2017 SISG Module 10: Statistical \& Quantitative Genetics of Disease

Converging fields of genetics, epidemiology \& genetic epidemiology

Motivation for this module

- To unite the language of quantitative genetics (QG) and epidemiology
- Quantitative genetics of disease is often a tack on to QG of quantitative traits -here we make it the focus
- The new era of genomics bring QG of genetics of disease back into the foreground - a renewed relevance
- Understanding of prediction of disease risk in the precision medicine era

Precision Medicine Initiatives

DRUGS USED TO BE DESIGNED WITH THE AVERAGE PATIENT IN MIND NOW, THEY CAN BE TAILORED TO SPECIFIC PATIENTS' GENETICS, MICROBES, AND CHEMICAL COMPOSITION

THE PRECISION MEDICINE INITIATIVE

Precision medicine is an emerging approach for disease prevention and treatment that takes into account people's individual variations in genes, environment, and lifestyle.

The Precision Medicine Initiative ${ }^{\circ}$ will generate the scientific evidence needed to move the concept of precision medicine into clinical practice.

LONGER-TERM GOALS

Create a research cohort of > $\mathbf{1}$ million American volunteers who will share genetic data, biological samples, and diet/lifestyle information, all linked to their electronic health records if they choose.

Pioneer a new model for doing science that emphasizes engaged participants, responsible data sharing, and privacy protection.

Research based upon the cohort data will:

- Advance pharmacogenomics, the right drug for the right patient at the right dose
- Identify new targets for treatment and prevention
- Test whether mobile devices can encourage healthy behaviors
- Lay scientific foundation for precision medicine for many diseases

Course Outline

Thursday morning

- Lecture 1: Genetic epidemiology of disease; Heritability of liability (Naomi)
- Lecture 2: Single locus disease analysis (John)

Thursday afternoon

- Lecture 3: Single locus disease model; Power calculation for disease model (Naomi)
- Lecture 4: Modeling interactions: gene-environment, epistasis (John)

Friday morning

- Lecture 5:Multi-locus disease model (Naomi)
- Lecture 6: Modeling interactions: gene-environment, epistasis (John) Friday afternoon
- Lecture 7: Risk Prediction (Naomi)
- Lecture 8: Rare variants (John)

Naomi lecture practical
Coffee
John lecture practical

More quantitative genetics theory

More statistics/data analysis

2017 SISG Brisbane Module 10: Statistical \& Quantitative Genetics of Disease

Lecture 1
Quantifying the genetic contribution to
disease
Naomi Wray

Aims of Lecture 1

If a disease affects 1% of the population and has heritability 80% We will show why these statements are consistent :

If an individual is affected $\sim 8 \%$ of his/her siblings affected
If an $M Z$ twin is affected $\sim 50 \%$ of their co-twins are affected
If an individual is affected $>60 \%$ will have no known family history

Bringing together genetic epidemiology and quantitative genetics

- The key papers were published 40 and 70 years ago......

Risk Factors for Schizophrenia

Figure 1. Comparison of a Selected Set of Relatively Well-Established Risk Factors for Schizophrenia, Focusing Mainly on Pre- and Antenatal Factors [6] (abbreviations: CNS, central nervous system; depr, depression; Rh, Rhesus)

Complex genetic diseases

- Unlike Mendelian disorders, there is no clear pattern of inheritance
- Tend to "run" in families
- Few large pedigrees of multiply affected individuals
- Most people have no known family history

What can we learn from genetic epidemiology about genetic architecture?

Evidence for a genetic contribution comes from risks to relatives

Affected Probands

 ${ }^{3}$ ${ }^{\circ}$ $\square \square^{\circ}$ $\square \bigcirc$ $\square \square_{0}$ \therefore 1% B

-

13/30 are affected; ${ }^{2}$ 16 ${ }^{6}$
 Risk $=0.433$

Relative Risk (RR) $=0.433 / 0.267=1.63$ In siblings of affected compared to unaffected probands

Relative risk to relatives Recurrence risk to relatives

How much more likely are you to be diseased if your relative is affected compared to a person selected randomly from the population?

