
A rapidly growing number of genetic loci have been 
detected for disease and other traits. These include high-
risk Mendelian loci from next-generation sequencing 
studies and many highly replicated low-penetrance vari-
ants from genome-wide association studies (GWASs)1,2. 
Two important questions that follow are: to what degree 
do such loci and variants affect the overall burden of 
disease, and how many variants remain to be discov-
ered3? They can be assessed using various measures, 
and many of these have been developed with different 
goals and within traditionally disparate fields — such 
as quantitative genetics and epidemiology, the bounda-
ries of which are now blurring in the post-genomics era 
(FIG. 1). The quantitative genetics approach calculates 
measures such as heritability of disease liability or sibling 
recurrence risk that can be explained by genetic variants. 
A more epidemiological or translational approach might 
assess their impact on the overall genetic variance (using 
a logarithmic relative risk (logRR) scale), the area under 
the receiver–operating curve (AUC) for risk prediction  
or the population attributable fraction (PAF)4–6.

Each of these measures can be calculated as a pro-
portion to quantify how much of the underlying genetic 
basis of disease is explained by known risk loci. The her-
itability explained is most commonly calculated as the 
proportion of variance in disease explained by risk loci 
relative to the overall heritability5,7. The proportion of 
the sibling recurrence risk or the logRR genetic variance 
explained by the loci provides a similar measure of their 
impact on disease. The AUC indicates how well known 

risk loci classify diseased individuals; dividing this 
measure by the maximum attainable AUC for a genetic 
risk predictor calculated from the heritability quantifies  
the proportion of maximum AUC explained4. Finally, the  
PAF approximates the proportion by which disease inci-
dence or death would be reduced in a population in the 
absence of the identified genetic risk factors.

Although all of these measures are valid and have 
the same bounds (which range from 0% to 100%), for 
a given data set they may give different messages about 
the impact of risk variants on disease. This has resulted 
in contrasting and confusing use of these measures in the 
literature. For example, the same association results for 
the Crohn’s disease variants in the NOD2 (nucleotide-
binding oligomerization domain containing 2) gene are 
reported to explain 1–2% of heritability8, 5.1% of genetic 
risk9 and 18.2% of the PAF9. In other words, the appar-
ent proportion of disease ‘explained’ by risk variants can 
vary widely across measures, and the particular measure 
used can therefore result in very different interpretations 
among geneticists and epidemiologists.

In this Analysis, we compare six measures that are 
used to assess how much of the genetic basis of disease is 
explained by risk variants to understand their similarities 
and differences. We estimate the heritability of liability, 
approximate heritability, sibling recurrence risk, logRR 
genetic variance, AUC and PAF that are explained across 
a range of risk allele frequencies (RAFs) and relative risks 
(RRs) through empirical calculations and application 
to data from studies of breast cancer, Crohn’s disease, 
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The contribution of genetic variants to 
disease depends on the ruler
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Abstract | Our understanding of the genetic basis of disease has evolved from descriptions of 
overall heritability or familiality to the identification of large numbers of risk loci. One can 
quantify the impact of such loci on disease using a plethora of measures, which can guide 
future research decisions. However, different measures can attribute varying degrees of 
importance to a variant. In this Analysis, we consider and contrast the most commonly used 
measures — specifically, the heritability of disease liability, approximate heritability, sibling 
recurrence risk, overall genetic variance using a logarithmic relative risk scale, the area under 
the receiver–operating curve for risk prediction and the population attributable fraction — 
and give guidelines for their use that should be explicitly considered when assessing the 
contribution of genetic variants to disease.
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Mendelian loci
Genetic loci that have alleles 
with discrete effects on the 
phenotype and that follow 
Mendel’s laws of segregation 
and independent assortment.

Heritability
The proportion of phenotypic 
variation in a population that  
is attributable to genetic 
variation among individuals.

Disease liability
An underlying or latent 
continuous variable such that 
those with a liability above a 
threshold are considered 
diseased. The quantitative trait 
of liability reflects both genetic 
and environmental factors.

Sibling recurrence risk
The ratio of the probability  
that a sibling of an individual 
affected by a disease will also 
be affected compared to the 
risk of disease in the general 
population.

rheumatoid arthritis and schizophrenia. We describe the 
relationships among these measures and give guidance 
for their appropriate calculation and interpretation when 
assessing the overall impact of genetic contributions to 
disease. Finally, we provide an online tool to calculate 
these measures from association study summary statistics  
(that is, RAFs and RRs).

Measures of genetic impact for individual risk loci
Scale matters. A key difference between the measures 
considered here is the scale on which they are measured 
(BOX 1; TABLE 1). Assessing the contribution of individual 
loci to disease risk on the observed (binary) scale is not 
very informative, as the relationship between increasing 
burden of risk loci and probability of disease is highly 
nonlinear10,11. Therefore, transformations are made to 
more informative scales, such as the liability of risk scale 
or the logarithmic risk scale. Quantitative geneticists 
commonly use the liability scale to evaluate the genetic 
basis underlying disease variability in a population12. By 
contrast, epidemiologists more often use logRR mod-
els for estimation of genetic effects on disease. These 
different perspectives, which form the basis of model  

choices, and calculated measures can ultimately affect 
inferences and conclusions; that is, the measure of an 
apparent contribution made by a given locus can depend 
on the ruler (see below).

Proportion of heritability explained. Using the meth-
ods and notation in BOX 1 and TABLE 1, we can esti-
mate the proportion of phenotypic variance on the 
liability scale explained by risk variant i as h2

L[i] = VAL[i]/VPL  
= VAL[i]/(VGL[i] + 1) (REFS 13,14), where h2

L[i] is the heritabil-
ity explained, and VAL[i], VPL[i] and VGL[i] are the additive, 
phenotypic and genetic variance, respectively. On this 
scale we only consider the additive contribution from the 
locus (VAL[i]), which allows comparison with existing esti-
mates of heritability of liability derived from family data 
(h2

L)
13,15,16. Furthermore, under the assumption of a small 

RR for a risk variant B (that is, RRBb ≈ 1) and a multipli-
cative model on the observed scale (that is, RRBb

2 = RRBB), 
an approximate heritability is given by h2

L-approx[i] = 2p(1 – p)
(RRBb – 1)2/v2, where p is the frequency of risk allele B17–19. 
In this equation, v is the mean liability of diseased indi-
viduals and is approximated as z/K, where z is the height 
of the standard normal distribution at the threshold T 
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Figure 1 | Different measures of genetic effects on disease. Various 
measures can be used to assess the extent to which known genetic factors 
contribute to the overall genetic variation in disease. These include 
heritability (part a), sibling recurrence risk (part b), logarithmic relative risk 
(logRR) genetic variance (part c), area under the receiver–operating curve 
(AUC; part d) and population attributable fraction (PAF; part e). These 

measures have their bases in traditionally distinct disciplines such as 
quantitative genetics and epidemiology, which have recently begun to 
coalesce. Although epidemiological measures were originally developed  
to address different questions, they are now being repurposed to assess 
how much genetic variation can be explained. We compare these measures 
by simulation and applications.
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Genetic variance
The variance of trait values that 
can be ascribed to genetic 
differences among individuals. 
The total genetic variance of a 
trait can be dissected into 
additive, dominance and other 
components.

