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The inheritance of liability to certain diseases, estimated from 
the incidence among relatives 

BY D. S. FALCONER* 
Institute of Animal Genetzcs, West Mains Road, Edinburgh 

INTRODUCTION 

It is now commonly recognized that many diseases that are not inherited in a simple manner 
have, nevertheless, some hereditary basis. The evidence that heredity plays some part comes 
from the observation that the incidence of the disease is higher among the relatives of affected 
individuals than it is in the general population. An increased incidence among relatives does 
not, however, go far toward providing an amwer to the important question of how strong the 
hereditary factor is, because the difference of incidence has no simple genetic interpretation. 
The relative importance of heredity and environment in such a case is clearly a problem of 
quantitative genetics. The usual methods of quantitative genetics, however, are not immediately 
applicable because these are based on correlations between relatives in respect of some ‘graded’ 
character measurable on a continuous scale Data in the form of incidences refer, in contrast, 
to an ‘all-or-none’ classification; individuals either have the disease or they do not. Though the 
affected individuals may sometimes be graded according to the degree of severity of their 
symptoms, the normal individuals, who are the majority, cannot be graded by the degree of 
their normality. The purpose of this paper is to suggest that the method developed in quanti- 
tative genetics for dealing with ‘threshold characters ’ is applicable to data on the incidence of 
diseases, and that by its use we can get further towards an answer to the question of the relative 
importance of heredity and environment. (A fuller account of the method as applied in quanti- 
tative genetics will be found in Falconer, 1960.) 

The question of most general interest about the genetic causation of a disease that is not 
simply inherited is probably the relative importance of heredity as a causative agent. This 
questioii is meaningful only when stated in terms of amounts of variation; i.e. the variation 
between individuals that causes some to be affected and some not. What fraction of this varia- 
tion is attributable to genetic differences between individuals? This fraction may be called the 
‘degree of genetic determination ’. Unfortumtely the degree of genetic determination cannot be 
estimated from human data, unless possibly by the use of twins, but a related quantity, the 
heritability ’, can be estimated. The distinction between the degree of genetic determination 

and the heritability is as follows. Two kinds of genetic variation have to be distinguished, 
‘additive’ and ‘non-additive’. The additiw genetic variance is attributable to the average 
effects of genes considered singly, as transmitted in the gametes. The non-additive genetic 
variance is attributable to the additional effects of these genes when combined in diploid 
genotypes. It therefore arises from dominance and interaction between genes at different loci ; 
if there is no dominance or interaction there can be no non-additive variance. The degree of 
b aenetic determination is the total genetic variance (additive + non-additive) as a proportion of 
the total phenotypic variance (genetic + non-genetic). The heritability is the additive genetic 
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variance alone as a proportion of the phenotypic variance. The heritability expresses the extent 
to which the phenotypes exhibited by parents are transmitted to their offspring. It therefore 
determines the magnitude of the correlation between relatives. Though of less general interest 
than the degree of genetic determination, it it  is of more practical use for predictive purposes, 
for example, in genetic counselling. The degree of genetic determination may be equal to the 
heritability (i.e. in the absence of dominance or interaction) or it may be greater, but it can 
never be less. 

The heritability is estimated from the degree of resemblance between relatives, expressed as a 
correlation or regression coefficient. The method proposed in this paper for dealing with diseases 
is primarily a device for converting the information contained in the incidences into an estimate 
of the correlation between relatives, The genetic interpretation of the correlation, from which 
the heritability is estimated, is subject to the same sources of error as with continuously varying 
characters. These possible sources of error, which are already well known, are not considered 
in the main part of the paper but are mentioned in the Discussion. The first part of the paper 
presents the theory of how the heritability can be estimated from data in the form of incidences. 
The Theory section refers to data in the simplest form, consisting of two observed incidences, 
that in the general population and that in relatives of affected individuals, and then deals with 
some refinements necessary for analysing more complicated data. Then follows a section on 
‘Applications’ in which the method is applied to published data on four diseases. This section 
illustrates in detail how the formulae developed in the Theory section are used. 

THEORY 

‘ Liability ’ and the ‘ threshold ’ 
To overcome the difficulty of the all-or-none character of a disease we have to suppose that 

there is in fact an underlying gradation of some attribute immediately related to the causation 
of the disease. If we could measure this attribute, it would give us a graded scale of the degree 
of affectedness or of normality, and we should find that all individuals above a certain value 
exhibited the disease and all below it did not. This hypothetical graded attribute will be re- 
ferred to here as the individual’s ‘liability’ to the disease. The term susceptibility is not suitable 
because it implies t,he innate tendencies as distinct from the external circumstances. The term 
liability is intended to express not only the individual’s innate tendency to develop or contract 
the disease, i.e, his susceptibility in the usual sense, but also the whole combination of external 
circumstances that makes him more or less likely to develop the disease. For example, in the 
case of an infectious disease the individual’s susceptibility in the usual sense depends on his 
immunological defences, but the liability includes also the degree of exposure to the infective 
agent. The point on the scale of liability above which all individuals are affected and below 
which all are normal will be called the ‘threshold’. The variation of liability, the threshold, and 
the resulting incidence are illustrated in Fig. 1. The concepts of an underlying variable, here 
called the liability, and the threshold were proposed by Carter (1961, 1963) in connexion with 
congenital pyloric stenosis. The concepts can be developed quantitatively so that the correlation 
between relatives in respect of liability can be estimated from data consisting of incidences. 

For the quantitative development of the idea it is necessary to define the variation of liability 
as being normally distributed. This gives a unit for the expression of the degree of liability, the 
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unit being the standard deviation. This definition of the liability aa being normally distributed 
does not make an unwarranted assumption about the real nature of the liability: it simply 
specifies that in order to express the degree of liability we shall choose a scale of measurement 
which, if we could measure the liability, would yield a normal distribution. It does, however, 
exclude situations where the variation of liability is discontinuous, which would apply to 
diseases determined by a single major gene. The method of analysis to be developed therefore 
applies only to diseases whose genetic component is multifactorial, or if there are few genes, 
where these have effects that are small in relation to the non-genetic variation. 

Threshold 

1 I I I I I I 

- 4  - 3  - 2  -1 0 +I + 2  

Scale of liability (standard deviations from threshold) 

Fig. 1. Illustrations of two populations or groups with different mean liabilities. The liability is 
normally distributed, with the same variance in the two groups. The groups are compared by re- 
ference to a fived threshold. The stippled portions are the affected individuals with the incidences 
shown. 

The definition of the threshold, as the point on the scale of liability above which all individuals 
are affected and below which none are affected provides a fixed point by which to compare 
different populations or groups with different incidences. Fig. 1 illustrates the comparison of 
two populations on the basis of a fixed threshold. The lower distribution in the figure, with an 
incidence of 20 yo, has a higher mean liability than the upper distribution with an incidence of 
5 %. The two distributions illustrate the way in which data in the form of incidences are to be 
interpreted in terms of the liability and the threshold, though the incidences shown are much 
higher than are found for most diseases. The upper distribution represents the general popula- 
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tion, and the lower distribution, with a higher incidence and higher mean bbility, represents the 
relatives of affected individuals. For the genetic analysis of data in this form we need to evaluate 
the difference in mean liability between the two distributions, and we need to know also the 
mean liability of the affected individuals themselves, whose relatives appear in the lower 
distribution, These mean liabilities can be evaluated as follows. 

Evaluation of mean liabilities. If the mean liabilities of two groups are to be compared and 
the difference of liability evaluated, one important assumption has to be made. It is that the 
variance of liability is the same in the two groups. This assumption is unavoidable because 
without it there is no common scale on which the liabilities of the groups can be compared. The 
unit of measurement on the common scale is the standard deviation of the distribution, and this 
scale is shown at  the foot of Fig. 1 with standard deviations marked off from the threshold as 
zero. On this scale the mean liability of the upper distribution is - 1.6 u, i.e. 1 *6 standard 
deviations below the threshold, and that of the lower distribution is -0.8 u. 

The evaluation of the mean liability of the population is made by reference to tables of the 
normal distribution. With a given incidence, q ,  a table of the normal deviate x (single-tailed) 
gives the deviation, x, in standard deviation units, of the threshold from the mean. These tables 
are provided by Pearson (1931), Kelley (1947), Comrie (1949), Pearson & Hartley (1962). (Of 
these, only Comrie’s tables cover incidences below 0.1 %.) A table suitable for the present 
problem is reproduced here in Appendix A. 