Relative risk to relatives $\left(\lambda_{R}\right)=\frac{p \text { (affected } \mid \text { relative affected) }}{p(\text { affected in population) }}=\frac{K_{R}}{K}$
How to estimate p(affected | relative affected) ?

- Collect population samples - cases infrequent
- Collect samples of case families and assess family members

How to estimate p(affected in population) ?

- Census or national health statistics
- Is definition of affected same in population sample as family sample
- Collect control families and assess family members

If disease is not common $\quad \lambda_{R}=p$ (sibling affected |case family) p(sibling affected | control family)

Schizophrenia risks to relatives

Relatives	Coefficient of relationship	Risch McGue et al	Lichtenstein et al Estimate	
Monozygotic twins	1	52.1		
Dizygotic twins	$1 / 2$	14.2		
Parent	$1 / 2$		9.4	$8.3-10.8$
Offspring	$1 / 2$	10.0	10.3	$8.8-12.2$
Full-sibs	$1 / 2$	8.6	8.6	$7.6-9.6$
Half-sibs	$1 / 4$	3.5	2.5	$1.6-4.1$
Nephews/Nieces	$1 / 4$	3.1	2.7	$2.2-3.2$
Uncles/Aunts	$1 / 4$	3.2	3.0	$2.4-3.9$
Grandparents	$1 / 4$		3.8	$2.8-5.3$
First Cousins	$1 / 8$	1.8	2.3	$1.7-3.1$
Offspring of 2 affected parents	$1 / 2$ but		89	$19-672$

James (1971) relationship between K and K_{R}

$Y=$ scores of disease yes/no for individuals
$Y_{R}=$ scores of disease yes/no in relatives of X
K proportion of the population affected
$E(Y)=E\left(Y_{R}\right)=K$
$K_{R}=E\left(Y_{R} \mid Y=1\right)$

Probability that both X and $Y=1: E\left(Y Y_{R}\right)=K * K_{R}$
$\operatorname{Cov}\left(Y, Y_{R}\right)=E\left(Y Y_{R}\right)-E(Y)^{*} E\left(Y_{R}\right)=K^{*} K_{R}-K^{2}$

$$
=\left(K_{R}-K\right) K=\left(\lambda_{R}-1\right) K^{2}=\operatorname{Cov}_{R}
$$

This covariance is measurable based on observation, but what underpins this covariance?

Covariance between relatives

Basic quantitative genetics model:

$Y=G+\varepsilon$
$Y=A+D+I+\varepsilon$
$\operatorname{Cov}_{R}=\operatorname{Cov}\left(Y, Y_{R}\right)=$
$\operatorname{Cov}\left(G+\varepsilon, G_{R}+\varepsilon_{R}\right)=\operatorname{Cov}\left(G, G_{R}\right)$
$=\operatorname{Cov}\left(A+D+I, A_{R}+D_{R}+I_{R}\right)$
$=\operatorname{Cov}\left(A, A_{R}\right)+\operatorname{Cov}\left(D, D_{R}\right)+\operatorname{Cov}\left(I, I_{R}\right)$
$=a_{R} V(A)+U_{R} V(D)+a_{R}{ }^{2} V(A A)+\ldots$

General covariance between relatives

$\operatorname{cov}_{R}=$ covariance between relatives on the disease scale
$\operatorname{cov}_{\mathrm{R}}=a_{R} V_{A o}+u_{R} V_{D o}+a_{R}^{2} V_{A A o}+a_{R} u_{R} V_{A D o}+\cdots$