Area under the receiver–
operating curve
(AUC). The receiver–operating 
curve for a predictor (for 
example, a genetic test) plots 
the proportion of cases 
correctly identified by the test 
against the proportion of 
controls that are incorrectly 
classified as cases. The AUC 
indicates the probability  
that a factor (for example,  
a genetic risk score) will  
predict a higher risk of disease 
in a randomly selected case 
than in a control.

Population attributable 
fraction
(PAF; also known as population 
attributable risk). For a given 
disease, risk factor and 
population, the fraction by 
which the incidence rate of the 
disease in the population 
would be reduced if the risk 
factor was eliminated.

Overall disease risk
The lifetime probability that an 
individual will be affected by a 
disease.

that truncates the proportion K. T is given by Φ−1(1 – K), 
and K is the overall disease risk (BOX  1). Therefore,  
h2

L[i]/h
2
L (or h2

L-approx[i]/h
2
L) estimates the proportion of total  

heritability explained by the ith risk variant.

Sibling recurrence risk explained. The impact of a risk 
variant can also be quantified relative to the overall sib-
ling recurrence risk (λS)

9. Siblings share VAO/2 + VDO/4 of 
risk20, where VAO and VDO are the additive and dominance 
genetic variance on the observed risk scale, respectively. 
Thus, the increased risk attributable to the ith risk variant 
can be represented by the following equation.

S[i] = 1 + λ (4)
K2

VAO[i]

2
+

VDO[i]

4

From TABLE 1 we can estimate VAO[i] = k2
bb2p(1 – p)

(p(RRBB – RRBb) + (1 – p)(RRBb – 1))2, and VDO[i] = k2
bbp

2 

(1 – p)2(RRBB + 1 – 2RRBb)
2. The λS[i]/λS ratio indicates the 

impact of the ith variant on the sibling recurrence risk, 
and λS is generally obtained from published estimates. 
However, λS[i]/λS can give nonsensical values under the 
null hypothesis. When λS[i] = 1 the ratio incorrectly sug-
gests that the ith variant contributes to the genetic risk, 

Box 1 | A matter of scale

The contribution of genetic loci to disease can hinge  
on the scale used to assess risk (for example, observed, 
logarithmic or liability scales). On the observed scale, 
the risk of disease (D) for individuals carrying zero,  
one or two copies of risk variant B are Pr(D | bb) = k

bb
, 

Pr(D | Bb) = k
bb

RR
Bb

 and Pr(D | BB) = k
bb

RR
BB

, respectively, 
where k

bb
 is the overall risk among non-carriers and RR

G
 

is the relative risk for carrying genotype G (that is, Bb or 
BB) in comparison to the bb genotype. The probability 
of disease given genotype from a multiplicative model 
on the observed risk scale can then be represented  
by the following equation, where x

G
 is a (0,1) indicator 

of the genotypes carried by an individual. 

Pr(D | G) = kbbRRBb   RRBB
xBb xBB (1)

The overall risk of disease (K) is represented by  
the following equation, where p is the frequency  
of the risk variant B.

Σ
G

K = E[Pr(D)] =     Pr(D | G)Pr(G)

= kbb((1 – p)2 + 2p(1 – p)RRBb + p2RRBB)
(2)

When RR
Bb

, RR
BB

 and K are known, this can be 
rearranged to estimate k

bb
. The overall relative risk due 

to multiple independent variants can be modelled by 
extension, in which k

bb
 is replaced by the probability of 

disease in individuals carrying no risk variants. This 
model is appealing because it is mathematically 
tractable; however, it is not constrained, and some 
combinations of parameters can therefore generate a probability of disease that is greater than one11,18. For this reason, 
it is not the model of choice when considering multiple risk loci. This model is multiplicative on the disease scale but 
additive on the logarithmic risk scale.

log(Pr(D | G)) = log(kbb) + log(RRBb) xBb + log(RRBB) xBB (3)

Another possibility is to use the liability risk scale, which assumes that individuals have a latent continuous liability of 
risk for disease that reflects both genetic and non-genetic risk factors12. Disease occurs when the total phenotypic 
liability exceeds a threshold (that is, when a sufficient number of risk factors are present). For complex diseases, 
numerous risk factors each of modest effect are expected. The residual variation in liability between individuals of each 
genotype class at any given risk locus is assumed to have a standard normal distribution about different mean liabilities 
w

bb
, w

Bb
 and w

BB
 for the genotype classes bb, Bb and BB, respectively (see the figure). The observed disease risks for each 

genotype class are converted into thresholds on the liability scale. The difference between the genotype thresholds 
equals the differences between the mean distributions with a common threshold for disease. The liability risk model is 
mathematically tractable and easily generalizes to multiple risk loci; it is also constrained so that the probability of 
disease does not exceed one. Moreover, the contribution of individual risk loci can be parameterized in terms of the 
variance they explain, which provides a general framework because many different combinations of allele frequency 
and effect size can generate the same contribution to variance. For these reasons, the liability risk model is usually the 
model of choice when considering multiple risk loci18,39–43.
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and when λS also equals 1 the ratio equals 1. Instead, 
the ratio of logarithms (log(λS[i])/log(λS)) has been 
proposed9. In this case, when λS[i] = 1 the ratio of loga-
rithms appropriately indicates no contribution of the ith 
genetic variant to risk, and the ratio of logarithms gives 
values that are more uniformly distributed across the 
range of zero to one. Of course, shifting scales results 
in a quantitatively different measure.