Fig. 2 shows the same two normal distributions as Fig. 1,  but with the values to be obtained 
from the tables, or Appendix A, entered on them. The upper distribution represents the general 
population with an incidence, qff. The corresponding deviation of the threshold from the mean 
is xu. This is given as a positive value in the tables, so the mean liability, G, of the population 
is xu units below the threshold, T, or -xs units if liability is measured from the threshold as 
zero. Some care is thus needed with the signs in converting the values entered in the tables into 
mean liabilities. The lower distribution in Fig. 2 represents the relatives of affected individuals 
with an incidence qr. The corresponding mean liability, R, is x, units below the threshold. 
Seference to Fig. 2 will show that the difference of mean liability between the relatives and the‘ 
general population is R - G = xff - x,. 

The mean liability of the affected individuals in the general population is marked A in Fig. 2. 
This deviates from the mean of the population as a whole by the amount a in standard deviatioll 
units. The value of a depends on the incidence and can be obtained from tables of the normal 
distribution or from Appendix A. Not all the tables cited above give a itself, but it can be 
obtained as a = z/q,  where z is the height of the ordinate of the normal curve at the threshold 
corresponding to the incidence, q. The values of a given in the tables and Appendix A are, like x, 
positive deviations from the population mean. Reference to Fig. 2 will show that the mean 
liability, A ,  of the affected individuals as a deviation from the threshold is given by a - x and 
i s  positive. 

For the analysis of some data, as will be explained later, it is necwsary to know also the mean 
liability of the normal individuals in the general population. This obviously deviates very little 
from the mean of the population as a whole unless the incidence is very high. The deviation is 
shown as n in Fig. 2. It is not necessary to have n tabulated because it is related to a in the 
following way. As a = x / q ,  so n = zip where p = 1 -q.  Therefore n = aqlp. 
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Fig. 2. Two distributions representing the general population above, and the relatives of affected 
individuals below, compared with reference to the fixed threshold, T. 

GL = mean liability of general population, 
A = mean liability of affected individuals in the general population, 
R = mean liability of relatives, 
p = incidence, i.e. proportion of individuals with liabilities exceeding the threshold, 
x = deviation of threshold from mean, i.e. the normal deviate, 
z = height of the ordinate at the threshold, 
a = mean deviation of affected individuals from the population mean (= z/p), 
n = mean deviation of normal individuals from the population mean ( = z/( 1 - g ) ) ,  
subscript g refers to the general population, subscript r to the relatives. 

GENETICS 

Regression of relatives on propositi. Data in the form of two incidences, leading to the evalua- 
tion of the two mean liabilities illustrated in Fig. 2, will be recognized by those familiar with 
quantitative genetics as analogous to a ‘selection experiment ’. The affected individuals, with 
mean A ,  are ‘selected’ out of the general population with mean G. The difference of mean, 
A - G, represents the ‘selection differential ’. The affected individuals are the propositi, or 
index patients, whose relatives are found to have a mean liability of R. The difference between 
the mean of the relatives and the mean of the general population, R - G, represents the ‘re- 
sponse’. The ratio of these two differences of mean liability is the regression of relatives on 
propositi in respect of liability. The regression, b, is therefore given by 

R-C b = -  
A - G ‘  

Fig. 3 shows the meaning of this regression diagrammatically. The regression coefficient, b, is 
the slope of the line drawn through the origin G, and the point corresponding to the value R, 
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in the relatives and A in the propositi. Since the variances of liability are necessarjly assumed 
to be the same in the relatives as in the general population, the regression in equation (1) is 
numerically the same as the correlation of liability between relatives of the sort under con- 
sideration. 

The regression of relatives on propositi is expressed in equation (1) as the ratio of two differ- 
ences of mean liability. The evaluation of these mean liabilities from the observed incidences by 
reference to tables of the normal distribution was explained in the previous section. When 
equation (1) is expressed in terms of the quantities to be obtained from the tables it becomes 

(2) 

The table in Appendix A gives the values of x and a corresponding to incidences from 0.01 % 
upwards. To evaluate the regression, take xg and a both corresponding to the incidence in the 
general population, and x,. corresponding to the incidence in the relatives, and enter these values 
in equation (2).  The standard error of the estimate of the regression coefficient obtained in this 
way can be calculated from the formula given in Appendix B (Method 1). The derivation of the 
sampling variance is outlined in Appendix C. 

xg - xr  b = -. 
U 

G I A  
T 

Fig. 3. Diagrammatic representation of the regression of relatives on propositi. The figure is 
cirawn to scale for the values in Figs. 1 and 2. G = mean liability of general population; A = mean 
liability of affected individuals (propositi); R = mean liability of relatives of propositi. The axes are 
marked in standard deviation units, and the position of the threshold is marked by T. The regres- 
sion coefficient is given by b = ( R - B ) / ( A - G ) .  

Estimation of the heritability. The regression of relatives on propositi leads very simply to an 
estimate of the heritability of liability. This cannot be explained in detail here and the reader is 
referred to Falconer (1960) for a fuller explanation. The connexion between the regression of 
relatives on propositi and the heritability is briefly as follows. Let P be the phenotypic value 
(i.e. the liability) of any individual, R the phenotypic value of a relative, and r the coefficient 
of relationship. Then the regression of R on f’ is bRp = covRp/vp = rV,/V, = rh2, where 
covRp is the covariance, V, is the phenotypic variance of individuals, V, is the additive 
genetic variance, and h2 is the heritability defined as the ratio of the additive genetic variance to 
the total phenotypic variance. Since the liability of individuals cannot be measured, the regres- 
sion has to be derived from the mean liabilities of groups of individuals as in equation (l) ,  where 
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A refers to a group of affected individuals and R to a group of their relatives. The covariance 
of an individual with the mean of any number of relatives of the same sort is, however, the same 
as with one relative. Therefore it does not matter how many relatives are contributed by each 
propositus, and the relationship between the regression in equation (1) and the heritability of 

b = rh2. liability is 

The heritability is therefore estimated from the regression by 

h2 = b/r.  (3) 

The coefficient of relationship, T ,  for first-degree relatives is 4. Thus if the relatives are full sibs, 
parents, or children of the propositi, the heritability is estimated 8s 

h2 = 2b. 

Other sorts of relatives that might be used are uncles and aunts, or nephews and nieces; with 
these r = and so h2 = 4b. With first cousins (single) T = & and ha = 8b. Twins present special 
problems and will be discussed separately. Any number of relatives of the same sort can be 
included and it does not matter if some propositi contribute more than others. When the rela- 
tives are brothers or sisters then, of course, the propositus must not be counted with his sibs in 
the incidence among relatives. If two members of the same sib family appear among the affected 
propositi then, provided the two propositi were ascertained independently, the family should be 
counted twice in the data on relatives, with one of the affected propositi included as an affected 
relative. 

Data from twins present some special difficulties in the genetic interpretation, which are 
commented on in the Discussion. There is, however, no difficulty in using data from twins to 
estimate the regression of twin relatives on the co-twin propositi, which is equivalent to the 
twin-correlation in respect of liability. This would be done in exactly the same way as for any 
sort of relative. But it is important to note that the twin pairs must have been ascertained 
through one or both members being affected by the disease in question. (If both were affected 
and were ascertained independently the pair would be counted twice.) Thus the pairs will 
consist of one affected member, which is the propositus, and one affected or normal member 
which is the ‘relative’. The incidence among the ‘relatives’ is the incidence required for the 
calculation. This incidence is the same as the proportion of concordant pairs, when ascertained 
in the manner stated. Identical and fraternal pairs must, of course, be analysed separately. If 
the regression is to be used to estimate the heritability, in spite of the difficulties in the genetic 
interpretation, the appropriate coefficient of relationship, r ,  is 1 for identical pairs and + for 
fraternal pairs. 

Pig. 4 provides a quick means of obtaining an approximate estimate of the heritability 
directly from the observed incidences, without any computation. The graphs, which are based 
on equations (2) and (3), with r = t ,  show the incidence in first-degree relatives of affected 
individuals plotted against the incidence in the general population, for different values of the 
heritability. The scales of incidence on the horizontal and the vertical axes are both logarithmic. 
To use the graphs, find the point corresponding to the observed incidence in the general popu- 
lation read along the horizontal axis and the observed incidence in the relatives of propositi 
read along the vertical axis. The sloping line to which this point lies nearest then gives the 
heritability to the nearest 10 % and interpolation can be made if desired. The heritabilities 
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marked against the sloping lines in the figure are those obtained by doubling the regression of 
relatives on propositi. The heritabilities shown are therefore appropriate to data from first 
degree relatives. 

4.0. 6.0 0 8  10 0.1 0-2 0.4 0.6 0.8 1.0 2.0 
Incidence in general population yo 

Fig. 4. Graph for estimating the heritability of liability from two observed incidences, 
when the relatives are sibs, parents, or children. Explanation in text. 

