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Motivation for this module

To unite the language of quantitative genetics (QG) and epidemiology

Quantitative genetics of disease is often a tack on to QG of
quantitative traits —here we make it the focus

The new era of genomics bring QG of genetics of disease back intfo the
foreground — a renewed relevance

Understanding of prediction of disease risk in the precision medicine era



Precision Medicine Initiatives

THE PRECISION MEDICINE INITIATIVE®

DRUGS USED TO BE
DESIGNED WITH THE
AVERAGE PATIENT IN MIND

NOW, THEY CAN BE TAILORED TOSPECIFIC
PATIENTS' GENETICS, MICROBES, AND
CHEMICAL COMPOSITION

Precision medicine is an emerging approach for disease
prevention and treatment that takes into account people’s
individual variations in genes, environment, and lifestyle.

The Precision Medicine Initiative® will generate the
scientific evidence needed to move the concept of
precision medicine into clinical practice.

http://syndication.nih.gov/multimedia/pmi/infographics/pmi-infographic.pdf




Create a research cohort of > 1 million American volunteers who will
share genetic data, biological samples, and diet/lifestyle information, all
linked to their electronic health records if they choose.

0060

Pioneer a new model for doing science that emphasizes engaged
participants, responsible data sharing, and privacy protection.

Research based upon the cohort data will:

¢ Advance pharmacogenomics, the right drug for the right patient at the
right dose

e |dentify new targets for treatment and prevention
¢ Test whether mobile devices can encourage healthy behaviors

¢ | ay scientific foundation for precision medicine for many diseases




Course Oulline

Thursday morning

» Lecture 1: Genetic epidemiology of disease; Heritability of liability (Naomi)
* Lecture 2: Single locus disease analysis (John)

Thursday afternoon

« Lecture 3: Single locus disease model; Power calculation for disease model (Naomi)
» Lecture 4: Modeling interactions: gene-environment, epistasis (John)
Friday morning

» Lecture 5:Multi-locus disease model (Naomi)

* Lecture 6: Modeling interactions: gene-environment, epistasis (John)
Friday afternoon

« Lecture 7: Risk Prediction (Naomi)

* Lecture 8: Rare variants (John)

Naomi lecture More quantitative genetics theory
practical

Coffee

John lecture More statistics/data analysis

practical



2017 SISG Brisbane Module 10:
Statistical & Quantitative Genetics of Disease

Lecture 1
Quantifying the genetic contribution to
disease
Naomi Wray



Aims of Lecture 1

If a disease affects 1% of the population and has heritability 80%
We will show why these statements are consistent :

If an individual is affected ~8% of his/her siblings affected

If an MZ twin is affected ~50% of their co-twins are affected

If an individual is affected > 60% will have no known family history

Bringing together genetic epidemiology and quantitative genetics

- The key papers were published 40 and 70 years ago......



Risk Factors for Schizophrenia

Odds Ratio

Winter
Placeltime of birth Urban

Influenza

Respiratory

Infection Rubella
Pcliovirus

CNS

Famine

Bereavement
Prenatal Flood

Unwantedness
Maternal depr

Rh incompatibility
Hypoxia
Obstetric ONS dz,':f’age
Low birth weight
Pre-eclampsia
Family history
DOI: 10.1371/journal.pmed.0020212.g001

Figure 1. Comparison of a Selected Set of Relatively Well-Established Risk Factors for Schizophrenia,
Focusing Mainly on Pre- and Antenatal Factors [6] (abbreviations: CNS, central nervous system; depr,

depression; Rh, Rhesus) .
Sullivan, PLoS Med 05
8



Complex genetic diseases

Unlike Mendelian disorders, there is no clear pattern of
iInheritance

Tend to “run” in families
Few large pedigrees of multiply affected individuals
Most people have no known family history

What can we learn from genetic epidemiology
about genetic architecturee



Evidence for a genetic contribution comes from
risks to relatives

Major depression

ADHD
H |st degree

relatives
Bipolar F ® Population

Autism

Schzizophrenia
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Affected Probands
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Relative Risk (RR) = 0.433 / 0.267 = 1.63

In siblings of affected compared to unaffected probands
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Slide credit: Dale Nyholt




Relative risk to relatives
Recurrence risk to relatives

How much more likely are you to be diseased if your relative is affected
compared to a person selected randomly from the population?