Genetic variance on a logarithmic relative risk scale. 
From a more epidemiological perspective, one can cal-
culate the contribution of a risk variant to the overall 
genetic variation on the logRR scale. From TABLE 1,  
the genetic variance attributable to the ith risk variant on the  
logRR scale is VGlog[i] = (1 – p)2M2 + 2p(1 – p)(log(RRBb)  
– M)2 + p2(log(RRBB) – M)2, where M is the mean value 
of logRR, and M = 2p(1 – p) log(RRBb) + p2 log(RRBB). 
Assuming a multiplicative model this simplifies to 
VGlog[i] = 2p(1 – p)(log(RRBB))2. For a polygenic disease 
with numerous risk alleles, the distribution of logRR 
in the population tends towards normal with variance 
VGlog. Thus, the fraction of the genetic risk explained 
by the ith risk variant is given by VGlog[i]/VGlog. In prac-
tice, VGlog is assumed to approximately equal 2log(λS) 
(REFS 17–22). Note that VGlog should not be estimated as 
log(λMZ), which is the recurrence risk to monozygotic 
twins, because λMZ ≈ λ2

S is an asymptotic result that only 

holds for diseases of high prevalence (for example, 
K > 0.1) and low heritability18, and can otherwise give 
nonsensical results.

Proportion of area under the curve. We can also deter-
mine how much of the maximum possible AUC that 
is attainable with a risk prediction model based on all 
genetic information is explained by the ith risk variant. 
We can first estimate the AUC for the ith variant using the 
heritability on the liability scale explained by this variant 
(h2

L[i]) (REF. 4).

AUCL[i]
(5)

= ф
(x – v)hL[i]

2

hL[i](1 – hL[i]x(x – T) + 1 – hL[i]v(v – T))2 2 2

In this equation, x = –z/K, T is the population 
threshold, and v = –xK(1 – K) (REF. 13) (see above and 
BOX 1). Next, we determine the maximum attainable 
AUC (AUCMax) by substituting into the above equa-
tion the overall heritability h2

L (for example, estimated 
from twin studies)4. Although the AUC upper bound 
is 1.0, the AUC attainable with genetic factors will 
generally be lower. We can then estimate the pro-
portion of the maximum AUC explained by the risk 
variants as the proportion of AUC (pAUC), where 

Table 1 | Measures of a genetic variant’s impact on disease are grounded in different scales of risk

Measures Genotype*

bb Bb BB

General notation

Population frequency‡ (1 – p)2 2p(1 – p) p2

Genotype risk§ w
bb

w
Bb

w
BB

Mean genotype risk (M)|| (1 – p)2w
bb

2p(1 – p)w
Bb

p2w
BB

Variance of genotype risk (V)|| (1 – p)2(w
bb

 – M)2 2p(1 – p)(w
Bb

 – M)2 p2(w
BB

 – M)2

Scale-specific genotype risks

Observed risk¶ k
bb

k
bb

 RR
Bb

k
bb

 RR
BB

Relative risk 1 RR
Bb

RR
BB

Logarithmic relative risk 0 log(RR
Bb

) log(RR
BB

)

Liability threshold# –Φ−1(1 – k
bb

) –Φ−1(1 – k
bb

RR
Bb

) –Φ−1(1 – k
bb

RR
BB

)

Quantitative genetics notation

Genotype risk –a d = w
Bb

 – (w
bb

 + w
BB

)/2 a = w
BB

 – (w
bb

 + w
BB

)/2

Deviations from the mean**

Total –a – M = –2p(a + (1 – p)d) d – M = a((1 – p) – p) + d(1 – 2p(1 – p)) a – M = 2(1 – p)(a – pd)

Additive‡‡ –2pα ((1 – p) – p)α 2(1 – p)α

Dominance –2p2d 2p(1 – p)d 2(1 – p)2d

For each scale, the genotype risk values can be used to calculate the corresponding mean and variance values. *B denotes the 
known risk variant. ‡Under Hardy–Weinberg equilibrium. §In general notation, to estimate the scale-specific mean and variance, 
the genotype risks are substituted for w (for example, logarithmic relative risk or liability). ||The mean (M) and variance (V) of 
genotype risk is the sum of the three genotype-specific components. ¶k

bb
 is the overall disease risk for individuals carrying the 

homozygous non-risk genotype (bb). RR
G
 is the relative risk of disease for carriers of the risk genotype G (that is, Bb or BB) 

compared with non-carriers (bb). #Φ is the standard normal cumulative distribution function. **The notation of Falconer and 
Mackay14 is used, and the quantitative genetics notation values are assigned such that, in the absence of dominance (d = 0), the 
value of the heterozygote is zero and midway between the values of the two homozygotes. ‡‡–α = a + d((1 – p) – p) is the average 
effect of substituting b with B. The total genetic deviation is the sum of the additive deviations and the dominance deviations with 
M expressed in the quantitative genetics notation M = (1 – p)2 (–a) + 2p(1 – p)d + p2a.
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pAUC = [(AUCL[i] – 0.5)/(AUCMax – 0.5)]2. We square 
this measure because it is related to the square root 
of heritability, thus allowing comparisons with other 
measures that are visually more intuitive to inter-
pret. This measure will generally range from 0 (when 
AUC = 0.5) to 1 (when AUC = 1).

Population attributable fraction. The PAF is com-
monly used to approximate the public health implica-
tions of modifying or removing an exposure. Although 
we cannot currently intervene to remove or nullify risk 
variants, genetic PAFs are often used to estimate the 
degree to which a disease can be attributed to the risk 
variants. We can calculate this from the ratio of the 

disease due to a risk variant (that is, subtracting off  
the baseline risk among non-carriers (kbb)) divided by the  
overall risk, as seen in the following equation.

PAF = = 1 – (6)
K – kbb

K
kbb

K

From BOX 1,

kbb = (7)K
((1 – p)2 + 2p(1 – p)RRBb + p2RRBB)

so

PAF = 1 –

=

1
(1 – p)2 + 2p(1 – p)RRBb + p2RRBB

(8)
2p(1 – p)(RRBb – 1) + p2(RRBB – 1)

1 + 2p(1 – p)(RRBb – 1) + p2(RRBB – 1)

These equations highlight that the PAF is the effect 
of ‘removing’ the genetic risk variant on the overall  
risk of disease. Note that previous work had a  
typographical error in the equation for the PAF21.