Some rejinements and complications 
There are several complicating circumstances likely to be met with in the collection and 

analysis of data, which call for some minor modifications in the calculation of the regression of 
reIatives on propositi. These do not affect the estimation of the heritability from the regression 
coefficient. The complications arise mainly from the fact that in the method described the 
incidence in the general population has been made to serve two purposes, and the incidence 
observed may not be suitable for both purposes. The incidence in the general population was 
used fir& to evaluate the mean liability of affected individuals. For this purpose, the general 
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population sampled should be representative of the population from which the affected indi- 
viduals were drawn. Secondly, the mean liability of the general population, evaluated from the 
incidence, was compared with the mean liability of the relatives. For this purpose the sample of 
the general population should be representative of the population to which the relatives belong. 
This is particularly important because the whole procedure rests on the variance of liability being 
the same in the two groups compared. It is not always possible to obtain a single estimate of the 
incidence in the general population that satisfies the requirements of both purposes for which it 
is to be used. Some modifications of the procedure for calculating the regression of relatives on 
propositi are then needed. These are described in the sections that follow. 

Data from controls. The best way to obtain a sample of the general population that is corn- 
parable with the relatives of affected individuals is from a series of ‘controls ’. This will probably 
also be the most convenient way to collect data on the general population if the incidence is 
not already known and has to be determined as part of the investigation. The control propositi 
are individuals not suffering from the disease in question, chosen for being the same as the 
affected propositi in sex, age, and any other characteristic that seems important. The control 
propositi are questioned about their relatives in the same way as the affected propositi are, and 
the incidence among the control relatives is taken as the estimate of the incidence in the general 
population. If the control propositi are well matched with the affected propositi, then the 
control relatives provide a good comparison with the relatives of affected individuals and, in 
particular, the assumption of equal variance of liability is less likely to be erroneous. For the 
purpose of comparison with the relatives, therefore, the incidence in the general population can 
be satisfactorily estimated from a control series. 

The use of controls, however, introduces two small errors. Both are so small as to be hardly 
worth consideration, but they will be pointed out for the sake of completeness, especially as one 
can be easily removed. Both errors arise from the fact that the control relatives are not strictly 
representative of the population from which the affected propositi were drawn. Since the con- 
trol propositi were selected for being unaffected by the disease, the relatives of the control 
propositi are expected to have a mean liability slightly below that of the general population in 
the strict sense. Consequently the relatives of affected propositi will differ more in mean 
liability from the relatives of control propositi than from the general population in the strict 
sense. In  other words, the difference of mean liabilities in the numerator of the regression 
equation will be too great. This error can easily be overcome by taking account of the selection 
of the control propositi. Just as the affected propositi are selected out of the general population 
for having a high liability, so are the control propositi selected for having a low liability. The 
situation is illustrated by the upper distribution of Fig. 2, where the difference of mean liability 
between the control propositi and the general population is indicated by the deviation marked n. 
Whereas, before, the ratio giving the regression of relatives on propositi had a as denominator, 
now the appropriate denominator is a+n, because this is the total ‘selection’ that has given 
rise to the ‘response’ observed in the difference between the relatives of affected and of control 
propositi. The regression thus becomes 

b = -  X,-% 
a+n ’ 

where xc is the deviation of the threshold from the mean of the control relatives, evaluated from 
qc, the incidence in the control relatives. It was stated earlier that .n itself need not be evaluated 
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because it can be expressed as n = aqlp, where p = 1 -q .  When this is done, the formula for 
the regression, based on data from controls in place of the general population, simplifies to 

The sampling variance of this estimate is given in Appendix B (Method 2), Since p will in most 
cases be very nearly 1, equation (4) differs little from equation (2). An approximate estimate of 
the heritability can therefore be obtained from Fig. 4, even though the incidence in the general 
population is estimated from control relatives. 

The second error introduced by the use of controls arises from the fact that t’he incidence 
among the control relatives is not, strictly speaking, suitable for evaluating the mean liability 
of the affected propositi, or of the control propositi, which should beevaluated from the incidence 
in the general population from which the propositi were drawn. The error consequently intro- 
duced in the evaluation of a and p in equation (4) is not easily overcome by adjustment of the 
formula, but it is so small that it  can be safely neglected. It would, of course, be possible to 
estimate the incidence in the general population in the strict sense as well as that in the control 
relatives, and to use this for the evaluation of a and p .  Three observed incidences would then be 
used. The additional sampling errors introduced would, however, greatly outweigh the improved 
theoretical accuracy. There are, nevertheless, circumstances under which three incidences are 
required, and these will now be discussed. 

Incidence difering in the two sexes. If the incidence of a disease differs in the two sexes this 
leads to a difference of incidence among the relatives of affected males and affected females which 
may at first sight seem puzzling. The analysis by means of the regression coefficients, however, 
provides an explanation of the differing incidences, and the differing incidences, in turn, offer 
an interesting means of testing the validity of the analysis. Carter (1961,1963) showed how the 
higher incidence of congenital pyloric stenosis among the relatives of affected females than among 
those of affected males could be explained on the basis of an underlying variable and a threshold. 
Big. 1 wiU serve to illustrate the interpretation in terms of liability, the upper distribution 
representing females and the lower one males. The incidence in the general population is lower 
in females than in males. With liability defined as being measured from a fixed threshold, 
females have a lower mean liability than males. Consequently affected females deviate more 
from the mean of their sex than do affected males. If the liability is to any extent inherited, 
this will result in the relatives of affected females having a higher mean liability than those of 
affected males. 

To obtain a meaningful estimate of the heritability from the regression of relatives on pro- 
positi, it is necessary to separate the sexes and determine the mean liability in each sex of pro- 
positi and each sex of relatives. Regressions can then be calculated as follows. It is obviously 
possible to analyse each sex separately, by the methods already described, and so to obtain two 
estimates of the heritability, one for males and one for females. These two estimates need not 
necessarily be the same, because the sexes may differ in the variance of liability arising from 
environmental causes. The two estimates for the sexes separately make use of only the ‘like- 
sexed’ relatives, i.e. male relatives of affected males and female relatives of affected females. 
The regression of relatives on propositi can, however, be calculated for the ‘unlike-sexed’ relatives 
-female relatives of affected males and male relatives of affected females-provided the inci- 
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dences are taken from the appropriate sexes. This clearly calls for the use of three incidences 
because the propositi of one sex and the relatives of the other belong to different general popu- 
lations with different mean liabilities, and possibly with different variances. For the calcula- 
tion of the regression of relatives on propositi two different general population means are re- 
quired, and equation (1) becomes 

b = -  R-GB 
A-GA’ 

where G, is the mean of the general population of the same sex as the relatives and GA is the 
mean of the general population of the same sex as the affected propositi. In  terms of the 
quantities obtained from the tables, the regression based on three incidences is 

where xgr is evaluated from the incidence in the general population comparable with the rela- 
tives, and ag is evaluated from the incidence in the general population comparable with the 
propositi. The standard error of the regression estimated in this way is given in Appendix B 
(Method 3). 

The best sample of the general population for comparison with the relatives will be from a 
control series, as explained in the previous section. The control relatives must, of course, be of 
the same sex as the relatives of affected propositi. A similar modification of the formula is then 
called for and the regression is obtained as 

where as and pg are evaluated from the incidence in the general population comparable with the 
propositi, and xc from the incidence in the control relatives. The sampling variance is given in 
Appendix B (Method 4). 

The regression of relatives of one sex on propositi of the other, calculated in the manner out- 
lined, is quite valid, even if the variances are different. The relationship of this regression to the 
heritability of liability is, however, not quite straightforward for the following reasons. The 
resemblance in liability between relatives of one sex with affected individuals of the other 
depends not only on the heritabilities in both sexes but also on the extent to which the genetic 
component of liability is dependent on the same genes in the two sexes. It is possible that some 
genes affect the liability in one sex but not in the other. The extent to which liability in the two 
sexes depends on the same genes is expressed as the genetic correlation, rG) between the sexes 
in respect of liability. Application of the theory of genetic correlation (see Falconer, 1960 for 
details) to the problem under discussion shows that if the regression coefficient is multiplied by 
two (or by the appropriate factor) this gives an estimate of h,hjrB, where h, and h, are the 
square roots of the heritabilities in males and females, respectively. In  principle, therefore, the 
genetic correlation between liability in the two sexes can be estimated, but an estimate precise 
enough to be meaningful would probably require data on a very large scale. 

Four separate regressions can be calculated, two from like-sexed and two from unlike-sexed 
relatives. When multiplied by the appropriate factor for the coefficient of relationship, the first 
two estimate hk and hj, respectively, and the second two both estimate hmhfrG. Thus the two 
estimates from unlike-sexed relatives should be the same, even if the heritabilities in males and 
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females are different. If all four estimates are the same, then the genetic correlation must be 
unity, within the limits of sampling error, The three examples given later in this paper, in which 
the incidence differs in males and females, all show fairly close agreement between the four 
estimates of the heritability. These cases, therefore, give no evidence of different heritabilities 
in males and females, or of the liabilities in males and females being influenced by different 
genes. 