	$\boldsymbol{V}_{\boldsymbol{A}}$	$\boldsymbol{V}_{\boldsymbol{D}}$	$\boldsymbol{V}_{\boldsymbol{A} \boldsymbol{A}}$	$\boldsymbol{V}_{\boldsymbol{A} \boldsymbol{D}}$	$\boldsymbol{V}_{\boldsymbol{D} \boldsymbol{D}}$
Offspring-parent	$1 / 2$	0	$1 / 4$	0	0
Half-sib	$1 / 4$	0	$1 / 16$	0	0
Full-sib	$1 / 2$	$1 / 4$	$1 / 4$	$1 / 8$	$1 / 16$
MZ twin	1	1	1	1	1
General	a_{R}	u_{R}	a_{R}^{2}	$a_{R} u_{R}$	u_{R}^{2}

$\operatorname{cov}_{R}=\left(K_{R}-K\right) K=\left(\lambda_{R}-1\right) K^{2} \quad V_{P}=K(1-K) \quad$ (from a few slides back!)
An estimate of narrow sense (additive) heritability on the disease scale is

$$
\widehat{h_{o}^{2}}=\frac{\left(\lambda_{R}-1\right) K^{2}}{a_{R} K(1-K)}=\frac{\left(\lambda_{R}-1\right) K}{a_{R}(1-K)}
$$

But covR contains non-additive genetic terms.
We don't know if non-additive genetic effects exist - What to do?
Estimate $\widehat{h_{o}^{2}}$ from different types of relatives to see if the estimates are consistent

James (1971) genetic variance on the disease scale

$$
\widehat{h_{o}^{2}}=\frac{\left(\lambda_{R}-1\right) K^{2}}{a_{R} K(1-K)}=\frac{\left(\lambda_{R}-1\right) K}{a_{R}(1-K)}
$$

$$
\begin{array}{ll}
\mathrm{K}=0.0085 \\
\lambda_{\mathrm{OP}}=10 & \mathrm{a}_{\mathrm{R}}=1 / 2
\end{array} \quad \widehat{h}_{o}^{2}=\frac{(10-1) 0.0085}{\frac{1}{2}(1-0.0085)}=0.154
$$

The estimates of $\widehat{h_{o}^{2}}$ are very different (even if sampling variance is taken into account)

Implies that the estimates of $\widehat{h_{o}^{2}}$ are contaminated by non-additive variance on this scale of measurement

Liability threshold model

Phenotypic liability of a sample from the population

Assumption of normality

- Only appropriate for multifactorial disease
- i.e. more than a few genes but doesn't have to be highly polygenic
- Key - unimodal

Does an undrlying normality assumption make sense?

Assumes approximately normal distribution of liability Makes sense for many genetic variants and environmental/noise factors

1 Locus
$\rightarrow 3$ Genotypes
$\rightarrow 3$ Classes

2 Locus
$\rightarrow 9$ Genotypes
$\rightarrow 5$ Classes

3 Locus
$\rightarrow 27$ Genotypes
$\rightarrow 7$ Classes

4 Locus
$\rightarrow 81$ Genotypes
$\rightarrow 9$ Classes

Each Locus has alleles R and $r, R=$ risk alleles.
Each class has a different count of number of risk alleles

Falconer (1965)

Phenotypic liability of a sample from the population

Phenotypic liability of relatives of affected individuals

Using normal distribution theory what percentage of the variance in liability is attributale to genetic factors given $\mathrm{K}, \mathrm{K}_{\mathrm{R}}$ and a_{R}

Prediction of response to selection and rates of inbreeding under directional selection

Quantitative Phenotype

Strong parallels to quantitative genetics of disease

Definitions

How to get from observed risks to relatives

 to heritability?- Falconer (1965) Phenotypic liability of a sample from the population

Phenotypic liability of relatives of affected individuals

Using normal distribution theory what percentage of the variance in liability is attributale to genetic factors given K, K_{R} and r

Liability Threshold Model -truncated normal distribution theory

$\Phi(x)=$ cumulative density until liability x standard normal distribution function $\varphi(x)=$ probability density at x Phi