Relafive risk to relatives (Ag) = p(affected | relative affected) =
p(affected in population)

o]

K
K

How to estimate p(affected | relative affected) ¢
« Collect population samples — cases infrequent
« Collect samples of case families and assess family members

How to estimate p(affected in population) ¢
« Census or national health statistics

« s definition of affected same in population sample as family sample
« Collect control families and assess family members

If disease is not common A = p(sibling affected | case family)
p(sibling affected | control family)




Schizophrenia risks to relatives

Relatives Coefficient of Risch Lichtenstein et al
relationship McGue et al Estimate 95% CI
Monozygotic twins 1 52.1
Dizygotic twins Y 14.2
Parent Yo 9.4 83-10.8
Offspring Y2 10.0 10.3 8.8-12.2
Full-sibs Y2 8.6 8.6 7.6 -9.6
Half-sibs Ya 3.5 2.5 1.6 - 4.1
Nephews/Nieces Ya 3.1 2.7 2.2-3.2
Uncles/Aunts Ya 3.2 3.0 24-39
Grandparents Ya 3.8 28-5.3
First Cousins 1/8 1.8 2.3 1.7-3.1
Offspring of 2 affected Y but 89 19-672
parents ascertained

Baseline risk, K = 0.85% McGue et al

60 —
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James (1971) relationship between K and K,

Y = scores of disease yes/no for individuals
Y, = scores of disease yes/no in relatives of X
K proportion of the population affected

E(Y) = E(Yg) =K

Ko = E(Yq|Y=1)

Probability that both X and Y = 1: E(YY) = K*Kg
Cov(Y,Yg) = E(YYg) — E(Y)*E(YR) = K*Kg— K?

This covariance is measurable based on observation, but what underpins this
covariance?¢

James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47

Derivation from Risch (1990) Linkage strategies for genetically complex traits. | Multi-locus models. AJHG 14



Covariance between relatives

Basic quantitative genetics model:
Y=G+e¢

Y=A+D+I[+¢

Covip = CoVv(Y,Yy) =

Cov(G +¢g G +e ) =Cov(G, Gi)

= Cov(A+D+1, Ag + Dy + I)
= Cov(A, Ag)+Cov(D,Dg) + Cov(l, I)

= AV (A) + U V(D) + a2V (AA)+...



General covariance between relatives

COVy = covariance between relatives on the disease scale

COVR = aRVAO + uRVDO + al%VAAO + aRuRVADO +

Va Vp Vaa Vap Vpp
Offspring-parent Y% 0 Ya 0 0
Half-sib 7 0 e 0 0
Full-sib 2 Y4 Ya 1/g 1/16
MZ twin 1 1 1 1 1
General g Ug az g Ug u
COVg - (Kg=K)K = (Ag -1)K2 Ve = K(1-K) (from a few slides back!)

An estimate of narrow sense (additive) heritability on the disease scale is
= _ (g —DK? (g —DK
° agK(1—-K) ar(1-K)
But covR contains non-additive genetic terms.
We don’t know if non-additive genetic effects exist - What to do?