If the four separate estimates of the heritability do not differ significantly, they can be com- 
bined into a single estimate by taking a weighted mean, the weight given to each being the 
reciprocal of its sampling variance. The sampling variance of this combined estimate is given 
approximately by the reciprocal of the sum of the weights. This is only approximate because 
the sampling variances of the separate estimates are not uncorrelated. 

Incidence chang ing  with t i m e .  Another situation in which three incidences might' be required 
for the calculation of the regression is when the incidence of the disease is known to be changing 
with time. If the propositi and their relatives belong to different generations, e.g. the relatives 
are parents or children, the propositi and relatives will belong to different general populations, 
with different incidences. The regression of relatives on propositi could be calculated by equation 
(5) or (B), but this procedure is not to be recommended for the following reasons. A time-trend 
in the incidence of a disease may be due either to a change in the mean liability or to a change in 
the variance of liability, and there is no means of knowing which is the cause. If i t  is only the 
mean that is changing, the estimate of the heritability from propositi and relatives in different 
generations would be valid. But if the variance is changing an essential assumption on which 
the calculation is based would be violated, and the estimate of the heritability would be invalid. 
The use of contemporaneous relatives, however, will yield an estimate of the heritability that is 
valid for the time at  which the data are collected. 

Incidence chang ing  with age. Variation in the age of onset leads to an age-dependent incidence, 
the incidence increasing with age. The increase of incidence might be due to either an increasing 
liability or an increasing variance of liability. The consequences of an increasing variance will not 
be considered, and it will be assumed that the variance is the same in all age groups. With this 
assumption it is possible to compare the liabilities of different age groups. If the incidences are 
known for different age groups, the liabilities can be determined from the incidences, and the 
relationship between liability and age can thus be determined. 

On the assumption that the liability and not the variance changes with age, the comparisons 
on which the estimation of the heritability is based are valid, provided the groups compared 
have the same age distributions. Some adjustment, or correction, for age differences may, how- 
ever, be needed. The propositi, being affected, will tend to be above the average age, and there- 
fore their relatives will also tend to be above the general population in average age. If this is so, 
the incidence in the general population, from which zg in equation (2) is evaluated, should be 
adjusted so that i t  is the incidence expected in a general population with the age distribution as 
found in the relatives of the propositi. If the incidence in the general population were estimated 
from the relatives of control individuals, little or no adjustment would be needed, provided the 
controls were matched for age with the affected propositi. This would seem to be a situation in 
which control relatives would be particularly advantageous. 

The incidence in the general population is also needed for the evaluation of a,  the mean 
deviation of affected individuals. This incidence should not be adjusted to correspond with the 
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age distribution of the propositi, because the greater age of the propositi is one aspect of their 
higher liability which makes them affected, and any adjustment would remove some of the 
variation of liability whose inheritance is being evaluated. The incidence used to evaluate a 
should be that of the whole population from which the propositi were drawn. 

If liability changes with age, some of the variation of liability is associated with the variation 
of age in the population or sample. In other words, age represents one of the non-genetic 
sources of variation of liability. The procedure outline for estimating the heritability retains this 
variation associated with age as part of the non-genetic variation. The proportionate amount of 
the variation that is associated with age may be of interest, and can be estimated as follows. 
If the population is divided into age groups, the mean liability of each group can be evaluated 
from the incidence in it. The variance of these mean liabilities, each mean being weighted by the 
number of individuals in the group, is then an estimate of the variance of liability associated 
with the variation of age in the population. Let this variance of liability between age groups 
be v. The variancewithin the age groups is 1, by definition. (The liabilities are evaluated in terms 
of unit variance.) Therefore the total variance of liability is 1 + v, and the proportion of the total 
that is associated with age is v/( 1 + v). 

APPLICATION 

The following four examples will illustrate the application of the method. In the first two the 
computations are shown in some detail, but in the last two only the data and the results are given. 
In all but the fourth example data from different sorts of relatives have been combined because, 
though given separately, the data are insufficient to warrant making separate estimates of the 
heritability. The relatives combined are, of course, all of the same degree, and in no case were 
the separate estimates of the regression coefficients significantly different from one another. 

The symbols used have the following meanings: 
A = observed number of affected individuals in the sample, 
N = total number of individuals in the sample, 
4 = incidence = A / N ,  
1, = 1-P, 
x and a are the values corresponding to q, taken from the table in Appendix A, with linear 

interpolation, 
b = regression coefficient of relatives on propositi, 
V ,  = sampling variance of b,  
h2 = heritability of liability to the disease in question. 

1. Renal stone disease (Calcareous ccclculi) (McGeown, 1960). The data consist of the incidences 
in relatives of affected individuals (patients) and in relatives of unaffected controls matched for 
sex and age with the affected individuals. The sexes are not separated. The incidences in parents, 
sibs and offspring, each with their control series, are given separately but are here combined. The 
data and values needed for the computation are given in Table 1. The regression coefficient is 
calculated by equation (4) (Method 2 of Appendix B) as follows: 

b = 0.99593 (2.646- 1*959)/2.960 = 0.231. 

Whence the heritability is 
h2 = 2b = 46%. 
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The calculation of the standard error of the heritability is as follows. The first steps are not 
shown, but comparison of the first line with the formula in Appendix B (Method 2) will show 
what these steps are. The sampling variance of the regression coefficient is 

Fi = E0.3365 - 0.231 (2.948 - 2*646)]2 x 0.0189 + (0*3365)2 X 0.00496 

= 0.00134+ 0.00056 

= 0-00190. 

The standard error of the heritability is given by 

Thus the heritability of the liability to renal stone disease estimated from these data is 
h2 = 46 9 yo. 

It will be noted that by far the larger part of the sampling variance comes from the first term, 
arising from the sampling error of the incidence in the control relatives. This is because the 
sample of control relatives contains many fewer affected individuals than the sample of relatives 
of patients. 

Table 1. Rend stone disease 
Relatives 

of A N Q P X a 

Controls 6 I473 0'00407 0.99593 2.646 2.960 

S.E. (h2) = 2,/& = 2 x 0.044 = 0-09. 

Patients 36 1437 0.02505 0.97495 1'959 2.337 

2 .  Congenital py2oric stenosis (Carter, 1961). Here the incidence differs in males and females 
and so the sexes of both propositi and relatives must be treated separately to yield four estimates 
of the regression. Data are given for sibs and children of propositi, but these are here com- 
bined. The incidences in the general population are given, but without the numbers on which 
these are based. Therefore the standard errors cannot be exactly calculated and those shown are 
based on the assumption that the incidences in the general population are known without error. 
The solutions obtained are given with the necessary data in Table 2. The regression coefficients 
are obtained from equation (2) {Method 1 of Appendix B) for the like-sexed relatives, and from 
equation ( 5 )  (Method 3) for the unlike-sexed relatives. 

Table 2. Congenital pyloric stenosis 
General population A N q yo 

0.5 - - Male 
Female - - 0' I 

-7 

Propositi Relative6 
Male Male 16 318 5.03 
Male Female 7 326 2-15 

Female Female 5 76 6.58 
Female Male I4 82 17-07 

Weighted mean - - - 

The calculations are as follows: 

Propositi Relatives 

Male Male 
Male Female 
Female Male 
Female Female 

X a b V ,  x lo4 h2 5 S.E. % 
2.576 2.892 -- - - 
3'090 3.367 - - - 

1.642 2.060 0.323 16.72 6 4 +  8 
2.024 2.394 0.369 29.16 7 4 +  X I  
0.951 1.486 0.483 23.66 9 7 +  10 
1.508 1.945 0.470 43.57 9 4 k  13 

0.397 6.27 7 9 %  5 - _- 
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The sampling variance of the first regression coefficient, to take just one as an example, 
is obtained as 

0*9497 = 0.001672. 
1 v=- 

( 2 ~ 8 9 2 ) ~  (2*060)2 x 16 

The first terms in the formulae given in Appendix B are zero if the incidence in the general 
population is assumed to be estimated without error. 

The four estimates of the regression coeficient have been combined by weighting each by the 
reciprocal of its sampling variance and taking a weighted mean. The sampling variance of this 
combined estimate is approximately the reciprocal of the sum of the weights. The combined 
estimate of the heritability, with its standard error, is 79 +_ 5 %. The four separate estimates 
agree with each other reasonably well within the limits of their sampling errors. 

3. Club-joot (Tulipes equino-vurus) (Wynne-Davies, 1964). As in the previous example, the 
incidence is different in males and females and the incidences in the general population are given 
without the numbers from which they are derived. Data from sibs and parents are given, but 
these are again combined here. The data and the solutions, obtained in the same manner as the 
previous example, are given in Table 3. 

