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An important step in analyzing genetic

association study data is deciding whether to

adjust for covariates—those variables ancil-

lary to the variants of interest. In particular,

when testing for novel associations, should

the statistical model also include known

genetic or nongenetic covariates that are

predictors of the trait (e.g., body mass index

when studying type 2 diabetes)? Yes, if the

covariates are also correlated with the

primary variants but do not mediate their

effects, because they may confound the

genetic associations. Including them helps

control bias and prevent false discoveries

(Figure 1a). But the answer is less clear-cut if

the covariates are not confounders.

When the trait of interest is quantitative,

including a nonconfounding covariate as-

sociated with the trait is often beneficial

because it can explain some of the variabil-

ity in the outcome, thus reducing noise and

increasing power to detect novel genetic

associations. On the other hand, when the

trait is binary, including the covariate can

actually reduce power for case-control

association studies; this is shown in a recent

paper by Piranen et al. [1] and previous

work [2–5]. Fortunately, all is not lost. In

this issue of PLOS Genetics, Zaitlen et al. [6]

present a new approach that addresses this

problem by leveraging information on

covariates to increase power in association

studies of binary traits.

Ignorance Is Bliss…

How can ignoring covariate informa-

tion increase power? Assume that we are

studying the potential association between

a genetic variant and a binary trait.

Moreover, assume we have measured a

genetic or environmental covariate associ-

ated with the trait but independent of the

variant of interest in the source popula-

tion, so it is not a confounder (Figure 1b).

If we ascertain a random sample of study

subjects, then the variant of interest and

covariate will remain independent. Here,

the most powerful model for assessing

association includes the covariate (e.g., in a

logistic regression model) [1]. While add-

ing the covariate may increase the stan-

dard error of the variant association,

omitting it can bias the association towards

the null hypothesis of no effect and

ultimately reduce power [1–5,7].

However, most association studies do

not select a random sample of study

subjects, but rather ascertain cases and

controls from the source population. This

ascertainment process can create a corre-

lation between the genetic variant and

covariate in the sample, because cases will

be enriched for both risk genotypes and

high-risk covariate levels. Since these are

independent in the source population,

they will remain conditionally indepen-

dent among cases or controls; but the

variant and covariate will be correlated in

the overall case-control sample (dashed

line in Figure 1c). In the presence of this

induced correlation, omitting the covariate

from a logistic regression model may be

the most powerful approach. Indeed,

including the covariate could substantially

increase the standard error of the genetic

variant association (i.e., due to the induced

correlation), resulting in a larger power

loss than might arise from omitting the

covariate and biasing the association

towards the null hypothesis.

Pirinen et al. [1] investigate this phenom-

enon in detail and show that the increase in

power from omitting covariates is a function

of disease prevalence and effect sizes. In

particular, omitting a covariate can often

improve power to detect genetic effects for

diseases with prevalence below 2% or as

high as 10% when the covariate is a

particularly strong risk factor.

Knowledge Is Power!

Improving analyses by ignoring covar-

iates seems counterintuitive, as they should

provide some information. To extract

value from covariates, Zaitlen et al. [6]

developed a new method that uses existing

evidence of covariate associations with the

trait of interest, and trait prevalence, to

increase power. This approach first builds

a liability model using estimates of a

covariate’s independent effect in the form

of trait prevalences at various levels of the

covariate (e.g., type 2 diabetes prevalences

by age). Then it evaluates the association

between the genetic variant of interest and

the liability model residuals (Figure 1d). In

effect, the external information about

covariate effects is used to distinguish

high- and low-risk cases and controls.

Tests of genetic variant associations with

these quantitative residuals have more

power than tests of genetic associations

with the original binary trait.

The value of Zaitlen et al.’s approach is

demonstrated in several data sets with

case-control and case-control-covariate

ascertainment, where the selection proba-

bility for an individual to join the study

depends on covariate levels, such as in

matched studies or those with overrepre-

sentation of low-risk cases. While covari-

ate-based ascertainment of cases and

controls can induce selection bias that

must be addressed by including the

covariate in a conventional regression

model [8], the new method provides a

potentially powerful alternative.

The authors show by application and

simulation that the liability model ap-

proach increases association test statistics

by 18% and 16% in comparison with

logistic regression with or without covar-

iates, respectively. Of course, this improve-

ment hinges on having accurate external

covariate information; one could envision

scenarios where the external covariate
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data is so poor that using this approach

would actually decrease power. One could

also use covariate information discerned

from a given dataset, but external infor-

mation may be even better. A framework

to propagate uncertainties through the

multistage analysis of Zaitlen et al. would

be useful to assess sensitivity to the quality

of published or assumed trait prevalences

and covariate effects, and to the estimation

errors in the formation of the liability

model and in the calculation of residuals.

A starting point might be to repeat the

analyses for a range of covariate-specific

trait prevalences that bracket the actual

published or assumed values.

Zaitlen and colleagues have also devel-

oped a version of the liability model

approach for when the covariates are

genetic markers with known trait associa-

tions [9]. Future work might compare

these novel liability methods to alternative

approaches for inclusion of external infor-

mation, such as Bayesian models with

informative priors for the covariate effects.

Moreover, schemes for weighted analyses

[10] suggest other ways to potentially

increase association study power.

In summary, if one undertakes a case-

control association study and has informa-

tion on covariates that are independent

risk factors for a trait—and are not

confounders—simply including them in a

logistic regression model is not always the

optimal approach for discovering genetic

variants. Instead, more power may be

gained by excluding them, by using the

liability model approach of Zaitlen et al.

[6,9], or by applying other novel tech-

niques to leverage information from such

covariates.
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Figure 1. Impact of—and approaches to—including covariates in the analysis of
gene–trait associations. (a) The covariate C is a confounder associated with both the trait D
and the gene G but is not an intermediate on the causal path of interest between G and D. The
G–D association should be assessed while controlling C. Omitting C from the analysis of the G–D
association can lead to misattribution of a C–D effect to G and false discovery or biased estimates
of a G–D effect. (b) The covariate C is independently associated with the trait D but not with gene
G (so C is not a confounder). If the trait is quantitative or the study subjects are randomly
ascertained, including C in a linear or logistic regression model will increase power to detect the
G–D association. (c) If the trait is binary and the subjects are ascertained based on case-control
status, the probability of selection (S) depends on G and C and induces a correlation between
them. Then including C in a logistic regression model can inflate the G–D association’s standard
error, reducing power. Omitting C provides the most potential gain in power when C has a strong
effect on D, and when D is less common [1]. (d) In Zaitlen et al.’s new approach [6] for evaluating
G–D associations with case-control data, a risk model for D is developed from external
information about the C–D association and observed C and D levels. Residuals from this model, R,
distinguish high- and low-risk cases and controls. Then testing for G–R associations assesses
genetic effects unexplained by C in a potentially more powerful manner than conventional
logistic regression.
doi:10.1371/journal.pgen.1003096.g001
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