Standard
Deviation $=1$
$\sigma_{p}=1$
Phenotypic liability
$K=$ Proportion of the
population that are
diseased
$K=1-\Phi(\dagger)=1$-pnorm (\dagger)
$i=$ mean phenotypic liability of
the diseased group
i= z/K "selection intensity"
Variance in liability amongs \dagger the diseased individuals $=\sigma_{p}^{2}(1-k)$, where $\mathrm{k}=\mathrm{i}(\mathrm{i}-\mathrm{t})$

$$
\begin{array}{|l|}
\hline t=\text { threshold } \\
\hline t=\Phi^{-1}(1-K)=\text { qnorm }(1-K) \\
\hline
\end{array}
$$

Inverse standard normal distribution (probit) funetion

Mean of diseased group

- Pearson \& Lee (1908) On the generalized probable error in normal correlation. Biometrika
- Lee (1915) Table of Gaussian tail functions..Biometrika
- Fisher (1941) Properties and application of Hh functions. Introduction to mathematical tables
- Cohen (1949) On estimating the mean and standard deviation of truncated normal distributions Am Stat Association
- Cohen \& Woodward (1953)Pearson-Lee-Fisher Functions of singly truncated normal distributions. Biometrics

Mean (i): $=\operatorname{sum}\left(x^{*}\right.$ freq of x)
The phenotype frequencies must sum to 1 , hence the denominator

$$
i=\frac{\int_{t}^{\infty} x \phi(x) d x}{\int_{t}^{\infty} \phi(x) d x}=\frac{\int_{t}^{\infty} x \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x}{K}=\frac{\phi(t)}{K}=\frac{z}{K}
$$

Falconer (1965)

Phenotypic liability of a sample from the population

Assumption of normality

- Only appropriate for multifactorial disease
- i.e. more than a few genes but doesn't have to be highly polygenic
- Key - unimodal

FOICOMET (7965)

Given the difference in thresholds, and given known additive genetic relationship between relatives, what proportion of the total variance must be due to genetic factors

Calculate heritability of liability using regression theory

X = phenotypic liability for individuals
$Y=$ phenotypic liability for relatives of X
$E(X)=E(Y)=m=0$

Relationship between X and Y is linear

$$
\begin{aligned}
Y & =\mu_{Y}+b_{Y, X}\left(X-\mu_{X}\right)+\varepsilon \\
& =m+\frac{\operatorname{cov}\left(A_{R}, A\right)}{\operatorname{Var}(X)}(X-m)+\varepsilon, \text { since } m=0 \\
& =\frac{a_{R} \sigma_{a}^{2}}{\sigma_{p}^{2}} X+\varepsilon=a_{R} h^{2} X+\varepsilon
\end{aligned}
$$

Calculate heritability of liability using regression theory

Y = phenotypic liability for individuals
$Y_{R}=$ phenotypic liability for relatives of X
$Y_{R}=a_{R} h^{2} Y+\varepsilon$

For affected individuals $\mathrm{Y}=\mathrm{i}$
Expected phenotypic liability of relatives of those affected
$E(Y \mid Y>t)=m_{R}-m=t-t_{R}$

Substitute

Rearrange

$$
t-t_{R}=a_{R} h^{2} i
$$

$$
h^{2}=\left(t-t_{R}\right) / i a_{R}
$$

Assumptions made by Falconer (1965)

Assumption: Covariance between relatives reflects only shared additive genetic effects

Check: Use different types of relatives with different a_{R} and different U_{R} (dominance coefficient) and different shared environment to see consistency of estimates of h^{2}

Assumption: Phenotypic variance in relatives is unaffected by ascertainment on affected probands

Accounting for reduction in variance in relatives as a result of ascertainment on affected individuals