Table 3. Club-foot 
General population A 

Male - 
Female - 

Propositi Relatives 
Male Male 5 

Female Male 5 
Male Female o 

Female Female 2 

Weighted mean - 

One group of relatives contained no affected individual. With the incidence being lower in 
females than in males, this group-female relatives of affected males-is the one that would be 
expected to have the lowest incidence. The zero-incidence observed is not inconsistent with the 
estimates of the regression obtained from the other groups. The upper 95 % confidence limit for 
the number observed is 3.66 (from Fisher & Yates, 1943, Table VIIIJ. This means that an 
observed number of 0 is not incompatible with an expectation of 3.66 out of 187, giving an 
incidence of 1.96 %. This incidence leads to b = 0.339, h2 = 68 %, which is not significantly 
different from the other estimates. The group with zero-incidence is necessarily excluded from 
the combined estimate of the heritability obtained from the weighted mean of the other three 
groups. This combined estimate of h2 = 70 

4. Peptic ulcer (Doll & Buch, 1950). Peptic ulcer presents a complicated situation and its 
analysis certainly merits a more elaborate treatment than can be attempted here. There are two 
main complications-the composite nature of the disease and the age-dependent incidence. 
Doll & Kellock (1951) showed that the excess of incidence of peptic ulcers among relatives of 
propositi, as compared with the general population, was almost entirely due to ulcers at  the 
same site-gastric or duodenal-as that of the propositus. From this they concluded that gastric 
and duodenal ulcers are genetically distinct entities. An analysis of the two combined, as 

8 yo is therefore biased upwards. 

Hum. Gen. 29, I 5 
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'peptic ulcer', will therefore yield an estimate that is an approximate average of the herita- 
bilities of the two separate entities. Though the data given in the appendices to the two papers 
cited would probably allow the gastric and duodenal sites to be analysed separately, I have not 
attempted to do this. 

Table 4. Peptic ulcer. Incidence and mean liability ( =  -2) by age groups. 
Sampiing variance of mean liability = pq/z2N 

Males Females 
h -- r 7 

Mean 
q yo liability f S.E. 

Median Mean Median 
age N age N q yo liability f S.E. 

20 499 0.80 -. 2.41 f 0.18 
3 0  1128 2.48 -. 1.96 f0.08 
40 1375 4.58 -. 1-69 f0.06 
5 0  1089 7'35 -. 1.45 f 0.06 
60 625 6.24 -. 1.54 f0.08 

(65+)  155 5.81 -1.57 fo .16  

- - - 
-2.70 +_0*23 0'35 

0.85 -2.39 f0-26 
-2-14 fo-20 1-61 

11.76 - -1.19 - f0.40 - 

The data on peptic ulcer gives the incidence -y age groups .,i a large sample of the general 
population, and the incidence increases with age in both sexes. Table 4 shows the incidences in 
each age group and the mean liabilities derived from them. Fig. 5 shows the mean liability 
plotted against age. In both sexes there is a regular linear increase of liability up to the age of 
about 50. The proportion of the total variance of liability that is associated with variation of age 
in the population is 8 yo in both sexes, calculated in the manner described in the previous section. 
From this it can be inferred that the correlation between liability and age is about 0.3 (i.e. the 
square root of 0.08). 
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Fig. 5. Age effect on peptic u1i:er. Mean liabilities of different 8ge group in the general population. 
"he liability is exprosfwd in standard deviations from the threshold. The vertical lines extend to f 
one standard error of the estimated mean. Data from Doll & Buch (1950). 
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The data for the estimation of the heritability are the incidences in the general population and 

among the sibs of propositi. Since the incidence differs between males and females it is necessary 
to keep the sexes separate and obtain four estimates as in the previous examples. The sexes of 
propositi and their sibs were separated by reference to the appendix of Doll & Buch (1950), and 
the numbers so obtained were as shown in Table 5 here. The average age of the relatives of 
affected individuals was, as expected, above that of the general population. For comparison 
with the relatives, therefore, the incidence irt the general population has to be adjusted to corre- 
spond with the age distribution among the relatives. For this purpose the age-corrected 'expec- 
tations' given by Doll & Buch have been used. It has been assumed that the age distribution 
among the relatives did not differ according to the sex of the propositi, which is probably not 
quite true because female propositi were older than male. Table 5 gives the values needed for the 
calculations, the values in brackets being thiose required only for the sampling variances. The 
four separate estimates of the heritability are satisfactorily consistent, and the combined 
estimate is h2 = 37 k 6 yo. 

General population 

For comperison with : 
Propositi-male 
Propositi-female 
Relatives-male 
Relatives-female 1 

Relatives - 
Propositi Relatives 
Male Male 
Male Female 
Female Male 
Female Female 

Weighted mean 

A N 

Table 5. Peptic ulcer 

223 4871 
I 0  1080 

Age corrected 
incidences 

4 'Yo X 

11-76 1.187 
2.83 1.906 

13.07 1.123 
3.03 1.876 

b 

- 
- 
- 
- 

0'201 
0. I 72 
0.180 
0.145 
o 183 

DISCUSSION 

The usefulness of the method of analysis proposed in this paper is that it  renders the observed 
incidences intelligible in terms of the heritability, and that a knowledge of the heritability can 
be of some predictive value. There are, however, some limitations in the method which may lead 
to error. The uses and limitations will be discussed in turn. 

Interpretive value 
The idea of an underlying variation of liability, and the analysis developed from it, provide a 

quantitative interpretation of the excess incidence of a disease among the relatives of affected 
individuals over the incidence in the general population. The incidences themselves, without 
further analysis, give a poor indication of the strength of hereditary factors because the inci- 
dences are not related in any simple way to the degree of inheritance, nor to the closeness ofthe 
relationship between the affected individuals and their relatives. A simple comparison of the 
incidence in relatives with the incidence in the general population will give a different picture 
according to whether the simple difference or the relative increase is taken as a measure of the 
importance of heredity. This can be 8)een from the graphs in Fig. 4. For example, diseases where 

5-2 
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t he  heritability of liability was 50 % would give the following results, according to the incidence 
of the disease in the general population: 

Incidence in Incidence in Difference 
general relatives of Relative 

population (h2 = 5 0 % )  incidence increase 
( % )  ( % ) ( % )  
0' I I 0.9 10-fold 
I 5 4 5 -fold 

The diseases with different incidences in males and females that were analysed in the pre- 
vious section provided examples of this situation. When the sexes were separated, the inci- 
dences among relatives seemed a t  first to be inconsistent, but were found on analysis to be all 
consistent with a single value of the heritability. 

I 0  20 I 0  2-fold 

Predictive value 
For predictive purposes it is the incidence itself in a specified group that is required, because 

the incidence expresses the probability that an individual of the group will have the disease. 
Knowledge of the heritability may, however, lead to a prediction which could not otherwise be 
made. The use of the heritability in this way may be made clearer by specific examples of 
genetic counselling. A patient suffering from renal stone disease may, for example, ask what is 
the chance that his children will suffer from the same disease. I n  this case, the incidence among 
first degree relatives is known (see Table 1 in the previous section), and nothing further is 
required the probability is 24% or 1 in 40. But if the required incidence were not known a useful 
prediction could still be made in the form of an upper limit, provided that the incidence in the 
general population were known. The upper limit would be obtained by assuming the heritability 
to bc 100 76. Keference to Fig. 4 then shows that with a general population incidence of 0.4 %, 
the maximum incidence among first degree relatives is 12 yo. As a more complicated example, 
suppose a woman says her sister had a club-footed son, and asks what is the chance of her having 
a club-footed child. The relationship in question is between single first cousins, and the required 
incidence is to be predicted from the known incidence among first degree relatives. The known 
incidence is used to estimate the heritability (h2)  which was found in example 3 of the previous 
section to be 70%. The expected regression (b)  for cousin relatives is Qh2, which in this case is 
0.0875. To obtain the expected incidence among cousins of affected individuals we have to solve 
one of the regression equations for 5,. Because of the different incidences in the two sexes there 
will have to be different predictions for male and female children of the questioner. For male 
children equation (2) (Method 1 of Appendix B) is to be solved for xr, with the value of b already 
found, and the values of xg and a from the male general population (see Table 3 of the previous 
section). This gives 2.944 - x., 

0.0875 = 
3.231 ' 

whence x, = 2-661. The incidence (9)  corresponding to this value of x can now be found from 
Appendix A. It is 0.39% or about 1 in 250. This is the probability that a male child will be 
club-footed. A similar calculation for female children can be made by solution of equation ( 5 )  
(Method 3 of Appendix B). This gives 

3.156 - X? 
0.0875 = 

3.231 ' 
whence x, = 2.873, and the predicted incidence is 0.2070 or 1 in 500. 
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The above examples will show how a knowledge of the heritability might be used in genetic 

counselling. Prediction made in the same way would be helpful also in planning the collection 
of data on incidences, for deciding what size of sample should be collected. Since the standard 
error of the regression coefficient, and of the heritability estimated from it, depends chiefly on the 
number of affected individuals in the sample, it  is important to have a sample large enough to 
include a reasonable number of affected individuals ; if it includes none the sample is of very little 
use. Prediction of the incidence would be particularly helpful if it were planned to collect data 
from second or third degree relatives. The prediction may show that the size of sample required 
to be of any use would be impracticably large. 

