walsh lecture notes

Introduction to Quantitative Genetics
SISG, Brisbane
6 -7 Feb 2017

Part |
QTL mapping and the use of
inbred line crosses

e QTL mapping tries to detect small (20-40 cM)
chromosome segments influencing trait
variation

— Relatively crude level of resolution
e QTL mapping performed either using inbred
line crosses or sets of known relatives

— Uses the simple fact of an excess of parental
gametes



Key idea: Looking for marker-trait
associations in collections of relatives

If (say) the mean trait value for marker
genotype MM is statistically different
from that for genotype mm, then the M/m
marker is linked to a QTL

One can use a random collection of such
markers spanning a genome (a genomic
scan) to search for QTLs

Experimental Design: Crosses

RILs = Recombinant

inbred lines (selfed F;s) Advanced intercross
l Design (AIC, AIC))
Fy



Experimental Designs: Marker
Analysis

Single marker analysis

Flanking marker analysis (interval mapping)

Composite interval mapping

Interval mapping plus additional markers

Multipoint mapping

Uses all markers on a chromosome simultaneously
5

Conditional Probabilities of
QTL Genotypes

The basic building block for all QTL methods is
Pr(Q, | M;) --- the probability of QTL genotype
Q, given the marker genotype is M..

.\ _ Pr(QkM;j)
Pr(leMJ)— PF(MJ)
Consider a QTL linked to a marker (recombination

Fraction = ¢). Cross MMQQ x mmqg. In the F1, all
gametes are MQ and mq

In the F2, freq(MQ) = freq(mq) = (1-¢)/2,
freq(mQ) = freq(Mq) = ¢/2



Hence, Pr(MMQQ) = Pr(MQ)Pr(MQ) = (1-c)?/4
Pr(MMQq) = 2Pr(MQ)Pr(Mgq) = 2¢(1-c) /4
Pr(MMqq) = Pr(Mg)Pr(Mq) = c?/4

Why the 2?7 MQ from father, Mg from mother, OR
MQ from mother, Mq from father

Since Pr(MM) = 1/4, the conditional probabilities become
Pr(QQ | MM) = Pr(MMQQ)/Pr(MM) = (1-c)?
Pr(Qq | MM) = Pr(MMQgq)/Pr(MM) = 2¢(1-c)
Pr(qg | MM) = Pr(MMqq)/Pr(MM) = ¢?

How do we use these? 7

Expected Marker Means

The expected trait mean for marker genotype M,
Is just .
pm, = Y pQ, Pr(Qr | M;)
k=1
For example, if QQ = 2a, Qq = a(1+k), ggq = 0, then in
the F2 of an MMQQ/mmqq cross,

('“?"”z’” T /l‘mm)/iz — (’1(1 —_ 2()

e |f the trait mean is significantly different for the
genotypes at a marker locus, it is linked to a QTL

e A small MM-mm difference could be (i) a tightly-linked

QTL of small effect or (ii) loose linkage to a large QTL



Linear Models for QTL Detection

The use of differences in the mean trait value
for different marker genotypes to detect a QTL
and estimate its effects is a use of linear models.

One-way ANOVA.

Value of trait in kth
individual of marker

genotype type i

\
Zik = W+ 7{); + €ik

Effect of marker
genotype i on trait
value

Zik = W+ b + €

Detection: a QTL is linked to the marker if at least
one of the b, is significantly different from zero

Estimation: (QTL effect and position): This requires
relating the b, to the QTL effects and map position



Detecting epistasis

One major advantage of linear models is their
flexibility. To test for epistasis between two QTLs,
use ANOVA with an interaction term

z=p+a; +bx + dix + €
/

Effect from marker genotype
at first marker set (can be > 1 loci)

Effect from marker genotype
at second marker set

Interaction between marker genotypes i in 1st
marker set and k in 2nd marker set

11

Detecting epistasis

Z=p+a + b+ dir + €

* At least one of the a, significantly different from O
---- QTL linked to first marker set

e At least one of the b, significantly different from O
---- QTL linked to second marker set

¢ At least one of the d, significantly different from O
--—- interactions between QTL in sets 1 and two

Problem: Huge number of potential interaction terms

(order m2, where m = number of markers) 0



Maximum Likelihood Methods

ML methods use the entire distribution of the data, not
just the marker genotype means.