Estimate hZ from different types of relatives to see if the estimates are consistent

James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47



James (1971) genelic variance on the
disease scale

L Oa —DK? (O — DK
° agK(1—-K) ar(1-K)

K'=0.0085 ~ _ (10 —1)0.0085

)\OP: ]O OR: ]/2 ho 1 = 0.154
7(1-0.0085)_

)\HS = 3 GR: 1/4 hO == 0069

Aes = 8.6 Q=% h2 = 0.130

A= 52 =1 h2 = 0.438

The estimates of pZ arevery different (even if sampling variance is taken into
account)

Implies that the estimates of h2  are contaminated by non-additive variance
on this scale of measurement

James (1971) Frequency in relatives for an all-or-non trait Ann Hum Genet 35 47



Liability threshold model

Phenotypic liability of
a sample from the
population

Proportion K affected

Assumption of normality

- Only appropriate for multifactorial disease

- L.e. more than a few genes but doesn’t have to be highly polygenic
- Key — unimodal



Does an undrlying normality assumption
make sense?

Assumes approximately normal distribution of liability
Makes sense for many genetic variants and
environmental/noise factors

1 Locus 2 Locus 3 Locus 4 Locus
-> 3 Genotypes - 9 Genotypes -> 27 Genotypes —> 81 Genotypes
- 3 Classes - 5 Classes - 7 Classes - 9 Classes
3 3 7 20 _
6
2 2 5 — 15
3 ] 10
1 1 [ 2 — 1 1 5 - -
0 | | 0 s T ol HHHAAHAM

Each Locus has alleles R and r, R = risk alleles.
Each class has a different count of number of risk alleles



Falconer (1965)

Phenotypic liability of
a sample from the
population

Proportion K affected

Relationship of relatives to

o «—>  affected individuals oy
Phenotypic liability of |

relatives of affected

individuals Proportion Ky affected

Using normal distribution theory what percentage of the variance in
liability is attributale to genetic factors given K, Ky and o 20



Frequency

Prediction of response to selection and rates of
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Definitions

Density

Phenotypic liability

z = density at 1

K = Proportion of the
population that are
diseased

I = mean phenotypic liability of
the diseased group

t = threshold

22



How to getl from observed risks to relatives
to heritability?- Falconer (1965)

Phenotypic liability of
a sample from the
population

Proportion K affected

| Relationship of relatives to

«—> affected individuals r
Phenotypic liability of | NEVIGU

relatives of affected

individuals Proportion Ky affected

Using normal distribution theory what percentage of the variance in
liability is attributale to genetic factors given K, K and r 23



Liability Threshold Model
—truncated normal distribution theory

D (x) =cumulative density until liability x

standard normal distribution function z=density at t
¢ (X) = probability density at x 7= o (1) 1 1, =dnorm(t)
Phi N

% K = Proportion of the

S population that are

a diseased
Standard — —
Deviation =1 K=1-®(t) = T-pnorm(t)
Op =1

Phenotypic liability | = mean phenotypic liability of
the diseased group

i=z/K “selection intensity”

Variance in liability amongst ~
the diseased individuals f = threshold
= a (1-k), where k =i(i-1) t= ®1(1-K) = gnhorm(1-K)

Inverse standard normal distribution (probit) funetion




Mean of diseased group *

Pearson & Lee (1908) On the generalized probable error in normal correlation.
Biometrika

Lee (1915) Table of Gaussian tail functions..Biometrika

Fisher (1941) Properties and application of Hh functions. Introduction to
mathematical tables

Cohen (1949) On estimating the mean and standard deviation of truncated normal
distributions Am Stat Association

Cohen & Woodward (1953)Pearson-Lee-Fisher Functions of singly truncated normal
distributions. Biometrics

Mean (i): = sum( x * freq of x)
The phenotype frequencies must sum to 1, hence the denominator

o 1 _lxz
o [, xp(x)dx _ J; N 2 dx _ 9@ z
ftood)(x)dx K K K

Lynch and Walsh equations 2.13 and 2.14; variance equation 2.15 25



Falconer (1965)

Phenotypic liability of
a sample from the
population

Proportion K affected

Assumption of normality

- Only appropriate for multifactorial disease

- L.e. more than a few genes but doesn’t have to be highly polygenic
- Key — unimodal