Comparison of measures for single variants
We first evaluated how the above measures assess the 
impact of a single genetic variant on disease. Specifically, 
we calculated the measures across a range of RAFs and 
genetic RRs for carrying one additional risk allele. We 
assume an overall disease risk in the population of 0.01 
and a sibling recurrence risk of 5 — which are consist-
ent with an overall genetic heritability on the liability 
scale of 55% — and a multiplicative model of genotype 
RRs. Note that we present calculations for PAF sepa-
rately because it generally gives estimates that are an 
order of magnitude larger than the other measures. 
The proportion of genetic risk explained by all of these 
measures is similar and fairly limited for variants that 
are less common and/or have modest effects on disease 
(FIG. 2). However, these measures diverge as the RAF 
increases up to a certain point and as the RRs increase. 
The conventional heritability estimate always suggests 
one of the smallest impacts of the genetic variants on 
disease, irrespective of RAF and RR (FIG. 2, red line). 
Similar values are given by the approximate heritabil-
ity when RR < 1.5, but this increasingly overestimates 
the heritability as the RR increases, as expected from 
its derivation (FIG. 2, blue line). The sibling recurrence 
risk explained suggests the largest contribution of 
the genetic variants to disease when RAF ≤ 0.25 but a 
smaller amount for larger RAF values (FIG. 2, green line). 
An opposite trend is seen for the logRR genetic variance 
explained (FIG. 2, purple line), which is lower than the 
sibling recurrence risk when RAF < 0.25 and then larger 
for more common risk variants. Finally, the pAUC 
consistently indicates one of the highest estimates of 
genetic basis of disease explained (FIG. 2, orange line). 
Although these differences may seem slight, they are 
only for individual variants. When aggregated across 
numerous risk variants, substantially larger differences 
in the measures become apparent, as shown in the  
following applications.
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Figure 2 | Empirical evaluation of measures of genetic effects. Comparison of 
heritability, approximate heritability, sibling recurrence risk, logarithmic relative risk 
(logRR) genetic variance and proportion of area under the receiver–operating curve 
(pAUC) explained across a range of complex disease architectures is shown. The 
measures are calculated for single causal variants with risk allele frequencies (RAFs) of 
0.01, 0.10, 0.25, 0.50, 0.75 and 0.99, and genetic relative risk (RR) of 1.0–3.0 (assuming a 
multiplicative model). The overall disease risk is assumed to be 0.01, and the total sibling 
recurrence risk is 5, which gives an overall genetic heritability on the liability scale of 
0.55 and a maximum AUC of 0.95. The percentages of heritability, sibling recurrence risk 
and logRR genetic variance explained are fairly modest for low RRs and small RAFs, but 
as these increase the measures start to materially differ. Heritability is always one of the 
smallest measures and is overestimated by the approximate heritability as the RR 
increases. The sibling recurrence risk and pAUC are generally the largest measures for 
lower RAFs.
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Genetic architectures
The number of risk alleles 
underlying disease, their allele 
frequency spectrum, effect 
sizes and mode of interaction. 

Linkage disequilibrium
A measure of whether alleles at 
two loci coexist in a population 
in a nonrandom manner. 
Alleles that are in linkage 
disequilibrium are found 
together on the same 
haplotype more often than 
expected by chance.

Contribution of multiple risk loci to disease
To determine the contribution of multiple risk loci to  
disease from summary statistics, the measures for 
individual loci can be aggregated if they are independ-
ent. Specifically, for heritability on the liability scale, 
approximate heritability, sibling recurrence risk and 
logRR genetic variance, an aggregate score is calculated 
from the sum of the contributions calculated for each 
locus. Similarly, the aggregate heritability of liability is 
used to calculate the AUC. To calculate the PAF due to 
multiple risk variants, one cannot simply add together 
the PAFs of single variants because this ignores the fact 
that most individuals will carry multiple risk alleles. 
In fact, summing PAFs of single variants can quickly 
give an overall PAF that is greater than 100%. Instead, 
we can calculate a joint PAF across multiple variants, 
which restricts the total PAF due to all risk variants to 
be ≤100%. Specifically, if we assume that the risk vari-
ants are independent of each other and that their com-
bined effects on disease are multiplicative, then a joint  
estimate of PAF is given by PAFTotal = 1 – Πi(1  – PAFi).

Application to complex diseases
To further explore how these measures can imply differ-
ent impacts of genetic variants on disease, we calculate 
them across studies of breast cancer, Crohn’s disease, 
rheumatoid arthritis and schizophrenia. We selected 
these diseases because they have so far been well stud-
ied and have a range of underlying genetic architectures. 
For each disease, we selected the loci that have previ-
ously been reported at the time of this analysis as inde-
pendently associated with disease and identified the 
reported risk allele, as well as its frequency and RR 
(generally estimated by odds ratios). More specifically, 
for breast cancer the loci were obtained from the catalog 
of published GWASs, and for the other three diseases 
we used the single-nucleotide polymorphisms (SNPs) 
that were reported and selected as independent by the 
corresponding publications (cited below). Although  
the criteria for SNP selection vary depending on the pub-
lications and ongoing work continues to discover novel 
loci for these traits, the SNPs considered here provide a 
sufficient view of the differences in the measures, and 
the inclusion of additional SNPs should not materially  
affect our findings.

Breast cancer. GWASs have detected a large number of 
common, low-risk variants for breast cancer (see the 
catalog of published GWASs). Here, we evaluate 65 SNPs 
from the catalogue that seem to be independently asso-
ciated with breast cancer using a linkage disequilibrium 
filter of r2 < 0.2 among Europeans within 100 kb of the 
most associated SNP. On the basis of the literature, 
we assume that the overall disease risk is 12% and the 
sibling recurrence risk is 2.0 (REF. 22); these are consist-
ent with the heritability of liability being equal to 60%. 
Benchmarked against these values, almost all of the risk 
variants individually explain <0.5% of the total varia-
tion in heritability, sibling recurrence risk, logRR genetic 
variance and pAUC (FIG. 3a; TABLE 2; see Supplementary 
information S1 (table)). As expected, the variants  

with larger effects on breast cancer (1.3 < RR ≤ 2) explain 
a larger proportion of these measures (FIG. 3a, blue lines). 
For breast cancer, the approximate heritability and her-
itability explained are lower than the other measures, 
and the sibling recurrence risk is the largest, which is 
in agreement with our empirical calculations. All breast 
cancer variants combined are estimated to explain 13% 
of the approximate heritability, 18% of the heritabil-
ity, 19% as measured by the pAUC, 21% of the logRR 
genetic variance and 22% of the sibling recurrence risk 
(FIG. 3a; TABLE 2). The similarity among the heritability, 
pAUC, logRR and sibling recurrence risk reflects the 
uniformly low penetrance and high frequencies across 
the risk variants. Moreover, the relatively high propor-
tion of these measures explained reflects the high overall 
risk but modest sibling recurrence risk for breast cancer 
in the population.

