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Comparing Apples and Oranges: Equating the Power of Case-Control
and Quantitative Trait Association Studies

Jian Yang,� Naomi R. Wray, and Peter M. Visscher

Queensland Institute of Medical Research, Brisbane, Australia

Genome-wide association studies have achieved unprecedented success in the identification of novel genes and pathways
implicated in complex traits. Typically, studies for disease use a case-control (CC) design and studies for quantitative traits
(QT) are population based. The question that we address is what is the equivalence between CC and QT association studies
in terms of detection power and sample size? We compare the binary and continuous traits by assuming a threshold model
for disease and assuming that the effect size on disease liability has similar feature as on QT. We derive the approximate
ratio of the non-centrality parameter (NCP) between CC and QT association studies, which is determined by sample size,
disease prevalence (K) and the proportion of cases (v) in the CC study. For disease with prevalence o0.1, CC association
study with equal numbers of cases and controls (v 5 0.5) needs smaller sample size than QT association study to achieve
equivalent power, e.g. a CC association study of schizophrenia (K 5 0.01) needs only �55% sample size required for
association study of height. So a planned meta-analysis for height on �120,000 individuals has power equivalent to a CC
study on 33,100 schizophrenia cases and 33,100 controls, a size not yet achievable for this disease. With equal sample size,
when v 5 K, the power of CC association study is much less than that of QT association study because of the information lost
by transforming a quantitative continuous trait to a binary trait. Genet. Epidemiol. 2009. r 2009 Wiley-Liss, Inc.
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INTRODUCTION

The first wave of genome-wide association studies
(GWAS) has identified an unprecedented number of
genetic variants that influence disease risk or quantitative
trait (QT) variation. Most associated variants have small
effect sizes and account for only a small fraction of
phenotypic variation [Goldstein, 2009; McCarthy et al.,
2008; Visscher, 2008; WTCCC, 2007]. More studies are on
the way either for case-control (CC) association study of
disease or for QT association study of complex pheno-
types. One question that arises is: What is the equivalence
between CC and QT association studies in terms of
detection power and sample size? For example, how many
cases and controls are needed for a CC association study of
schizophrenia to achieve equivalent power of an associa-
tion study for height? Results from GWAS studies suggest
a large number of variants with small effects underlying
most common diseases. Therefore, the liability-threshold
model is likely to be a reasonable description of the
relationship between the unobserved disease liability
(continuous) and the observed disease status (all-or-none)
[Dempster and Lerner, 1950; Falconer and Mackay, 1996;
Gottesman and Shields, 1967]. On the one hand, CC
association studies necessarily use observations on the less
informative observed disease scale, but are enriched by
gathering a greater proportion of cases than in the general

population. What is the trade-off between these two? In
this study, we derive a simple analytical equation to
calibrate the relationship of CC and QT association studies
on power and sample size issues. We show how the
disease prevalence and the proportion of cases in the
sample balance the loss and gain of power for CC
association study as compared with QT association study.

METHODS

Consider a complex disease with population prevalence
of K, and assume a causal variant having two alleles
(A and a) with frequencies of p and ð1� pÞ. Let ð1� pÞ2,
2pð1� pÞ and p2 be the frequencies of genotypes aa, Aa and
AA (in Hardy-Weinberg equilibrium), with risks of f0, f1
and f2. If we assume a multiplicative model [Risch, 1990],
then f1 ¼ f0 � l and f2 ¼ f0 � l2, where l is the relative risk
with respect to the causal variant. For a CC association
study, let p1 and p2 be the frequency of allele A in cases and
controls, respectively, with

p1 ¼
pl

plþ 1� p

and

p2 ¼
p

1� K
1�

Kl
½1þ pðl� 1Þ�

� �
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(Appendix). The non-centrality parameter (NCP) of a w2