More powerful that linear models, but not as flexible
in extending solutions (new analysis required for each model)

Basic likelihood function:

Trait value given N
marker genotype is (z| M) = Z o(z, pa, ,0%) Pr(Qr| M;)
type ) k=1

This is a mixture model

Maximum Likelihood Methods

Probability of QTL genotype
k given marker genotype

j --- genetic map and linkage

\1 phase enter : here

o

N
M; ) Z o(z, uQ, ,0°) Pr(Qr| Mj)
k=1

-

Distribution of trait value given
QTL genotype is k

is normal with mean ug,. (QTL
effects enter here)

Sum over the N possible
linked QTL genotypes

‘ »'«



ML methods combine both detection and estimation
of QTL effects/position.

Test for a linked QTL given from by the Likelihood
Ratio (or LR) test

Maximum of the likelihood
under a no-linked QTL

/ model

IR — —o max lr(2z)

max {(z)
Maximum of the

The LR score is often plotted by £ull likelihood

trying different locations for the
QTL (i.e., values of c¢) and computing
a LOD score for each ll

LOD(c) = —log,g [ max /r(z) ] _ LR(¢) _ LR(¢)

max ((z,c¢) | 2Inl0 461

A typical QTL map from a likelihood analysis

Estimated QTL location

Support interval .-

L.LOD score

N W A N
T

f—
T
\
A)
\
‘«
)
'
[
'
)
|
/
i
f

Chromosome position

O -




Interval Mapping with Marker
Cofactors

Consider interval mapping using the markers i and i+1. QTLs linked
to these markers, but outside this interval, can contribute (falsely) to
estimation of QTL position and effect

i-1 i i+1 i+2

Interval being mapped

Now suppose we also add the two markers flanking the

interval (i-1 and i+2) 17

i-1 [ i+1 i+2
<€— I I . >
Inclusion of markers i-1 and i+2 fully account

for any linked QTLs to the left of i-1 and the
right of i+2

Interval mapping + marker cofactors is called
Composite Interval Mapping (CIM)

CIM works by adding an additional term to the
linear model,

CIM also (potentially) includes unlinked markers to
account for QTL on other chromosomes. 18



Power and Precision

While modest sample sizes are sufficient to
detect a QTL of modest effect (power), large
sample sizes are required to map it with any
precision

With 200-300 F,, a QTL accounting for 5% of
total variation can be mapped to a 40cM interval

Over 10,000 F, individuals are required to map
this QTL to a 1cM interval

Power and Repeatability: The
Beavis Effect

QTLs with low power of detection tend to have their
effects overestimated, often very dramatically

As power of detection increases, the overestimation
of detected QTLs becomes far less serious

This is often called the Beavis Effect, after Bill
Beavis who first noticed this in simulation studies.

This phenomena is also called the winner’s curse in
statistics (and GWAS)

20



Beavis Effect

Also called the "winner’s curse” in the GWAS literature

Distribution of
the realized value of an

|
|
|
|
|
| effect in a sample
|

v

True value

I
Significance
threshold

High power setting: Most realizations are to the

right of the significance threshold. Hence, the

average value given the estimate is declared significant
(above the threshold) is very close to the true value.

In low power settings, most realizations are below
the significance threshold, hence most of the time the
effect is scored as being nonsignificant

Significance
threshold

v

True value

N
Mean among
significant results

However, the mean of those declared significant
is much larger than the true mean

21
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Observed /actual effect for a detected QTL

100

L
Inflation at
10 L4 <«
lower power
.
®
L
o'oe
®
)
1
1 10 100

Inflation can

50

40

Detected QTLs (%)
8

20

10

Power (%)

be significant, esp. with low power

23

«€— Actual = 1.6%

0 5 w 15 20 25 30 35
Estimated percentage of total variance

Beavis simulation: actual effect size is 1.6% of
variation. Estimated effects (at significant markers)

much higher

24



Model selection

e With (say) 300 markers, we have (potentially) 300
single-marker terms and 300*299/2 = 44,850 epistatic
terms

— Hence, a model with up to p= 45,150 possible parameters
— 2P possible submodels = 1073690 ouch!