Crohn’s disease. At least 140 modest-risk variants and 
3 additional high-risk variants have been reported as 
independently associated with Crohn’s disease23. We 
assume that the overall risk of this disease is 0.5%, the 
sibling recurrence risk is 10.3, and the heritability of 
liability is 72%24. For the common, low-risk variants, 
the patterns observed are similar to those of breast 
cancer: heritability is smaller than the logRR genetic 
variance, which is smaller than the sibling recurrence 
risk (FIG. 3b;  TABLE 2; see Supplementary informa-
tion S2 (table)). However, for the high-risk variants 
(2 < RR ≤ 15), there is more variation in these measures, 
which reflects different combinations of RRs and RAFs 
(FIG. 3b, red lines). Specifically, the common allele of 
rs11209026 — the wild-type allele corresponding to 
the uncommon interleukin 23 receptor (IL23R) coding 
variant that is protective for Crohn’s disease — has a 
fairly large effect (RR = 2.4) but is extremely common 
(RAF = 0.93), and this combination explains the most 
individual heritability (1.4%) but lower sibling recur-
rence risk (0.96%) (TABLE 2). By contrast, rs5743293 
has an even larger effect (RR = 3.1) but is less common 
(RAF = 0.02); therefore, it explains slightly less herit-
ability (1.1%) but substantially higher sibling recur-
rence risk (4.0%) (TABLE 2). Taken together, the 143 risk 
variants of Crohn’s disease account for ~16.4% of the 
heritability but explain a larger proportion of the sibling 
recurrence risk (25%) and an even larger proportion 
as measured by the pAUC (34%) (FIG. 3b; TABLE 2). The 
higher pAUC estimates across all of the risk variants 
partly reflect the low overall risk of the disease (0.5%).

Rheumatoid arthritis. Here, we evaluate 36 risk vari-
ants previously reported as being independently asso-
ciated with rheumatoid arthritis and assume an overall 
disease risk of 1% and a sibling recurrence risk of 6.0, 
which are collectively consistent with a heritability of 
liability of 63%16. Even with so few risk variants we 
observe a similar proportion of disease explained as for 
Crohn’s disease (FIG. 3c; see Supplementary information 
S3 (table)). This is due to the substantial impact of a 
single variant — rs6910071 at the HLA-DRB1E locus 
— on all of the measures (FIG. 3c, red line). This variant 
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has a large effect on rheumatoid arthritis (RR = 2.88) 
and is common (RAF = 0.22); therefore, it accounts for 
an estimated 8% of the heritability, 16% of the sibling 
recurrence risk, 11% of the logRR genetic variance and 
14% as measured by the pAUC (TABLE 2). The twofold 
range between heritability and sibling recurrence risk 
of this variant leads to a substantial difference in the 
overall measures of genetic variation explained: 15% 
of heritability but 25% of sibling recurrence risk. Thus, 
single common variants of large effect can result in dif-
ferent estimates across these measures. We note that 
the latest GWAS for rheumatoid arthritis reports 101 
associated loci25.

Schizophrenia. Here, we consider 24 GWAS risk vari-
ants previously reported for schizophrenia26,27, as well 
as 8 rare copy-number variants (CNVs) that sub-
stantially increase risk of this disease28–30 (FIG. 3d; see 
Supplementary information S4 (table)). We benchmark 
using an overall disease risk of 1% and a sibling recur-
rence risk of 8.8, which are collectively consistent with 
the heritability of liability of 81%31. As above, the com-
mon, low-risk variants explain a small percentage of the 
measures evaluated here (FIG. 3d, green lines). By con-
trast, the CNVs give extremely different results across 
these measures (FIG. 3d, red and black lines). This is 
especially apparent for the CNVs at 16p11.2 and 22q11, 

Figure 3 | Application of measures to four diseases. Commonly used measures for assessing the impact of known risk 
variants on disease are compared for four diseases: breast cancer (65 variants; part a), Crohn’s disease (143 variants; 
part b), rheumatoid arthritis (36 variants; part c) and schizophrenia (32 variants; part d). The measures considered are 
heritability explained, approximate heritability explained (Approx. herit.), sibling recurrence risk explained, logarithmic 
relative risk (logRR) genetic variance explained, and the proportion of area under the receiver–operating curve (pAUC). 
Each line corresponds to an individual risk variant and indicates the percentage of each measure (for example, total 
heritability) explained by the variant. Lines are different colours depending on the relative risk (which is estimated by 
the odds ratio) for the variants. The y axes are on a squared scale. The percentages given in parentheses after each 
measure on the x axes indicate the total across all risk variants. 
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both of which are rare (RAF = 0.0003) and have very 
large effects on schizophrenia (RR > 25). Owing to their 
rarity these CNVs explain a modest proportion of herit-
ability, genetic variance and pAUC (<0.5%); but their 
large impact on disease results in much higher pro-
portions of approximate heritability (>5%) and sibling 
recurrence risk (>7.5%) (FIG. 3d; TABLE 2). Thus, when 
looking at all 32 schizophrenia variants (24 GWAS SNPs 
and 8 CNVs), estimates of the heritability, sibling recur-
rence risk, logRR genetic variance and pAUC explained 
give very different messages about the impact of the vari-
ants on this disease. Although the variants explain only 
2.5–3% of heritability or logRR genetic variance and 5% 
of pAUC, they are estimated to account for up to 5 times 
as much of the approximate heritability and 10 times as  

much of the sibling recurrence risk (FIG. 2d; TABLE 2). 
The large increase for the approximate heritability was 
expected, as this measure departs from heritability for 
large RRs. However, it was surprising to see such a large 
departure between the sibling recurrence risk and logRR 
genetic variance explained. Although the sibling recur-
rence risk is generally always larger than the logRR 
genetic variance, the rarity and extremely large effects of 
the CNVs result in the drastically different results given 
by these two seemingly similar measures.