test for association in the CC design is

NCP01 ¼
ð p1 � p2Þ

2

varð p̂1 � p̂2Þ

with varð p̂1 � p̂2Þ ¼
1
2 pð1� pÞN01ð

1
vþ

1
1�vÞ, where N01 is the

sample size, and v is the proportion of cases. So,

NCP01 ¼
2pð1� pÞðl� 1Þ2vð1� vÞN01

ð1� KÞ2½1þ pðl� 1Þ�2

Under a liability-threshold model, denote q2 as the
proportion of liability variance explained by the causal
variant. If l is small, ½1þ pðl� 1Þ�2 � 1 and q2 � 2pð1� pÞ
ðl� 1Þ2=i2 [Dempster and Lerner, 1950; Lynch and Walsh,
1998], where i ¼ z=K with z the height of standard normal
curve at the truncation point pertaining to a disease
prevalence of K, e.g. if K 5 0.05, z 5 0.103, i 5 2.063. Hence,

NCP01 �
i2vð1� vÞN01q2

ð1� KÞ2
ð1Þ

For QT association study, assuming that we have NQT

individuals randomly sampled from the general popula-
tion, we can detect the a causal variant with an effect on
the variance of q2 by

NCPQT ¼
NQTq2

1� q2
ð2Þ

If the effect size is small, 1� q2 � 1, then NCPQT � NQTq2.
Therefore, the ratio of NCP between CC and QT associa-
tion is

NCP01

NCPQT
¼

i2vð1� vÞN01

ð1� KÞ2NQT

ð3Þ

Hence we only need to know the disease prevalence and
proportion of cases and controls to be able to compare the
power to detect a locus affecting a disease in a CC study
and the power to detect a locus affecting a QT which has
the same properties as the liability underlying the disease.
We used the Genetic Power Calculator [Purcell et al., 2003]
to check the results of Equation (3).

RESULTS

Under the assumption that the effect size is small, the
ratio of NCP between CC and QT is independent from q2

and p, and we take the arbitrary parameters q2 5 0.1% and
p 5 0.5. We set a range of K from 0.0001 to 0.1 and a range
of v from 0.1 to 0.5. We calculated the approximate values
of NCP ratios by Equation (3) and plotted them against the
exact values calculated by Genetic Power Calculator
(Fig. 1). The result shows that the approximate values
are highly consistent with the exact values with regression
coefficient of 1.04 and R2 of 0.998. Then, we used Equation
(3) to compare CC and QT association studies in two
scenarios: (I) to compare the required sample size to
achieve equivalent detection power (Fig. 2); (II) with equal
sample size, to compare the detection power via the

y = 1.043x
R² =0.998 
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Fig. 1. Plot of approximate ratio of non-centrality parameter

(NCP) between case-control and quantitative trait association
studies by Equation (3) against that calculated by Genetic Power

Calculator [Purcell et al., 2003] for disease prevalence (K)

ranging from 0.0001 to 0.1 and proportion of number of cases
ranging from 0.1 to 0.5.
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Fig. 2. Ratio of sample size between case-control and quantitative trait association studies with equivalent detection power. v is the

proportion of number of cases.
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ratio of NCP (Fig. 3). When NCP01 5 NCPQT and
v 5 0.5, Equation (3) reduces to N01=NQT ¼ 4ð1� KÞ2=i2,
which ranges from 0.26 to 1.05 for K from 0.00001 to 0.1.
Therefore, for diseases with prevalence o0.1, CC associa-
tion study with equal numbers of cases and controls needs
smaller sample size than QT association study to achieve
equivalent power. For example, a CC association study of
schizophrenia with prevalence of 0.01 [Sullivan et al.,
2003], needs only 55% of sample size required for a QT
association study of height, assuming equal effect sizes on
the liability scale for schizophrenia and the observed
scale of height.