One other aspect of prediction deserves mention. If the heritability is found to be very high, 
the degree of genetic determination must also be very high and environmental factors, therefore, 
unimportant as causative agents of the disease. This does not mean, however, that curative 
or preventive measures will be ineffective. The environmental factors proved to be unimportant 
are those operating in the population sampled and these do not include special treatments or 
preventive measures. No prediction can be made from a knowledge of the degree of genetic 
determination about the efficacy of curative or preventive treatments. All that could be said 
in such a case is that one will have to look outside the range of normal environments experienced 
by the untreated population. 

Sources of error 

The method has two chief limitations from which error may arise: the assumption of a con- 
tinuous distribution of liability, and the assumption of equal variances. The validity of the 
regression of relatives on propositi rests on these assumptions. Two other sources of possible 
error occur in the estimation of the heritability from the regression coefficient. 

The requirement that the variation of liability should be continuous means that the method 
will break down if there is a major gene contributing to the causation of the disease. If the 
disease is simply inherited by a single dominant or recessive gene this will, of course, be known 
from family studies and the method would not be applied. A gene with incomplete penetrance, 
which did not give simple Mendelian ratios, might nevertheless cause a discontinuity in the 
distribution of liability. If the gene were recessive the situation would be detected by the 
estimate of the heritability from sibs being much higher than that from parents or children. If 
the gene were dominant the situation might be detected only by the estimated heritability being 
very obviously too high to be credited. 

The requirement that the variance of liability should be the same in all groups being com- 
pared will probably not always be fulfilled, and the possibility of error from this source must be 
borne in mind. The error can be minimized by careful choice of the groups compared, as for 
example by the use of controls. 

The estimation of the heritability from the regression of relatives on propositi is subject to 
two sources of possible error. The more important of these arises from non-genetic causes of 
resemblance between relatives. Members of the same family are obviously likely to be exposed 
to the same environmental factors associated with their diet, mode of life, exposure to infection, 
etc. Their liabilities to any particular disease will therefore tend to be correlated for purely 
environmental reasons, and the regression computed from the incidences may be in part, or 
even in whole, the consequence of these non-genetic causes of resemblance. The possibility must 
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therefore be recognized that the estimated heritability may be too high. This error seems likely 
to affect sibs more than other relatives. 

The second source of error owurs only with estimates based on full sibs. It arises from the 
fact that non-additive genetic variance contributes to the correlation between full sibs and to 
the regression of full sib relatives on propositi. Doubling this regression coefficient gives an 
estimate of the additive genetic: variance, together with one-half of the non-additive variancc 
arising from dominance, as a proportion of the total. Therefore, if there is a significant amount 
of non-additive variancc, the estimate obtained by doubling the regression coefficient of full 
sibs gives something in excess of the heritability but below the degree of genetic determination. 

On account of the two sources of error discussed,the estimate of the heritability from full sibs 
may be somewhat higher than those from other sorts of relative. But if this is found, there is no 
means of knowing whether the discrepancy is due to environmental causes of resemblance or to 
non-additive genetic variance. It is obviously desirable that an estimate of the heritability 
should not be based on data from sibs alone. The inclusion of second or third degree relatives 
would be helpful for excluding crror from environmental causes of resemblance. 

I n  the examples analysed, the data from different sorts of relatives were not enough to be 
treated separately, so the absence of any obvious discrepancy does not exclude the possibility 
that the heritabilities may have been over-estimated. It is perhaps encouraging that the two 
congenital diseases showed higher heritabilities than the other two, and particularly that peptic 
ulcer, which might be expected to be tho most seriously affected by non-genetic causes of 
resemblance, gave the lowest heritability. 

Finally, the difficulties inherent in the use of twins, though they cannot be discussed in detail, 
must be mentioned. The difficulties arise from the same two sources of error that affect full sibs, 
but they are likely to be more serious. The first is that twins of both sorts may well resemble 
each other for environmental reasons even more than non-twin sibs. If this cause of resemblancae 
could be excluded, the regression obtained from identical twin pairs would estimate the degree 
of genetic determination. If the environmental causes of resemblance can be assumed to bo 
the same in their effects on fraternal as on identical pairs, then subtraction of the regression for 
fraternals from the regression for identicals will eliminate this source of error. What is left, i.e. 
what the difference between the two regression coefficients estimates, is one-half of the additive 
genetic variance plus three-quarters of non-additive variance arising from dominance, as a pro- 
portion of the total. If this is doubled i t  will over-estimate the degree of genetic determination. 
The conclusions that can be drawn from twins are therefore not very precise. If, however, a 
reliable estimate of the heritability has been obtained from other relatives, preferably parents 
or children, then the twin data (:an give a useful indication of the relative importance of non- 
additive genetic variance. 

SUMMARY 

1.  Diseases that are not inherited in a simple manner by a single gene may have some degree 
of hereditary basis, which shows in a higher incidence among relatives of affected individuals 
than among the general population. 

2. A method is presented by uhich the correlation between relatives can be derived from the 
known incidences. The method is based on the assumption of an underlying variable-called the 
liability-which expresses the combination of innate tendencies and external circumstances 
that make the individual more or less likely to develop the disease in question. Whether an 
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individual is affected or not depends on whether his liability exceeds or falls short of a fixed 
threshold. 

3. The correlation of liability between relatives leads to an estimate of the heritability of 
liability, which estimates the relative importance of hereditary factors as causes of differences 
of liability between individuals. 

4. Four examples from published data are analysed and the following estimates of the 
heritability ( standard error) obtained : 

Renal stone disease 46+9y0 
Congenital pyloric stenosis 79 k 5 yo 
Club-foot 70+8y0 
Peptic ulcer 3 7 5 6 %  

5. The method can be used to predict incidences not known by direct observation. The pre- 
dictions could be useful in genetic counselling and in planning the collection of data. 

I am greatly indebted to Dr B. Woolf for showing me how to work out the sampling variances 
and for advice on the preparation of Appendix A; and to Dr R. C. Roberts, Dr A. Robertson 
and Dr C. 0. Carter for reading the manuscript and offering many valuable criticisms. I am 
grateful also to Dr C. A. Clarke, who first drew my attention to the problems discussed in this 
paper. 
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APPENDIX A 

Table of x and a for values of q from q = 0.01 "/o to q = 50.0%. q is the incidence; x is the 
normal deviate (single-tailed) exceeded by the proportion q ;  u (=  z/q) is the mean deviation of 
these individuals. Note changes of interval in q at  q = 2.0 yo and q = 21.0 yo. Compiled from 
Yearson (1931), Comrie (1949), and Fisher & Yates (1943). 

4 l o  z a 

0.01 3'719 3.960 
0'02 3'540 3'790 
0.03 3.432 3.687 

0.05 3'291 3'554 
0.06 3'239 3'507 

0.08 3.156 3'429 

0.04 3'353 3.613 

0.07 3'195 3.464 

0.09 3.121 3.397 
0.10 3'090 3.367 
0'11 3.062 3'341 
0.12 3.036 3.317 
0.13 3.012 3'294 
0.14 2.989 3,273 
0.15 2.968 3.253 
0.16 2.948 3'234 
0.17 2'929 3'217 
0.18 2.911 3.201 
0.19 2.894 3.185 
0'20 2.878 3'170 
0.21 2.863 3.156 
0'22 2.848 3'142 
0'23 2'834 3'129 
0.24 2.820 3'117 
0.25 2.807 3,104 

0.27 2.782 3.081 

0.29 2.759 3.060 
0.30 2.748 3.050 

0.26 2'794 3'093 

0.28 2'770 3'070 

0.31 2'737 3'040 
0'32 2'727 3'030 
0.33 2.716 3.021 
0.34 2.706 3.012 
0.35 2.697 3.003 
0.36 2.687 2'994 
0.37 2.678 2.986 
0.38 2.669 2.978 
0.39 2.661 2.969 
0.40 2.652 2.962 
0.41 2.644 2.954 
0.42 2.636 2'947 
0'43 2628 2'939 
0'44 2.620 2'932 
0.45 2.612 2.925 
0.46 2.605 2.918 