PAF: a problematic measure
The PAF can also be used to assess the impact of genetic 
factors on disease, but this measure has various limita-
tions32. The PAF estimates the extent to which a disease 

Table 2 | Measures of overall impact of risk variants on different diseases with a range of underlying genetic architectures*

Risk variant [i] RAF‡ RR‡

Heritability Sibling recurrence LogRR AUC
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||
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lo
g(

RR
[i]

)/2
lo

g(
λ S)

¶

A
U

C
[i]

pA
U

C
[i]

#

Breast cancer

rs2943559 0.07 1.13 0.07% 0.12% 0.08% 1.001 0.16% 0.14% 0.51 0.13% 1.80%

rs10771399 0.90 1.20 0.22% 0.36% 0.27% 1.003 0.39% 0.45% 0.52 0.39% 28.1%

rs2180341 0.21 1.41 1.49% 2.47% 2.00% 1.02 3.39% 2.83% 0.57 2.65% 15.2%

All variants (n = 65) – – 10.7% 17.7% 12.6% 1.17 22.4% 20.8% 0.65 19.0% 95.2%

Crohn’s disease

rs12103 0.18 1.09 0.03% 0.04% 0.03% 1.001 0.05% 0.05% 0.51 0.07% 3.1%

rs11209026 0.93 2.37 1.02% 1.40% 2.73% 1.023 0.96% 2.00% 0.58 2.88% 80.8%

rs5743293 0.02 3.10 0.82% 1.13% 2.45% 1.10 3.99% 1.31% 0.57 2.32% 9.5%

All variants (n = 143) – – 11.9% 16.4% 17.8% 1.78 24.7% 21.2% 0.77 33.8% 100%

Rheumatoid arthritis

rs5029937 0.04 1.40 0.13% 0.20% 0.17% 1.01 0.33% 0.24% 0.53 0.34% 3.1%

rs2476601 0.10 1.94 1.17% 1.85% 2.19% 1.07 3.65% 2.21% 0.58 3.09% 16.4%

rs6910071** 0.22 2.88 5.30% 8.38% 14.6% 1.33 15.8% 10.7% 0.67 13.6% 50.0%

All variants (n = 36) – – 9.34% 14.8% 20.1% 1.57 25.3% 18.6% 0.72 24.3% 99.3%

Schizophrenia

rs171748 0.47 1.08 0.04% 0.05% 0.04% 1.001 0.06% 0.06% 0.52 0.10% 7.0%

rs17504622 0.05 1.24 0.06% 0.08% 0.08% 1.003 0.12% 0.10% 0.52 0.15% 2.3%

CNV (duplication) at 
16p11.2

0.0003 26.0 0.16% 0.20% 4.85% 1.18 7.45% 0.14% 0.53 0.40% 1.4%

All variants (n = 32) – – 2.02% 2.50% 15.9% 1.69 24.3% 2.87% 0.61 4.93% 90.9%

AUC, area under the receiver–operating curve; logRR, logarithmic relative risk; PAF, population attributable fraction; pAUC, proportion of AUC; RAF, risk allele 
frequency; RR, genetic relative risk for disease due to carrying a copy of risk variant versus none. *Two sets of results are presented for each disease: selected 
individual variants and all significant variants combined. Results for all individual variants are given in Supplementary information S1–S4 (tables). Overall population 
risks of disease assumed from the literature are 12% for breast cancer, 0.5% for Crohn’s disease, 1% for rheumatoid arthritis and 1% for schizophrenia. λ

S
 values are 

assumed to be 2.0 for breast cancer, 10.3 for Crohn’s disease, 6.0 for rheumatoid arthritis and 8.8 for schizophrenia. On the basis of the risk of disease and λ
S
 values,  

h2
L
 values are 60% for breast cancer, 72% for Crohn’s disease, 63% for rheumatoid arthritis and 81% for schizophrenia. ‡RAF and RR are estimated by odds ratios  

under the assumption of the multiplicative (that is, logarithmic additive) model, so the RR for carrying two risk variants is RR2. §h2
L[i] 

is the proportion of variance in 
disease explained by risk variant i on the liability scale. ||h2

L[i]
/h2

L 
and h2

L[i]approx
/h2

L
 represent the proportion of heritability explained by the risk variants and the proportion 

explained by the approximate estimate, respectively. ¶log(λ
S[i]

)/log(λ
S
) and V

Glog(RR[i])
/2log(λ

S
) are the proportion of sibling recurrence risk explained by risk variants and 

the proportion of logRR genetic variance explained, respectively. #pAUC
[i] 

is the proportion of AUC explained by risk variants compared to the maximum AUC 
expected from a genetic predictor. The maximum AUC values are estimated from the overall heritability to be 0.9 for breast cancer, 0.98 for Crohn’s disease, 0.97 for 
rheumatoid arthritis and 0.99 for schizophrenia. **HLA‑DRB1E locus.
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might be reduced if a risk factor was removed from a 
population. In our empirical comparisons, the PAF 
generally gives estimates that are an order of magni-
tude larger than the other measures even when the RAF  
is 0.01 and the RR is low. As the RAF increases beyond 
0.50, the PAF is the one measure that continues to 
increase because it directly depends on the RAF. Even 
for a single variant, as the RAF and RR increase, the PAF 
can approach the upper bound of 100%. For example, 
in our breast cancer analysis, a variant (rs10771399) 
with a large RAF (0.90) but a modest impact on dis-
ease (RR = 1.20) has a very large PAF (28%) (TABLE 2). 
Similarly, if a rare genetic variant is protective for dis-
ease, then the other (extremely common) allele can 
give a very large PAF. For example, the protective IL23R 
coding variant (rs11209026) for Crohn’s disease (which 
has a minor allele frequency of 0.07% and a RR of 0.42)23 
yields a PAF of an astonishing 81% (that is, for the risk 
allele, RAF = 0.93 and RR = 1/0.42 = 2.37) (TABLE 2). By 
contrast, our schizophrenia analysis shows how a rare 
variant (CNV at 16p11.2, which has a RAF of 0.0003) 
with an enormous effect size (RR = 26.0) can have a 
relatively small PAF (1.4%) (TABLE 2). Looking at all of 
the risk variants combined, the PAF for the four dis-
eases are all >90%, and only half of the risk variants of 
Crohn’s disease are able to give a PAF of 100% (TABLE 2; 
see Supplementary information S1–S4 (tables)).