26



Falconer (1965)

The difference
pbetween the means
for the same
threshold

The difference
between the
thresholds when
standardised to have
the same mean

mR'm = T‘TR

Given the difference in thresholds, and given known additive genetic
relationship between relatives, what proportion of the total variance must be
due to genetic factors

Falconer (1965) The inheritance of liability to certain diseases, estimated from incidences in relatives,
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretation o familial aggregation based on multiple genetic and environmental factors 27
Ann NY Acad Sci 91 769



Calculate heritability of liability using
regression theory

X = phenotypic liability for individuals
Y = phenotypic liability for relatives of X
E(X) =E(Y)=m =0 m

Relationship between X and Y is linear
Y = by + By x(X-py)t+ €

=m + COV(ARA) (X-m) +¢, sincem=0
Var(X)

= ar9G X +£= Q,h2X + ¢
2
0.
P

Falconer (1965) The inheritance of liability to certain diseases, estimated from incidences in relatives,
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretation o familial aggregation based on multiple genetic and environmental factors 28

ANnNn NY Acad Sci 91 749



Calculate heritability of liability using
regression theory
Y = phenotypic liability for individuals
Y. = phenotypic liability for relatives of X

My

Yr = agh?Y +¢

For affected individuals Y =i

Expected phenotypic liability of relatives of those affected
E(Y|Y>t) = mp-m = t- 1

Substitute t- te= agh?

Rearrange h?=(t-t5)/iag

Falconer (1965) The inheritance of liability to certain diseases, estimated from incidences in relatives,
Ann. Hum Genet. 29 51

Crittenden (1961) an interpretation o familial aggregation based on multiple genetic and environmental factors 2

ANnNn NY Acad Sci 91 749



Assumptions made by Falconer (1965)

Assumption: Covariance between relatives reflects only shared additive
genetic effects

Check: Use different types of relatives with different a, and different
Up(dominance coefficient) and different shared environment to see
consistency of estimates of h?

Assumption: Phenotypic variance in relatives is unaffected by
ascertainment on affected probands

30



Accounting for reduction in variance in
relatives as a result of ascertainment on
affected individuals i

Variance in liability amongst
the diseased individuals
= g, (1-k), where k =i(i-1)

Variance in liability amongst relatives the
diseased individuals
V(Pg | P>1) = V(Pg)-kCov(Pg,P)?

= 1 — k(agh?®? =1 — ka2h*

Reich, James, Morris (1972) The use of multiple thresholds in determining the mode of transmission of semi-continuays
traits. Ann Hum Gen 36: 163.



Reich et al: heritability of hablhfy

The difference
pbetween the means
for the same
threshold

The difference
pbetween the
thresholds when
standardised to have
the mean 0 and
variance 1

mR'm = T'TR /1 - kalzeh‘*

Reich, James, Morris (1972) The use of multiple thresholds in determining the mode of transmission of semi-continuaygs
traits. Ann Hum Gen 36: 163.



Reich et al: heritability of hablhfy

Y = phenotypic liability for individuals
Y. = phenotypic liability for relatives of those with Y

Yr = agh?Y + ¢

For affected individuals Y =i
Expected phenotypic liability of relatives of those affected

E(YR | Y>T) - mR‘m —t—tg ’1— kaéh“
Substitute -, [1- kaznt = agh?i

Rearrange 1, _ t—tpy/1— (1= t/D)(t2 - t})
ag(i+ (i — )th)

Also useful — calculation of f; when K and h? are known L= aRl'hz

J1—a2h*k




Practical

Uses simulation to give understanding to
the theory.

How to calculate heritability of liability from
risks to relatives.