* The issue of Model selection becomes very important.
* How do we find the best model?

— Stepwise regression approaches
e Forward selection (add terms one at a time)
e Backwards selection (delete terms one at a time)

— Try all models, assess best fit
— Mixed-model (random effect) approaches

25

Model Selection

Model Selection: Use some criteria to choose among a
number of candidate models. Weight goodness-of-fit
(L, value of the likelihood at the MLEs) vs. number of
estimated parameters (k)

AIC = Akaike’s information criterion
AIC = 2k - 2 Ln(L)

BIC = Bayesian information criterion (Schwarz criterion)
BIC = k*In(n)/n - 2 Ln(L)/n
BIC penalizes free parameters more strongly than AIC

For both AIC & BIC, smaller value is better

26



Model averaging

Model averaging: Generate a composite model by weighting
(averaging) the various models, using AIC, BIC, or other

|dea: Perhaps no “best” model, but several models
all extremely close. Better to report this “distribution”
rather than the best one

One approach is to average the coefficients on the
“best-fitting” models using some scheme to return
a composite model

27

Shrinkage estimators

Shrinkage estimates: Rather than adding interaction
terms one at a time, a shrinkage method starts with all
interactions included, and then shrinks most back to zero.

Under a Bayesian analysis, any effect is random. One can
assume the effect for (say) interaction ij is drawn from
a normal with mean zero and variance 0%

Further, the interaction-specific variances are themselves
random variables drawn from a hyperparameter distribution,
such as an inverse chi-square.

One then estimates the hyperparameters and uses these
to predict the variances, with effects with small variances
shrinking back to zero, and effects with large variances
remaining in the model. 28



Whatisa "QTL"

e A detected “QTL" in a mapping experiment
is a region of a chromosome detected by
linkage.

Usually large (typically 10-40 cM)

When further examined, most “large” QTLs
turn out to be a linked collection of locations
with increasingly smaller effects

® The more one localizes, the more subregions
that are found, and the smaller the effect in
each subregion

This is called fractionation

29

Limitations of QTL mapping

e Poor resolution (~20 cM or greater in most designs
with sample sizes in low to mid 100’s)
— Detected "QTLs" are thus large chromosomal regions

* Fine mapping requires either

— Further crosses (recombinations) involving regions of
interest (i.e., RILs, NILs)

— Enormous sample sizes

e If marker-QTL distance is 0.5cM, require sample sizes
in excess of 3400 to have a 95% chance of 10 (or
more) recombination events in sample

* 10 recombination events allows one to separate
effects that differ by ~ 0.6 SD

30



Limitations of QTL mapping (cont)

* “Major” QTLs typically fractionate
— QTLs of large effect (accounting for > 10% of the
variance) are routinely discovered.

— However, a large QTL peak in an initial experiment
generally becomes a series of smaller and smaller
peaks upon subsequent fine-mapping.

e The Beavis effect:

— When power for detection is low, marker-trait
associations declared to be statistically significant
significantly overestimate their true effects.

— This effect can be very large (order of magnitude)
when power is low.

31

Il
QTL mapping in Outbred
Populations
and Association Mapping

e Association mapping uses a set of very dense
markers in a set of (largely) unrelated
individuals

* Requires population level LD
* Allows for very fine mapping (1-20 kB)

32



QTL mapping in outbred
populations

® Much lower power than line-cross QTL
mapping

e Each parent must be separately
analyzed

* We focus on an approach for general
pedigrees, as this leads us into
association mapping

General Pedigree Methods

Random effects (hence, variance component) method
for detecting QTLs in general pedigrees

Genetic effect of
chromosomal region
of interest

Trait value for f ’
individual i > %i = [T A; + A +e;

The model is rerun for each marker

33
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zi=p+ Ai + A, + e

The covariance between individuals i and j is thus

Variance Resemblance
explained by between
the region of relatlvgs

interest correction

\ /

D) D)
0(2i,25) = Rij 04 + 20,5 024

;

AN

Fraction of chromosomal

region shared IBD Vari.ance
between individuals i and j. eXP'i';ed by
e
background
polygenes