> Variance in liability amongst the diseased individuals $=\sigma_{p}^{2} \quad(1-k)$, where $\mathrm{k}=\mathrm{i}(\mathrm{i}-\mathrm{t})$

$$
\begin{aligned}
& \text { Variance in liability amongst relatives the } \\
& \text { diseased individuals } \\
& \begin{aligned}
\mathrm{V}\left(\mathrm{P}_{\mathrm{R}} \mid \mathrm{P}>+\right) & =\mathrm{V}\left(\mathrm{P}_{\mathrm{R}}\right)-\mathrm{kCov}\left(\mathrm{P}_{\mathrm{R}}, P\right)^{2} \\
& =1-k\left(a_{R} h^{2}\right)^{2}=1-k a_{R}^{2} h^{4}
\end{aligned}
\end{aligned}
$$

Reich et al: heritability of liability

The difference between the thresholds when standardised to have the mean 0 and variance 1

$$
\mathrm{m}_{\mathrm{R}}-\mathrm{m}=\mathrm{t}-\mathrm{t}_{\mathrm{R}} \sqrt{1-k a_{R}^{2} h^{4}}
$$

Reich et al: heritability of liability

$Y=$ phenotypic liability for individuals
$Y_{R}=$ phenotypic liability for relatives of those with Y
$Y_{R}=a_{R} h^{2} Y+\varepsilon$
For affected individuals $\mathrm{Y}=\mathrm{i}$
Expected phenotypic liability of relatives of those affected $E\left(Y_{R} \mid Y>t\right)=m_{R}-m=t-t_{R} \sqrt{1-k a_{R}^{2} h^{4}}$

Substitute $t-t_{R} \sqrt{1-k a_{R}^{2} h^{4}}=a_{R} h^{2} i$
Rearrange $\quad h^{2}=\frac{t-t_{R} \sqrt{1-(1-t / i)\left(t^{2}-t_{R}^{2}\right)}}{a_{R}\left(i+(i-t) t_{R}^{2}\right)}$

Also useful - calculation of t_{R} when K and h^{2} are known

$$
t_{R}=\frac{t-a_{R} i h^{2}}{\sqrt{1-a_{R}^{2} h^{4} k}}
$$

Practical

Uses simulation to give understanding to the theory.

How to calculate heritability of liability from risks to relatives.

Feel for sample size and sampling variation
Relationship between narrow sense heritability on disease and liability scales

Simulate $P=A+E$

> \#
$>\#$ simulate $P=A+E$
> \#
$>\mathrm{N}=1 \mathrm{e} 4 \quad$ \#number of people
$>\mathrm{h} 2=0.8 \quad$ \#heritability
> sdA=sqrt(h2) \#genetic standard deviations
$>\operatorname{sdE}=$ sqrt(1-h2)
\#residual standard deviations
\#additive genetic values drawn from a normal distribution with mean 0 and std dev sqrt(h2)
$>A=\operatorname{rnorm}(N, 0, s d A)$
$>\mathrm{E}=\mathrm{rnorm}(\mathrm{N}, 0, \mathrm{sdE})$
\#"everything else" values drawn from a normal distribution with mean 0 and std dev sqrt(1-h2)
\#phenotypes
> dat=data.frame(A,E,P)
$>$ head(dat)

	A	E	P
1	-0.0086812	0.25262196	0.2439408
2	-0.1636576	0.34454330	0.1808857
3	1.4371881	-0.03332416	1.4038639
4	0.6690834	-1.22955515	-0.5604718
5	0.2508860	0.14259020	0.3934762
6	-1.8710844	0.94433320	-0.9267512

$-\bar{m} \operatorname{mean}(A)$	$>\operatorname{var}(A)$
$[1]-0.004441688$	$[1] 0.8059709$
$>\operatorname{mean}(E)$	$>\operatorname{var}(E)$
$[1] 0.008263525$	$[1] 0.2002046$
$>$ mean (P)	$>\operatorname{var}(P)$
$[1] 0.003821838$	$[1] 0.9998455$

Histogram of P
> var(dat)

	A	E	P
A	0.805970940	-0.003165003	0.8028059
E	-0.003165003	0.200204598	0.1970396
P	0.802805936	0.197039594	0.9998455

If we only measure P how do we estimate heritability?