Feel for sample size and sampling variation

Relationship between narrow sense
heritabillity on disease and liability scales



VVV YV V VYV VVY

Simulate P = A+ E

I

# simulate P = A + E

I

N = le4 #number of people

h2 = 0.8 #heritability

sdA=sqrt(h2) #genetic standard deviations

sdE=sqrt(1-h2) #residual standard deviations

A = rnorm(N,Q,sdA) #additive genetic values drawn from a normal distribution with mean @ and std dev sqrt(h2)

E = rnorm(N,@,sdE) #"everything else" values drawn from a normal distribution with mean @ and std dev sqrt(1-h2)
P =A<+ E #phenotypes

> dat=data.frame(A,E,P)

> head(dat)

A E P - R
1 -0.0086812 0.25262196 0.2439408 >1me°3<034441688 > var(A)
2 -0.1636576 ©.34454330 0.1808857 [1]1 - 2 [1] 0.8059709
3 1.4371881 -0.03332416 1.4038639 >1’"e;”502263 , > var(E)
4 0.6690834 -1.22955515 -0.5604718 [1] e. - 525 [1] 0.2002046
5 0.2508860 0.14259020 ©.3934762 > mean(P) > var(P)
6 -1.8710844 0.94433320 -0.9267512 [1] ©.003821838 [1] ©.9998455

His!ogr‘amofP |f We Only

> varcet) A E p measure P how
A 0.805970940 -0.003165003 0.8028059 | do We ?STImOTe
E -0.003165003 0.200204598 0.1970396 heritabilitye
P 0.

802805936 ©0.197039594 0.9998455 el ’l

P 35



Need relatives

O P = A + E
Pdod = A daod + E dad
Pmum = A mum+ E mum
P chid = A_chid + E_child
A_child = 0.5*A_ mum + 0.5*A_daod + A w

genetic segregation
unique to the child

What is the variance of A_w?¢
Var(A_child) =  0.25*Var(A_mum) + 0.25*Var(A_dad) + Var(A_w)

Var(A) = 0.25*Var(A) +  0.25*Var(A) + Var(A_w )

Half of the genetic variance in @

population is within family variance 36

Var(A_w) = 0.5*Var(A)



Segregation Variation

2 parents

/

chromosomes

(223 2 — 7X 1013
l 23 pairs of

Choose 1 from the pair

lgnoring recombination
which will make the #
combinations even bigger

Half the geneftic variation in a population Is
generated by the sampling of genetic material
within families



Simulate families

O T

> > datA = data.frame(A_dad, A_mum, A_child)
> #Simulate parents and a child under a polygenic model > head(datA)
> R R R R R A_dad Amum  A_child
>N = 1e5 #number of families 1 0.2816500 ©.8070750 @.7774883
> hi; 0.8 2> #hzrlt“:}“t}cf rord deviati 2 0.9239563 0.6403608 0.2447249
> sdA = sqr genetic standard deviations
> sdE = sqrt(1-h2) #residual standard deviations i ;';22?;21 i'g;gg?gg ?'ggi;:ii
sdW = sqrt(0.5*h2 : : :
i art( ) 5 1.0707037 1.7275696 0.8774031
> # Dads 6 1.1953478 -1.3135453 -1.0321547
> A_dad = rnorm(N,@,sdA) #fathers' additive genetic values
> E_dad = rnorm(N,@,sdE) #fathers' residual values
Z P_dad = A_dad + E_dad #fathers' phenotypic liability values > var(datA)
> # Mums A_dad A_mum A_child
> A_mum = rnorm(N,®, sdA) #mothers' additive genetic values A_dad 0.796370183 0.000156606 @.3961720
> E_mum = rnorm(N,@,sdE) #mothers' residual values A mum 0.000156606 @.798393999 0.4010472
> P_mum = A_mum + E_mum #mothers' phenotypic liability values -

A_child 0.396171970 0.401047172 @.7961398

> # Children

> A_child = 0.5*A_dad + @.5*A_mum + rnorm(N,@,sdW) #childrens' genetic liability is the mid-parent value plus a withinfamily
deviation