If the subjects in a CC study are randomly sampled from
the general population, we can derive how much power of
association is lost by transforming the continuous disease
liability (if we could measure it) to a dichotomous scale. In
this case, N01 5 NQT and v 5 K, thus NCP01=NCPQT ¼

i2K=ð1� KÞ [Dempster and Lerner, 1950; Lynch and Walsh,
1998], which ranges from 0.0016 to 0.34 for K from 0.0001
to 0.1 (starting point of each plot in Fig. 3). For
schizophrenia and height, the ratio of NCPs is �0.07 when
v 5 0.01, which means a loss of power of 93% for
schizophrenia due to the transformation of underlying
scale to observed scale, however, NCP increases to �1.81
when v 5 0.5, which means a gain in power of 174% by
collecting proportionally 50 times more cases in the sample
than that in the general population.

The power to detect an associated variant of a CC
association study does not dramatically decrease with
decreasing of v from 0.5 to 0.2 (Fig. 3). For diseases with
prevalence rates ranging from 0.0001 to 0.01, when sample
sizes are equal, CC association studies with 20% cases
have already equal or more power than QT association
studies.

DISCUSSION AND CONCLUSIONS

We derived an approximate analytical equation to
calibrate the relationship of CC and QT association studies
in terms of power to detect an associated variant and
sample size. When compared with QT association on a
continuous phenotype, CC association on binary trait loses

a certain amount of power but usually gains more when
having at least 20% of cases in the sample. For diseases
with prevalence o0.1, the commonly used CC association
study with equal numbers of cases and controls needs a
smaller sample size than a QT association study, i.e., CC
association is more powerful. Qualitatively these results
may not be surprising, but we provide a simple quanti-
fication of this relationship in Equation (3). Let us consider
samples sizes for a CC association study of schizophrenia,
compared to the sample size for a QT association study of
height; we choose to compare these complex phenotypes
because each is estimated to have heritability of �80% for
the normally distributed phenotype. The planned GIANT
meta-analysis of height [Hirschhorn, Personal Commu-
nication] of �120,000 individuals is equivalent to �33,100
cases and �33,100 controls for schizophrenia. As com-
pared with the planned meta-analysis for schizophrenia of
�9,600 cases and �13,500 controls [Cichon et al., 2009], the
planned meta-analysis of height has approximately 5 times
more sample size, and will have �3 times more detection
power (NCPQT/NCP01E3).
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Fig. 3. Ratio of non-centrality parameter (NCP) between case-control and quantitative trait association studies with equal sample size.

For the first point of each plot, the proportion of number of cases is equal to the disease prevalence (K).
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APPENDIX [Risch, 1990; Wray et al.,
2007]

The frequencies of genotypes AA and Aa in cases are

PðAAjcaseÞ ¼
PðcasejAAÞPðAAÞ

PðcaseÞ
¼

p2f0l
2

K

PðAajcaseÞ ¼
PðcasejAaÞPðAaÞ

PðcaseÞ
¼

2pð1� pÞf0l
K

So, p1 ¼ 0:5PðAajcaseÞ þ PðAAjcaseÞ ¼ f0ð plþ 1� pÞpl=K.
Since K ¼ p2f0l

2
þ 2pð1� pÞf0lþ ð1� pÞ2f0, we can get

f0 ¼ K=½1þ ðl� 1Þp�2. Therefore,

p1 ¼
K

ð plþ 1� pÞ2
ð plþ 1� pÞpl

K
¼

pl
plþ 1� p

Similarly,

PðAAjcontrolÞ ¼
PðcontroljAAÞPðAAÞ

PðcontrolÞ
¼

p2ð1� f0l
2
Þ

1� K

PðAajcontrolÞ ¼
PðcontroljAaÞPðAaÞ

PðcaseÞ
¼

2pð1� pÞð1� f0lÞ
1� K

we get

p2 ¼ 0:5PðAajcontrolÞ þ PðAAjcontrolÞ

¼
p

1� K
ð1� f0l½1þ pðl� 1Þ�Þ

Substitute f0 by K=ðplþ 1� pÞ2,

p2 ¼
p

1� K
1�

Kl
½1þ pðl� 1Þ�

� �

4 Yang et al.

Genet. Epidemiol.