Need relatives

$$
P \quad=A+E
$$

$$
\text { P_dad }=\text { A_dad }+ \text { E_dad }
$$

$$
\text { P_mum }=\text { A_mum }+ \text { E_mum }
$$

$$
\text { P_child }=\text { A_child }+ \text { E_child }
$$

$$
\text { A_child }=0.5^{*} \mathrm{~A} _m u m+0.5^{*} \mathrm{~A} _d a d+\mathrm{A} _w
$$

genetic segregation
unique to the child

What is the variance of A_W?
$\operatorname{Var}\left(A _c h i l d\right)=0.25^{*} \operatorname{Var}\left(A _m u m\right)+0.25^{*} \operatorname{Var}\left(A _d a d\right)+\operatorname{Var}\left(A _W\right)$
$\operatorname{Var}(\mathrm{A}) \quad=0.25^{*} \operatorname{Var}(\mathrm{~A})$
$+0.25 * \operatorname{Var}(\mathrm{~A})+\operatorname{Var}\left(\mathrm{A} _\mathrm{w}\right)$
$\operatorname{Var}\left(A _W\right) \quad=\quad 0.5^{*} \operatorname{Var}(\mathrm{~A}) \quad$ Half of the genetic variance in a population is within family variance

Segregation Variation

Choose 1 from the pair
Ignoring recombination which will make the \# combinations even bigger

Half the genetic variation in a population is generated by the sampling of genetic material within families

Simulate families

> \#
> \#Simulate parents and a child under a polygenic model
> \#
$>\mathrm{N}=1 \mathrm{e} 5$
$>\mathrm{h} 2=0.8$
$>\operatorname{sdA}=\operatorname{sqrt}(h 2)$
> sdE $=$ sqrt(1-h2)
$>\operatorname{sdW}=\operatorname{sqrt}\left(0.5^{* h} 2\right)$

> \# Dads
$>$ A_dad $=$ rnorm($\mathrm{N}, 0, \mathrm{sdA})$
$>E _d a d=\operatorname{rnorm}(N, 0, s d E)$
> P_dad = A_dad + E_dad
>
\# Mums
$>A _m u m=\operatorname{rnorm}(N, 0, s d A)$
E_mum $=$ rnorm $(N, 0, s d E)$
P_mum = A_mum + E_mum
\#number of families
\#heritability
\#genetic standard deviations
\#residual standard deviations
> datA $=$ data.frame(A_dad, A_mum, A_child)
$>$ head(datA)

	A_dad	A_mum	A_child
1	0.2816500	0.8070750	0.7774883
2	0.9239563	0.6403608	0.2447249
3	1.2305561	1.3768674	0.6054434
4	0.7557954	1.9800166	1.8447414
5	1.0707037	1.7275696	0.8774031
6	1.1953478	-1.3135453	-1.0321547

\#fathers' additive genetic values \#fathers' residual values \#fathers' phenotypic liability values
> var(datA)
A_dad A_mum A_child
A_dad 0.7963701830 .0001566060 .3961720
A_mum 0.0001566060 .7983939990 .4010472
A_child 0.396171970 0.401047172 0.7961398
> \# Children
$>$ A_child $=0.5^{*}$ A_dad $+0.5^{*}$ A_mum + rnorm (N, $\left.0, s d W\right)$ \#childrens' genetic liability is the mid-parent value plus a withinfamily
deviation
> E_child $=$ rnorm(N, mean=0, sdE) \# childrens' residual values
> P_child = A_child + E_child \# childrens' phenotypic liability values
> datP = data.frame(P_dad,P_mum,P_child)
$>\operatorname{var}($ dat $P)$
P_dad P_mum P_child
P_dad 0.9975084811 -0.0006500908 0.3987118
P_mum -0.0006500908 0.99935008330 .4009034
P_child 0.3987118131 0.4009033881 1.0009886