Assume z is MVN, giving the covariance matrix as

V=Roi+Aoy +10¢
Here

1 fori=j 1 fori=j
Ro={h o2 au={y, i
i for i # j 20;; fori#j

Estimated from marker Estimated from

data the pedigree

The resulting likelihood function is

1 1 _
0(z| p,0%4,0%,02) = ————m— exp —§(z—u)TV Yz —p)

NCoRN

A significant 6,2 indicates a linked QTL.
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Association & LD mapping

Mapping major genes (LD mapping) vs. trying to
Map QTLs (Association mapping)

Idea: Collect random sample of individuals, contrast
trait means over marker genotypes

If a dense enough marker map, likely population level
linkage disequilibrium (LD) between closely-linked
genes

37

LD: Linkage disequilibrium

D(AB) = freq(AB) - freq(A)*freq(B).
LD = 0O if A and B are independent. If LD not zero,
correlation between A and B in the population

If a marker and QTL are linked, then the marker and
QTL alleles are in LD in close relatives, generating
a marker-trait association.

The decay of D: D(t) = (1-¢)t D(0)

here c is the recombination rate. Tightly-linked genes
(small ¢) initially in LD can retain LD for long periods of
time

38



Dense SNP Association Mapping

Mapping genes using known sets of relatives can be
problematic because of the cost and difficulty in
obtaining enough relatives to have sufficient power.

By contrast, it is straightforward to gather large
sets of unrelated individuals, for example a large
number of cases (individuals with a particular
trait/disease) and controls (those without it).

With the very dense set of SNP markers (dense =
very tightly linked), it is possible to scan for markers
in LD in a random mating population with QTLs, simply
because c is so small that LD has not yet decayed
39

These ideas lead to consideration of a strategy of

For example, using 30,000 equally spaced SNP in

The 3000cM human genome places any QTL within
0.05cM of a SNP. Hence, for an association created

t generations ago (for example, by a new mutant

allele appearing at that QTL), the fraction of

original LD still present is at least (1-0.0005)t ~
1-exp(t*0.0005). Thus for mutations 100, 500,

and 1000 generations old (2.5K, 12.5K, and 25 K
years for humans), this fraction is 95.1%, 77.8%, 60.6%,

We thus have large samples and high disequilibrium,
the recipe needed to detect linked QTLs of small effect
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Association mapping

Marker-trait associations within a population of unrelated
individuals

Very high marker density (~ 100s of markers/cM) required

— Marker density no less than the average track length of
linkage disequilibrium (LD)

Relies on very slow breakdown of initial LD generated by a new

mutation near a marker to generate marker-trait associations

— LD decays very quickly unless very tight linkage

— Hence, resolution on the scale of LD in the population(s) being studied
(1~ 40kB)

Widely used since mid 1990’s. Mainstay of human genetics,
strong inroads in breeding, evolutionary genetics

Power a function of the genetic variance of a QTL, not its mean
effects

41

Manhattan plots

® The results for a Genome-wide Association study (or

GWAS) are typically displayed using a Manhattan

plot.

— At each SNP, -In(p), the negative log of the p
value for a significant marker-trait association is
plotted. Values above a threshold indicate
significant effects

— Threshold set by Bonferroni-style multiple
comparisons correction

— With n markers, an overall false-positive rate of p
requires each marker be tested using p/n.

— With n = 10° SNPs, p must exceed 0.01/10° or
108 to have a control of 1% of a false-positive
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Candidate Loci and the TDT

Often try to map genes by using case/control contrasts,
also called association mapping.

The frequencies of marker alleles are measured in both a
case sample -- showing the trait (or extreme values)
control sample -- not showing the trait

The idea is that if the marker is in tight linkage, we might
expect LD between it and the particular DNA site causing
the trait variation.