> E_child = rnorm(N, mean=0, sdE) # childrens' residual values

> P_child = A_child + E_child # childrens' phenotypic liability values

>

> datP = data.frame(P_dad,P_mum,P_child)
> var(datP)

P_dad P_mum P_child
P_dad 0.9975084811 -0.0006500908 @.3987118
P_mum -0.0006500908 ©.9993500833 0.4009034

P_child ©0.3987118131 ©.4009033881 1.0009886 38
>



Simulation, phenotype is now liability

T

T L L
# lifetime prevalence of disease

# Make a disease trait
K=0.01
t=gnorm(1-K,9,1)
D = c(rep(@,N))
D[P>t] =1
o
8 -
s _|
[{e]
>
e
@
s © =
o g_D 0
w
- _
O_
o_mﬁfﬂ‘

# liability threshold from normal distribution theory

# first set all individuals to be non-diseased = @
# those with liability higher than the threshold are diseased = 1

> sum(D)/N # observed value of K, lifetime disease risk
[1] 9.0102

39



Accounting for reduction in variance in
relatives as a result of ascertainment on
affected individuals

Variance in liability amongst
the diseased individuals

= ((1H(i-1))  =(1k)

Variance in liability amongst relatives the
diseased individuals = 1- i(i-) (agh?)?2

‘ . ) .
Pe tp = £ alh 2 _ t—tpy1— (1 - t/D)(t? — t})
J1— aZhk ar(i + (i - O)tg)

> h2l=function(t,tR,1i,aR){(t-tR*sqrt(1-(1-t/i)*(tA2-tRA2)))/(aR*(i+(i-t)*tRA2))} # heritability of liability with Reich et al correct
ion **use this one

> (h21_est=h21(t_est,t_dad,i_est,0.5))

[1] ©.7857835

> (h21_est=h21(t_est,t_MZ,i_est,1))

[1] 0.7985478

Reich, James, Morris (1972) The use of multiple thresholds in determining the mode of transmission of semi-continuQygs
traits. Ann Hum Gen 36: 163.



Practical

1. Polygenic models generate a normal distribution of genetic values.

a) Simulate a population of N=10,000 for 10 loci of frequency p

Binomial distribution of genotypes

G1, G2..G10=rbinom(N,2,p), set p =0.5

Make a count of risk alleles across 1,2,..10 loci
R1=G1, R2=G1+G2, ...R10=G1+G2...+G10
Plot histogram of R1...R10

b) repeat for allele freq p = 0.1

c) set p randomly eg uniform c(runif(10,0,1))

d) a-c demonstrate normal distribution of risk allele count.

If the effect size for the risk locus at SNP i is o, then what is the distribution
of variance of risk allele. Draw the ai from different distributions.

Skip this come back if there is time



2. Using simulation to explore the liability
threshold model.

Section 2a-2e. Already programmed.

2a. Run the section — generates sliders (make plot window as big as
possible) — Not so important

2b-2e Run line by line

2b. Simulates phenotypic liability and disease status of parents and
children

2c. Some graphs and calculates risks to relatives

2d. Compare simulated values with normal distribution theory
2e. Estimate heritability from recurrence risks to relatives

2f. Complete table to feel sampling variation

Regression of offspring quantitative phenotype on mid parent value.

Cov(Y,, (Y, +Yp)/2) =2*0.5*V(A)/2 =V(A) =h?

Var((Yu+Yp)/2) 2*V(P)/4 V(P)



2g. Extend the simulation to include different types of
relatives

HHHHARARHHHAARAARHHAAAAAHHBHAH
Add to the simulation a Monozygotic twin of the child
Add to the simulation a full-sibling of the child

Add to the simulation a paternal half-sibling of the
child

Calculate lambdaMZ, lambdaFS, and lambdaHS

Estimate heritability of liability from lambdaMZ,
lambdaFS, and lambdaHS