0.48 2.590 2.905 
0.49 2.583 2.898 

0.47 2.597 2.911 

0.50 2.576 2.892 

0.50 2.576 2.892 
0.51 2.569 2.886 
0.52 2.562 2.880 
0.53 2.556 2.873 
0.54 2.549 2.868 
0.55 2-543 2.862 
0.56 2.536 2.856 
0.57 2.530 2.850 
0.58 2.524 2.845 
0.59 2.518 2.839 
0.60 2.512 2.834 
0.61 2.506 2.829 
0.62 2.501 2.823 
0.63 2.495 2.818 
0.64 2.489 2.813 
0.65 2.484 2.808 
0.66 2.478 2.803 
0.67 2'473 2.798 
0.68 2.468 2.793 
0.69 2.462 2.789 
0.70 2.457 2.784 
0.71 2.452 2.779 
0'72 2'447 2'775 
0'73 2'442 2'770 
0'74 2'437 2.766 
0'75 2'432 2.761 
0.76 2.428 2.757 
0'77 2.423 2'753 
0.78 2.418 2.748 
0'79 2.414 2'744 

0.81 2'404 2.736 
0.82 2.400 2.732 
0.83 2.395 2.728 

0.85 2.387 2.720 
0.86 2.382 2.716 
0.87 2.378 2.712 
0.88 2.374 2.708 
0.89 2'370 2'704 
0.90 2.366 2.701 
0.91 2.361 2.697 
0.92 2.357 2.693 

0.94 2'349 2.686 
0.95 2.346 2.683 
0.96 2-342 2.679 
0.97 2-338 2.676 
0.98 2.334 2,672 
0.99 2.330 2.669 
1.00 2.326 2.665 

0.80 2.409 2'740 

0.84 2'391 2'724 

0.93 2.353 2.690 

1.00 2.326 2.665 
1 . 0 1  2.323 2.662 
1.02 2.319 2.658 
1.03 2.315 2.655 
1.04 2-312 2.652 
1.05 2.308 2.649 
1.06 2.304 2.645 
1.07 2.301 2.642 
1.08 2.297 2.639 
1.09 2.294 2.636 
1.10 2-290 2.633 
1 . 1 1  2.287 2.630 
1.12 2283 2.627 
1.13 2.280 2.624 
1.14 2.277 2.621 
1 . 1 5  2'273 2.618 
1.16 2.270 2.615 
1.17 2.267 2.612 
1.18  2.264 2.609 
1.19 2.260 2.606 
1.20 2.257 2.603 
1.21 2.254 2.600 

1.23 2.248 2.594 
1 2 4  2.244 2.591 
1.25 2.241 2.589 
1.26 2-238 2.586 
1.27 2.235 2.583 
1.28 2.232 2.580 
1.29 2 ~ 2 9  2.578 
1.30 2.226 2.575 
1.31 2.223 2.572 
1.32 2.220 2.570 
1.33 2-217 2-567 
1.34 2214 2-564 
1.35 2.211 2.562 
1.36 2209 2.559 
1.37 2.206 2.557 
1.38 2.203 2.554 

1'22 2'251 2.597 

1'39 2'200 2'552 
1-40 2.197 2.549 
1.41 2.194 2.547 

1'43 2.189 2.542 
1'44 2.186 2.539 
1-45 2.183 2'537 
1.46 2.181 2'534 
1'47 2.178 2.532 

1'49 2.173 2'527 

1.42 2.192 2.544 

1.48 2.175 2.529 

1.50 2.170 2.525 

4 Yo :c a 

1.50 2.170 2.525 
1.51  2.167 2.522 
1.52 2.165 2.520 
1.53 2.162 2.518 
1-54 2.160 2.515 

1.56 2.155 2.511 
1.57 2.152 2.508 
1-58 2.149 2.506 
1'59 2.147 2'504 
1.60 2.144 2.502 
1.61 2.142 2.499 

1-55 2.157 2.513 

1.62 2.139 2.497 
1.63 2'137 2-495 
1.64 2.135 2.493 
1.65 2-132 2.491 
1.66 2.130 2.489 
1.67 2.127 2.486 
1.68 2.125 2.484 
1.69 2.122 2-482 
1.70 2.120 2.480 
1.71 2.118 2.478 
1-72 2.115 2.476 
1-73 2.113 2-474 
1-74 2'111 2.472 
1.75 2'108 2'470 
1-76 2.106 2.467 
1.77 2.104 2.465 
1.78 2.101 2-463 
1'79 2.099 2.461 
1-80 2.097 2'459 
1.81 2'09s 2'457 
1.82 2.092 2.455 
1-83 2.090 2.453 
1.84 2.088 2.451 
1'85 2.086 2.449 
1-86 2.084 2.447 
1.87 2.081 2'445 
1'88 2.079 2'444 
1.89 2'077 2'442 
1.90 2.075 2.440 
1.91 2.073 2.438 
1.92 2.071 2-436 
1.93 2.068 2'434 
1'94 2.066 2'432 
1.95 2.064 2'430 
1-96 2.062 2.428 
1'97 2.060 2.426 
1.98 2.058 2.425 

2.00 2.054 2.421 
1-99 2.056 2'423 
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Q Yo 5 a 

2-0 2.054 2,421 
2'1 2.034 2-403 
2.2 2.014 2.386 
2'3 1'995 2.369 
2.4 1'977 2'353 

2.5 1.960 2.338 
2.6 1.943 2'323 
2'7 1.927 2'309 
2.8 1.911 2.295 
2.9 1.896 2-281 

3'0 1.881 2.268 
3'1 1.866 2.255 
3.2 1.852 2.243 
3.3 1.838 2.231 
3.4 1.825 2.219 

3.5 1.812 2.208 
3.6 1.799 2.197 
3.7 1.787 2.186 
3'8 1'774 2.175 
3.9 1.762 2.165 

40 1.751 2.154 
4'1 1'739 2'144 
4.2 1.728 2.135 

4-4 1.706 2.116 

4.5 1.695 2.106 
4.6 1.685 2.097 
4.7 1.675 2.088 
4 8  1,665 2.080 
4.9 1.655 2.071 

5.0 1.645 2.063 
5-1 1-635 2.054 
5.2 1.626 2.046 
5.3 1.616 2.038 
5.4 1.607 2.030 

5.6 1.589 2.015 
5.7 1.580 2.007 

5-9 1.563 1.993 

6.0 1-555 1-985 
6.1 1.546 1.978 
6-2 1.538 1.971 
6.3 1.530 1.964 
6.4 1.522 1-957 

6.6 1.506 1.944 

6-8 1.491 1.931 
6.9 1.483 1.924 

7.0 1.476 1.918 

4'3 1.717 2'125 

5's 1.598 2'023 

5'8 1.572 2'000 

6-5 1.514 1.951 

6.7 1'499 1.937 

4 %  2 

7.0 1-476 
7.1 1.468 
7.2 1.461 
7'3 1.454 
7'4 1.447 

7'5 1'440 

7.7 1,426 

7-9 1.412 

8.1 1.398 
8.2 1.392 
8.3 1.385 
8'4 1.379 

7'6 1.433 

7.8 1.419 

8.0 1'405 

8.5 1'372 
8.6 1.366 

8.8 1.353 
8'9 1'347 

8.7 1.359 

9.0 1.341 
9'1 1.335 
9.2 1'329 
9'3 1.323 
9'4 1.317 

9.5 1.311 

9'7 1.299 
9'5 1.293 
9.9 1.287 

10.0 1.282 
10.1 1.276 
10.2 1.270 
10.3 1.265 

9-6 1'305 

10.4 1'259 

10.5 1'254 
10.6 1248 
10.7 1'243 
10.8 1'237 
10.9 1.232 

11.0 1227 

11.2 1.216 
11.3 1.211 
11.4 1.206 

11.5 1-200 

11.7 1.190 
11.8 1.185 
11.9 1.180 

11'1 1'221 

11.6 1.195 

12'0 1.175 

a 

1.918 
1.912 
I a906 
1.899 
1.893 

1.887 
1.881 
1.876 
1.870 
1.864 

1.858 
1'853 
1.847 
I '842 
1.836 

1.831 
I ,825 
1.820 
1.815 
1.810 

I -804 
1'799 
1.794 
I *789 
1.784 

"779 
"774 
I *769 
1'765 
1.760 

"755 
1'750 
1.746 
1.741 
1'736 

1'732 
1'727 
1'723 
1.718 
1.714 

1'709 
1'705 
I '70 I 
I ~696 
1.692 

1.688 
1.684 
1.679 
1.675 
1.671 

1.667 

n %  x a 

12.1 1.170 1.663 
12.2 I 165 1.659 
12.3 1.160 1.655 
12.4 1.155 1.651 

12.5 1.150 1.647 
12.6 1.146 1.643 
12.7 1.141 1.639 
12.8 1.136 1.635 
12-9 1-131 1-631 