Problem with case-control approach (and association
mapping in general): Population Stratification can give
false positives.
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When population being sampled actually consists of several distinct
subpopulations we have lumped together, marker alleles may provide
information as to which group an individual belongs. If there are other
risk factors in a group, this can create a false association btw marker
and trait

Example. The Gm marker was thought (for biological reasons) to be
an excellent candidate gene for diabetes in the high-risk population
of Pima Indians in the American Southwest. Initially a very strong
association was observed:

Gm* Total % with diabetes

Present 293 8%

Absent 4,627 29%
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Gm* Total % with diabetes
Present 293 8%
Absent 4,627 29%

Problem: freq(Gm*) in Caucasians (lower-risk diabetes
Population) is 67%, Gm* rare in full-blooded Pima

The association was re-examined in a population of Pima
that were 7/8th (or more) full heritage:

Gm* Total % with diabetes
Present 17 59%
Absent 1,764 60%

Linkage vs. Association

The distinction between linkage and association

is subtle, yet critical

Marker allele M is associated with the trait if

Cov(M,y) is not O

While such associations can arise via linkage, they

can also arise via population structure.

Thus, association DOES NOT imply linkage, and

linkage is not sufficient for association
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Transmission-disequilibrium test (TDT)

The TDT accounts for population structure. It requires
sets of relatives and compares the number of times a
marker allele is transmitted (T) versus not-transmitted
(NT) from a marker heterozygote parent to affected

offspring.

Under the hypothesis of no linkage, these values
should be equal, resulting in a chi-square test for

lack of fit:

Scan for type | diabetes in Humans.

Xtd —

(T~ NT)?

(T + NT)
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Marker locus

D25152
Allele T NT X2 P
228 81 45 10.29 0.001
230 59 73 1748 0.223
240 36 14 2.30 0.121
, (81— 45)2
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Accounting for population structure

* Three classes of approaches proposed

— 1) Attempts to correct for common pop structure
signal (genomic control, regression/ PC methods)

— 2) Attempits to first assign individuals into
subpopulations and then perform association
mapping in each set (Structure)

— 3) Mixed models that use all of the marker
information (Tassle, EMMA, many others)

* These can also account for cryptic relatedness in the
data set, which also causes false-positives.
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Genomic Control

Devlin and Roeder (1999). Basic idea is that association tests (marker
presence/absence vs. trait presence/absence) is typically done with a
standard 2 x 2 %2 test.

When population structure is present, the test statistic now follows
a scaled y?, so that if S is the test statistic, then S/A ~ %2, (so S ~

7¥X21)

The inflation factor A is given by

A=1+nFgr 2k (fk'9k)2

Note that this departure from a x? increases with sample size n
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Genomic Control

Assume n cases
and controls Fraction of cases

\ in kth population

)\ = 1 + nFST Zk (fk_gk)z

Population \

substructure Fraction of controls
in kth population

Genomic control attempts to estimate A directly

from our distribution of test statistics S
53

Estimation of A

The mean of a ¥?; is one. Hence, since S ~ Ayx?; and we expect most
test statistic values to be from the null (no linkage), one estimator of
A is simply the mean of S, the mean value of

the test statistics.

The problem is that this is not a particular robust estimator, as a
few extreme values of S (as would occur with linkage!) can inflate
A\ over its true value.

A more robust estimator is offered from the medium
(50% value) of the test statistics, so that for m tests

medium (S1, -+ 3. 5m)
0.456

A=
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Structured Association Mapping

Pritchard and Rosenberg (1999) proposed
Structured Association Mapping, wherein

one assumes k subpopulations (each in Hardy-
Weinberg).

Given a large number of markers, one then attempts
to assign individuals to groups using an MCMC
Bayesian classifier

Once individuals assigned to groups, association mapping
without any correction can occur in each group.
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Regression Approaches

A third approach to control for structure is
simply to include a number of markers, outside
of the SNP of interest, chosen because they
are expected to vary over any subpopulations

How might you choose these in a sample? Try
those markers (read STRs) that show the largest
departure from Hardy-Weinberg, as this is expected
in markers that vary the most over subpopulations.
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Indicator (O / 1) Variable
for SNP genotype k. Typically
k=3,i.e. AA, Aaaa

m

n
y=p+Y G Mp+Y ~ibj+e
k=1 =1

Significant g indicates m unlinked markers Thaf
marker-trait association vary across subpopulations.
bj = marker genotype indicator
SNP marker variable

under consideration

Variations on this theme (eigenstrat) --- use all of the
marker information to extract a set of significant

PCs, which are then included in the model as cofactors
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Mixed-model approaches

* Mixed models use marker data to
— Account for population structure
— Account for cryptic relatedness

* Three general approaches:

— Treat a single SNP as fixed
e TASSLE, EMMA

— Treat a single SNP as random
* General pedigree method

— Fit all of the SNPs at once
e GBLUP
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Structure plus Kinship Methods

Association mapping in plants offer occurs by first taking
a large collection of lines, some closely related, others
more distantly related. Thus, in addition to this collection
being a series of subpopulations (derivatives from a
number of founding lines), there can also be additional
structure within each subpopulation (groups of more
closely related lines within any particular lineage).