Simulation, phenotype is now liability

> \#
> \# Make a disease trait
> \#
$>K=0.01$
$>\mathrm{t}=$ qnorm $(1-\mathrm{K}, 0,1)$
$>\mathrm{D}=\mathrm{c}(\operatorname{rep}(0, \mathrm{~N}))$
$>D[P>t]=1$
\# lifetime prevalence of disease
\# liability threshold from normal distribution theory

Accounting for reduction in variance in relatives as a result of ascertainment on affected individuals

Variance in liability amongst relatives the diseased individuals $=1-i(i-\dagger)\left(a_{R} h^{2}\right)^{2}$

$$
t_{R}=\frac{t-a_{R} i h^{2}}{\sqrt{1-a_{R}^{2} h^{4} k}} \quad h^{2}=\frac{t-t_{R} \sqrt{1-(1-t / i)\left(t^{2}-t_{R}^{2}\right)}}{a_{R}\left(i+(i-t) t_{R}^{2}\right)}
$$

$>h 2 l=f u n c t i o n(t, t R, i, a R)\left\{\left(t-t R^{*} \operatorname{sqrt}\left(1-(1-t / i) *\left(t^{\wedge} 2-t R^{\wedge} 2\right)\right)\right) /\left(a R^{*}\left(i+(i-t) * t R^{\wedge} 2\right)\right)\right\}$ \# heritability of liability with Reich et al correct ion **use this one
> (h2l_est=h2l(t_est,t_dad,i_est,0.5))
[1] 0.7857835
> (h2l_est=h2l(t_est,t_MZ,i_est,1))
[1] 0.7985478

Practical

1. Polygenic models generate a normal distribution of genetic values.

a) Simulate a population of $N=10,000$ for 10 loci of frequency p

- Binomial distribution of genotypes
- G1, G2..G10=rbinom(N,2,p), set p=0.5
- Make a count of risk alleles across 1,2,.. 10 loci
- R1=G1, R2=G1+G2, ..R10 = G1+G2...+G10
- Plot histogram of R1...R10
b) repeat for allele freq $p=0.1$
c) set p randomly eg uniform $c(r u n i f(10,0,1))$
d) a-c demonstrate normal distribution of risk allele count.

If the effect size for the risk locus at SNP i is a_{i} then what is the distribution of variance of risk allele. Draw the ai from different distributions.
Skip this come back if there is time

2. Using simulation to explore the liability threshold model.

Section 2a-2e. Already programmed.
2a. Run the section - generates sliders (make plot window as big as possible) - Not so important
$2 b-2 e$ Run line by line
2b. Simulates phenotypic liability and disease status of parents and children
2c. Some graphs and calculates risks to relatives
2 d. Compare simulated values with normal distribution theory
2e. Estimate heritability from recurrence risks to relatives
2f. Complete table to feel sampling variation
Regression of offspring quantitative phenotype on mid parent value.
$\frac{\operatorname{Cov}\left(Y_{0},\left(Y_{M}+Y_{D}\right) / 2\right)}{\operatorname{Var}\left(\left(Y_{M}+Y_{D}\right) / 2\right)}=\frac{2^{*} 0.5^{*} V(A) / 2}{2^{*} V(P) / 4}=\frac{V(A)}{V(P)}=h^{2}$

2g. Extend the simulation to include different types of relatives

\#
Add to the simulation a Monozygotic twin of the child Add to the simulation a full-sibling of the child Add to the simulation a paternal half-sibling of the child

Calculate lambdaMZ, lambdaFS, and lambdaHS Estimate heritability of liability from lambdaMZ, lambdaFS, and lambdaHS