The combined PAF also shows a computational 
anomaly: the apparent impact of each additional risk 
variant depends on the variants that have already been 
incorporated into this measure. For example, assume 
that there are 2 genetic variants for a disease, each of 
which has an individual PAF of 0.50 and a correspond-
ing combined PAF of 0.75 (= 1 – (1 – 0.5)2). An interven-
tion that eliminates the effect of a risk variant at any one 
of these risk loci would decrease the incidence of disease 
in the population by half. An intervention at the sec-
ond locus would further reduce the disease incidence 
by half in the remaining population or by a quarter in 
the original population. The order in which the expo-
sure is removed will affect the magnitude of its apparent 
effect on the combined PAF. In other words, the appar-
ent impact of a given risk variant on the combined PAF 
depends on what has already been discovered. Novel 
variants from less well-studied traits will seem to have 
larger effects than more well-studied traits, even if the 
risk variants have the same magnitude of association 
and RAF. Moreover, the combined PAF for multiple 
low-penetrance risk SNPs is not analogous to that 
obtained by removing a single high-risk environmental 
exposure from a population, such as reducing smoking 
to decrease rates of lung cancer. In this case, the differ-
ence depends not only on the number of risk factors 
but also on their penetrance and prevalence, as well as 
on their potential for modification or therapeutic inter-
vention. As the number of known risk loci continues to 
increase — many of which are quite common — essen-
tially everyone in the population will carry various risk 
alleles. At that point, any preventive treatment directed 
at countering the risk loci would have to be applied to 
almost the entire population.

Measures depend on the overall disease risk
Of the measures evaluated here, heritability depends 
on the overall disease risk (K). In practice, pAUC may 
be directly estimated, but here it is calculated from the 
heritability of liability, which is calculated from the 
reported RAF and RR, and hence also depends on K. 
For a given RR, both of these measures increase with 
increasing K, as the RR is expressed relative to the risk 
in the wild-type homozygote, which depends on K. The 
proportion of heritability and AUC explained is actually 
lower with increasing K, and these measures therefore 
depend on the value assumed for K. By contrast, the sib-
ling recurrence risk, logRR genetic variance and PAF do 
not depend on K, which is an advantage of these meas-
ures because it is not always straightforward to define 
K. Nevertheless, the possible range in K — which can 
be determined from the literature — will generally be 
small for most diseases. For example, the ranges of K 
are 10–15% for breast cancer, 0.3–0.5% for Crohn’s dis-
ease, 1.0–3.6% for rheumatoid arthritis and 0.5–1% for 
schizophrenia. Such ranges may have a limited impact 
on the proportion of heritability and AUC explained, 
which would thus be fairly robust to misspecification of 
K. We note that, although sibling recurrence risk, logRR 
genetic variance and PAF do not seem to depend on K, 
there is a built-in assumption that the value of K is the 
same in the family data used to calculate sibling recur-
rence risk as that in the population used to calculate the 
contribution to risk from an individual variant, as any 
RR is expressed relative to a baseline. Violation of this 
assumption may generate misleading results.

To complicate matters further, there is some confu-
sion in the literature over the definition of disease risk, 
which partly reflects the merging of disciplines. Falconer 
defines K as the incidence of a binary trait12 “or, in the 
context of human disease, the prevalence” (REF. 13). Both 
incidence (that is, the rate at which new cases occur in 
a time period) and prevalence (that is, the proportion 
of the population that is affected by a disease at any one 
time) have precise meaning in epidemiology. In fact, 
the relevant benchmark for calculation of heritability 
of liability is the lifetime morbid risk (LMR), which is 
the lifetime probability of being affected or the lifetime 
incidence. The most likely reason for this confusion is 
because, in the context of idealized populations pertain-
ing to logical thinking in quantitative genetics theory, 
the parameters prevalence and LMR would be the same. 
In practice, they can be very different. For example, 
schizophrenia is a disorder with a fairly early age of onset 
and a long average mean life expectancy after diagnosis 
(albeit reduced compared with the general population); 
therefore, annual incidence, prevalence and LMR differ 
considerably at 2.5, 46 and 72 per 10,000, respectively33. 
As another example, consider motor neuron disease, for 
which the median age at onset is ~60 years and the life 
expectancy is only 2–5 years. In this case, estimates of 
incidence, prevalence and LMR are 0.3, 0.6 and 25 per 
10,000, respectively34. For less common disorders, the 
assessment of LMR (or prevalence or incidence) and risk 
to relatives are associated with considerable sampling 
variance, and estimates of heritability of liability and 
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Genomic profile risk
A predicted measure of genetic 
risk for individuals constructed 
from a set of loci, the risk 
alleles and corresponding 
effect sizes of which have been 
estimated in an independent 
sample.

sibling recurrence risk can vary substantially between 
studies. Finally, in addition to the overall disease risk, 
study design and time-dependent effects could also 
affect the measures considered here.

Focus on the mean or the variance?
Another important point to consider when contrasting 
the different measures is whether emphasis should be 
placed on assessing the effect of variants on the mean 
risk in a population or on the genetic variation. Under 
a simple additive model and assuming that there is no 
dominance effect (d = 0), the effect on the mean and the 
variance are 2pa and 2p(1 – p)a2, respectively (TABLE 1). 
Therefore, a variant at or near fixation (that is, p ≈ 1) can 
have a relatively large effect on the mean and no effect 
on the variance. Thus, for a given effect size, ‘interven-
ing’ on more common variants may help to reduce dis-
ease risk regardless of the amount of variance explained. 
Nevertheless, if there are many risk variants for disease, 
then it will be effectively impossible to remove or affect 
all of them to decrease risk. In this case, it does not make 
sense to use measures that focus on the mean (for exam-
ple, the PAF). Instead, we recommend using measures 
that help to understand and explain variation around 
the mean, which is a key component of genetic risk 
prediction.