Y=XB+Sa+Qv+Zu+e

Fixed effects in blue, random effects in red

This is a mixed-model approach. The program TASSEL
runs this model. 59

Q-K method
Y=Xp+Sa+Qv+Zu+e

[} = vector of fixed effects

a = SNP effects

v = vector of subpopulation effects (STRUCTURE)
Q; = Prob(individual i in group j). Determined
from STRUCTURE output

u = shared polygenic effects due to kinship.
Cov(u) = var(A)*A, where the relationship matrix
A estimated from marker data matrix K, also called a

GRM - a genomic relationship matrix
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Which markers to include in K?

* Best approach is to leave out the marker
being tested (and any in LD with it) when
construction the genomic relationship matrix

— LOCO approach - leave out one chromosome
(which the tested marker is linked to)

* Best approach seems to be to use most of
the markers

e Other mixed-model approaches along these
lines

61

GBLUP

e The O-K method tests SNPs one at a time,
treating them as fixed effects

* The general pedigree method (slides 35-36)
also tests one marker at a time, treating
them as random effects

e Genomic selection can be thought of as
estimating all of the SNP effects at once and
hence can also be used for GWAS
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BLUP, GBLUP, and GWAS

e Pedigree information gives EXPECTED value
of shared sites (i.e., V2 for full-sibs)
— A matrix in BLUP

— The actual realization of the fraction of shared
genes for a particular pair of relatives can be
rather different, due to sampling variance in
segregation of alleles

— GRM, genomic relationship matrix (or K or marker
matrix M)

— Hence “identical” relatives can differ significantly
in faction of shared regions

— Dense marker information can account for this
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The general setting

* Suppose we have n measured individuals (the n x 1
vector y of trait values)

* The n x n relationship matrix A gives the relatedness
among the sampled individuals, where the elements
of A are obtained from the pedigree of measured
individuals

e We may also have p (>> n) SNPs per individual,
where the n x p marker information matrix M
contains the marker data, where M; = score for SNP
j (i.e., 0 forQO, 1 for 10, 2 for 11) in individual i.



Covariance structure of random effects

A critical element specifying the mixed model is the
covariance structure (matrix) of the vector u of
random effects

e Standard form is that Cov(u) = variance component *
matrix of known constants

— This is the case for pedigree data, where u is typically the
vector of breeding values, and the pedigree defines a
relationship matrix A, with Cov(u) = Var(A) * A, the additive
variance times the relationship matrix

— With marker data, the covariance of random effects are
functions of the marker information matrix M.

e If uis the vector of p marker effects, then Cov(u) =
Var(m) * MTM, the marker variance times the covariance
structure of the markers.

Y=XB+Zu+e

Pedigree-based BV estimation: (BLUP)
U, = vector of BVs, Cov(u) = Var(A) A,

Marker-based BV estimation: (GBLUP)
U, = vector of BVs, Cov(u) = Var(m) M™ (n x n)

nx

GWAS: ug, = vector of marker effects,
Cov(u) = Var(m) MMT (p x p)

Genomic selection: predicted vector of breeding values
from marker effects (genetic breeding values),

GBan1 - Mnx Upx1-

Note that Cov(GBV) = Var(m) MTM (n x n)

Many variations of these general ideas by adding
additional assumptions on covariance structure.



GWAS Model diagnostics
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Genomic control A as a diagnostic tool

Presence of population structure will inflate the A
parameter

A value above 1 is considered evidence of additional
structure in the data
— Could be population structure, cryptic relatedness, or both
— Alambda value less that 1.05 is generally considered benign

One issue is that if the true polygenic model holds (lots of
sites of small effect), then a significant fraction will have
inflated p values, and hence an inflated A value.