13.0 1.126 1.627 
13.1 1.122 1.623 
13.2 1.117 1.620 
13'3 1.112 1.616 
13.4 1.108 1.612 

13.5 1.103 1.608 
13.6 1.098 1.605 

13.8 1.089 1.597 

12'0 1.175 1.667 

13'7 1.094 1.601 

13'9 1.085 1'593 

14'0 1.080 1.590 
14.1 1.076 1.586 
142 1.071 1.583 

14'4 1.063 1.575 

14.6 1.054 1.568 
14'7 1.049 1-565 
14'8 1-045 1.561 
14.9 1.041 1.558 

14'3 1.067 1'579 

14'5 1.058 1'572 

15'0 1.036 1'554 
15.1 1.032 1.551 
15.2 1.028 1.548 
15'3 1.024 1.544 
15'4 1.019 1'541 

15'5 1.015 1'537 
15.6 1'011 1.534 
15'7 1.007 1'531 
15.8 1.003 1.527 
15.9 0.999 "524 

16.0 0.994 1'521 
16.1 0.990 1'517 
16.2 0.986 1'514 
16-3 0.982 1.511 
16.4 0.978 1.508 

16-6 0.970 1.501 
16.7 0.966 1.498 
16.8 0.962 1-495 
16.9 0.958 1.492 

17.0 0.954 1.489 

16.5 0.974 1.504 

17.0 0.954 1.489 
17.1 0.950 1-485 
17.2 o 946 1.482 
'7'3 0'942 1'479 
17'4 0.938 1.476 

17.5 0.935 "473 

17'7 0.927 1.467 
17.8 0.923 1.464 

18.0 0.915 1.458 
18.1 0.912 1.455 
18.2 0.908 1'452 
18.3 0.904 1.449 
18.4 0.900 1.446 

18.5 0.896 1.443 
18.6 0.893 1.440 
18.7 0.889 1.437 
18.8 0.885 1.434 
18.9 0.882 1.431 

190 0878 1-428 
19.1 0.874 1.425 
19.2 0.871 1-422 
19.3 0.867 1.420 

17.6 0.931 1'470 

17.9 0.919 1-461 

19.4 0.863 1.417 

19.5 0.860 1.414 
19.6 0.856 1.411 
19.7 0.852 1.408 
19.8 0.849 1-405 
19'9 0.845 1-403 

20.0 0.842 1.400 

20-2 0.834 1.394 
20.3 0.831 1-391 
20.4 0.827 1-389 

20.5 0.824 1.386 
20.6 0.820 1.383 
20.7 0.817 1.381 
20.8 0.813 1-378 
20.9 0.810 1-375 

20'1 0.838 1.397 

21.0 0.806 1'372 
22.0 0.772 1.346 
23.0 0-739 1-320 
24.0 0.706 1.295 

25.0 0.674 1.271 
26.0 0.643 1.248 
27.0 0.613 1-225 
28.0 0.583 1.202 
29.0 0.553 1.180 

30.0 0'524 1.159 
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APPENDIX A (cont.) 
4 %  x a Q %  x a (2 % x a q %  x a 

30.0 0.524 1.159 35.0 0.385 1.058 40.0 0.253 0.966 45.0 0.126 0.880 
31.0 0.496 1.138 36.0 0.358 1-039 41.0 0.228 0.948 46.0 0.100 0.863 
32.0 0.468 1.118 37 0 0 332 1'020 42.0 0'202 0.931 47'0 0.075 0.846 
33'0 0'4.40 1'097 38.0 0'305 1'002 43'0 0.176 0.913 48.0 0.050 0.830 
34.0 0.412 1.078 39.0 0.279 0.984 44.0 0.151 0.896 49.0 0.025 0.814 
35.0 0.385 1.058 40.0 0.253 0.966 45.0 0.126 0.880 50.0 0-ooo 0798 

For incidences ( q )  over 50 o/o, take the tabulated value of x corresponding to I - y, but give it a negative 
sign: take thr tabulatcd vctlur of a corresponding to 1-9 and multiply this by (1-q) /q ,  retaining the 
positivc sign. 

APPENDIX B 

Summary of formulae for computing the regression, b, of relatives on propositi i n  respect 
of liability, and the sampling variance, 6,  of the estimate 

The heritability, h2, is given by h2 = 2b, when the relatives are full sibs, parents, or children of the 
propositi, and the standard error of the estimate of the heritability is 2dvb. The quantities x and a are 
obtained from the table (Appendix A) and correspond to the observed incidence denoted by the sub- 
script. Subscripts outside the brackets refer to all the quantities within the brackets. Other symbols 
are : q = observed incidence ; p = 1 - q ; A = number of affected individuals in the sample from which 

the incidence is calculated: a' = a '-TI where q is the incidence from which a is derived; 

W = p/a2A 
where p ,  a ,  and L4 correspond to the incidence denoted by the subscript to W .  Each of the four methods 
is based on different observed incidences, as indicated. 

( P I  

Observed incidences and subscripts denoting them 
General population, comparable with affected individuals 
General population, comparable with relatives gr 
Relatives of normal controls c 
Relatives of affected individuals r 

Method 1. Two incidences y and r 

g 

Method 2 .  Two incidences: c and r.  

b = pc(s,-TT),  V,, = [p /a  - b (a' - x)]:  W ,  + ('/a): W,. 

Method 3. Three incidences: g ,  gr and r 

Method 4. Three incidences: g ,  c and r 

b = pp(z,)l Vb = [ ~ ( u ' - z ) ] ~ W , + ( ~ / U ) ~ ( W , +  W,). 
arr 
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APPENDIX C 

Sampling vnriance of the estimate of the regression of relatives on propositi 
The regression coefficient is estimated from two or three observed incidences, the sampling variances 

of which are independent of each other. The sampling variance of the regression can therefore be 
obtained from the partial differentials, uncomplicated by covariance terms. It is convenient to take the 
partial differentials with respect to the normal deviate (2)  rather than the incidences. Then if w, x, and 
y are the normal deviates corresponding to three observed incidences, and b is the estimated regression 
coefficient 

The population sampled is defined as being normally distributed with respect to liability. The following 

q = frequency of affected individuals (= incidence), 
P = l - q ,  
x = normal deviate (single-tailed) corresponding to q, (w and y will also be used for normal deviates, 

in order to avoid subscripts), 
z = height of the ordinate a t  deviation x, 
a = z/q ( =  mean deviation of affected individuals), 
21' = number of individuals in the sample from which q is estimated, 
A = observed number of affected individuals in the sample. 
The following differential coefficients of the above parameters will be needed : 

symbols will be used for the parameters of a normal distribution : 

&/ax = -2, 

a p p x  = 2) 

azlax = -Zx, 

Since 

The sampling variance of the normal deviate, x (or w or y) is also required. This can be easily derived 
from the sampling variance of the incidence, V,, thus : 

2 v, = ($) v, 

P 
a2A' 

= -  

Here, of course, the values of p ,  a and A are those corresponding to the particular deviate, w, x or y, 
whose variance is required. 

The formula to be used for estimating the regression differs according to the number of incidences 
observed, and the form of the variance depends also on which particular incidence is used to evaluate a. 
In order to avoid subscripts the following symbols will be used for the normal deviates corresponding 
to  the different observed incidences : 

Normal deviate Derived from incidence in Symbol used in text 

W 

X 

Y 

Control relatives 
General population 
Relatives of affected 
individuals 
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Method 1 (equation ( 2 )  of text). Two incidences: a evaluated from general population. 
x -2, 

(a  and x derived from t,he same observed incidence). 

b = L-- = "Ly 
a, a 

db db ab=  - ax+- ay ax dy 
a - (2 -y )a (a -x )  - 1  - - - ~ _ _ _ _  ax+- ay 

a2 a 

Therefore 

(Expressions for V, and V, have been given above.) 

individuals. 
Method 2 (equation (4) of text). Two incidences: a evaluated from relatives of normal control 

( p ,  a ,  and w derived from the same observed incidence). Put B = (w-  y)/a, and note that B = b/p,  and 
that the differentials of B are those of 6 in Method 1, but with w in place of x.  Then 

Therefore 

The derivations for the two remaining methods are similar and need not be given in full. 
Method 3 (equation ( 5 )  of text). Three incidences: two different samples of the general population. 

b = = w--y 
a, a 

(a  derived from the incidence corresponding to x as normal deviate). 

Method 4 (equation ( 6 )  of text). Three incidences: as method 3, but with one sample of the general 
population replaced by control relatives. 

P ( x  - x )  P(W-Y) b = -2 - 
a, a 

( p and a derived from incidence corresponding to x as normal deviate). 