Hence, often one computes the A following attempts to
remove population structure. If the resulting value is
below 1.05, suggestion that structure has been largely
removed.
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P — P plots

* Another powerful diagnostic tool is the p-p plot.
e |f all tests are drawn from the null, then the
distribution of p values should be uniform.

— There should be a slight excess of tests with very
low p indicating true positives

* This gives a straight line of a log-log plot of
observed (seen) and expected (uniform) p values
with a slight rise near small values

— If the fraction of true positives is high (i.e., many
sites influence the trait), this also bends the p-p

plot
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Price et al. 2010 Nat Rev Gene 11: 459
70



b Stratification without unusually
differentiated markers

Observed (~logP)

10

©
|

o
|

'
|

N
|

¢ Stratification with unusually
differentiated markers

Observed (~logP)

T T
2 -

Expected (-logP)

Great excess of
Significant tests

N

T T
2 - 6

Expected (logP)

As with using A, one should construct p-p following

some approach to correct for structure & relatedness

to see if they look unusual.
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Power of Association mapping

Q/q is the polymorphic site contributing to trait
variation, M/m alleles (at a SNP) used as a marker

Let p be the frequency of M, and assume that
Q only resides on the M background (complete
disequilibrium)

Haloptype Frequency | effect
QM rp a
qM (1-nNp
gm 1-p 0
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Haloptype Frequency | effect
QM rp a
qM (1-nNp
gm 1-p 0

Effectofm =0

Effect of M = ar

Genetic variation associated with Q = 2(rp)(1-rp)a?
~ 2rpa? when Q rare. Hence, little power if Q rare

Genetic variation associated with marker M is
2p(1-p)(ar)? ~ 2pa?r?

Ratio of marker/true effect variance is ~ r

Hence, if Q rare within the A class, even less power!
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Common variants

- freq(Q) moderate
— freq () of Q within M haplotypes modest to large

Association mapping is only powerful for common
variants

Large effect alleles (a large) can leave small signals.
The fraction of the actual variance accounted for by

the markers is no greater than ~ ave(r), the average
frequency of Q within a haplotype class

Hence, don’t expect to capture all of Var(A) with

markers, esp. when QTL alleles are rare but markers
are common (e.g. common SNPs, p > 0.05)

Low power to detect G x G, G x E interactions
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"How wonderful that we have met with a
paradox. Now we have some hope of
making progress” -- Neils Bohr

The case of the missing heritability | |
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The “missing heritability” pseudo-paradox

e A number of GWAS workers noted that the sum of
their significant marker variances was much less
(typically 10%) than the additive variance estimated
from biometrical methods

e The "missing heritability” problem was birthed from
this observation.

* Not a paradox at all

— Low power means small effect (i.e. variance) sites
are unlikely to be called as significant, esp. given
the high stringency associated with control of
false positives over tens of thousands of tests

— Further, even if all markers are detected, only a
fraction ~ r (the frequency of the causative site
within a marker haplotype class) of the underlying

variance is accounted for.
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Dealing with Rare Variants

e Many disease may be influenced by rare
variants.

— Problem: Each is rare and thus overall gives a
weak signal, so testing each variant is out (huge
multiple-testing problem)

— However, whole-genome sequencing (or just
sequencing through a target gene/region) is
designed to pick up such variants

* Burden tests are one approach

— Idea: When comparing case vs. controls, is there
an overdispersion of mutations between the two
categories?
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Cla) test

ldea: Suppose a fraction p, of the sample are
controls, p; = 1-p, are cases. Note these varies
are fixed over all variants

Let n, be the total number of copies of a rare
variant i.

Under binomial sampling, the expected number
of variant i in the case group is ~ Bin(p4,n))

Pool the observations of all such variants over a
gene/region of interest and ask if the variance in
the number in cases exceeds the binomial
sampling variance np,(1-p;)
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C(a) test (cont).

Suppose m variants in a region, test statistic is of the
form

2 (y; - mipa)? - nipy (1-py)

e y. = number of variant | in cases.

This is observed variance minus binomial prediction

This is scaled by a variance term to give a test
statistic that is roughly normally distributed
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