Extensions and additional measures
Our focus is on measures for a limited number of 
variants, in which we extend the one-locus methods 
to multiple loci under the assumption of independ-
ence among risk variants. Hence, the most associated 
locus from a region is usually used. Necessarily, this 
requires some arbitrary threshold on linkage disequi-
librium, which becomes increasingly unsatisfactory as 
more associated loci are identified. To overcome this, 
associated loci can be fitted together in a regression 
analysis, and the variance explained that accounts for 
the interdependence between loci can be estimated.  
If the sample for discovery of the associated loci is used, 
then there may be some inflation of variance explained 
compared to the value obtained if the contribution was 
estimated from an independent sample drawn from 
the same population. Genomic profile risk scoring15,35 is 
a strategy used to test the efficacy of associated SNPs 
identified in one sample for the contribution to vari-
ance in another sample. Briefly, risk alleles and their 
effect sizes identified by a GWAS carried out in a dis-
covery sample are used to generate genomic profile 
risk scores (GPRSs) in an independent target sample, 
using SNPs with P values in the discovery sample that 
are below some user-defined threshold of significance. 
A GPRS is calculated for each individual in the target 
sample as the sum of the count of risk alleles weighted 
by the effect size in the discovery sample. The profile 
score is evaluated through regression of the target 
phenotype on the GPRS after accounting for other 
known covariates. The efficacy statistic is frequently 
Nagelkerke’s R2 or AUC, although expression on the 
liability scale may be more interpretable4.

To account for the correlational structure among loci 
and to estimate the overall proportion of variance that is 
attributable to variants genome wide, one can use more 
complex mixed models that jointly fit all variants5,36. 
Such methods estimate the variance that is attributable 
to all variants together, which is known as chip herit-
ability or SNP heritability. One can also partition this 
variance on the basis of variant annotation, for exam-
ple, those in loci identified as associated with disease 
versus all remaining variants. In this case, one fits the 
genetic contribution from known disease-associated 
loci as one random effect and the genetic contribution 
from all other loci as another. Then, the ratio of these 
will provide an estimate of the extent to which known 
risk variants explain the overall chip heritability. These 
different components of heritability explained by genetic 
variants are illustrated in FIG. 4.

Note that genetic variation as evaluated here is not 
the only measuring stick for the utility of identified risk 
variants. A set of variants may have good clinical utility 
in a particular context (that is, for some patients) while 
not explaining much variation in the population and vice 
versa. Moreover, various measures besides the AUC have 
been proposed to assess the risk prediction properties 
of known variants37. However, as many of these meas-
ures do not yield a single bounded summary value and 
are context dependent, they are not useful for assessing 
genetic variation per se.

Figure 4 | Aspects of disease heritability: known, hiding and missing. A growing 
proportion of the total heritability estimated from family studies can be explained by 
known variants detected in existing genome-wide association studies (GWASs). This is 
one of the key measures considered here. The remaining heritability can be categorized 
as ‘hiding’ heritability and ‘still-missing’ heritability. The hiding heritability can be 
estimated from genome-wide arrays using the Genetic Relatedness Estimation through 
Maximum Likelihood (GREML) model34. The still-missing heritability may remain even 
after GWASs and could reflect different genetic architectures (for example, rare 
variants). Note that the total heritability may be biased upwards owing to confounding 
by non-additive genetic or non-genetic factors.
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Conclusions and future perspectives
In genetic studies it is a common and useful practice to 
quantify the contribution to disease risk of each associated 
variant, the total contribution for all associated variants 
and the additional contribution compared to previ-
ous studies. Quantifying such successes across research 
projects can be hampered if different studies use differ-
ent measures. Here, we present the different measures 
side-by-side, and compare the similarity and differences 
of these commonly used measures. We also provide an 
online tool to calculate these measures from association 
study summary statistics (see INDI-V online tool).

Although geneticists and epidemiologists often inter-
pret different measures of the impact of risk variants on 
disease as providing similar information, as shown here 
they are not interchangeable and can give different mes-
sages. For common, low-risk variants the measures are 
fairly uniform. However, for risk variants with a range 
of RAFs and RRs, heritability explained is often sub-
stantially lower than sibling recurrence risk and logRR 
genetic variance. For rare, high-penetrance variants, the 
approximate heritability16 and sibling recurrence risk can 
be an order of magnitude larger than other measures. 
The pAUC may be larger or smaller than the other meas-
ures depending on the nature of the risk alleles; the PAF 
gives much larger estimates than all other measures and 
has philosophical and computational limitations. As we 
move into the era of discovering both common and rare 
variants with varying penetrance for disease, we recom-
mend investigators to focus primarily on the heritability 
of liability or the logRR genetic variance explained, as 
these seem to give estimates that are less sensitive to rare, 
high-risk variants than other measures.

Although the measures of the contribution to risk 
considered here may have similar underlying inten-
tions, they can be on different scales and include dif-
ferent types and amounts of information. Depending 
on the measure, the apparent impact of genetic vari-
ants can hinge on the assumed overall risks of disease 
which, despite their apparent simplicity, are often 

difficult to pin down. All of the measures considered 
here, except the PAF, can be expressed relative to a 
maximum specified by parameters measured in twin 
or family studies: the ‘denominator’ (for example, total 
heritability, sibling recurrence risk and maximum 
AUC). The denominator measures are themselves dif-
ficult to estimate, may be contaminated by non-genetic 
factors and, for less common diseases, are subject to 
considerable sampling variance38. Moreover, these 
denominator estimates can be dependent on the study 
context owing to real differences that reflect environ-
mental factors such as country, age, year and many 
other complexities of real-life data. Valid comparison of 
the numerators and denominators requires samples to 
be drawn from the same population. Thus, we recom-
mend that investigators undertake sensitivity analyses 
that explore how their results vary when using a range 
of assumed underlying risks. The important message is 
that given such uncertainty, the concept of individual 
loci ‘explaining’ disease is less straightforward than it 
may seem at first sight, and all quantifications should 
therefore be considered in terms of benchmarking 
rather than as precise measures. In addition, calcu-
lating multiple different measures may provide valu-
able information about the sensitivity of results to the 
underlying assumptions.

Genetic and epidemiological study designs and ana-
lytic methods have nicely coalesced to help investigators 
to detect large numbers of risk variants for complex dis-
eases. However, the different views of these disciplines 
can shade the interpretation and apparent implications 
of such findings. By juxtaposing the different models and 
measures used to assess the impact of genetic variants 
on disease, we highlight their strengths and weaknesses, 
and make various recommendations for their use. With 
this information and software provided as an online tool 
to calculate the measures considered here (see INDI-V 
online tool), one can judge what is truly meant when a 
study concludes that genetic variants explain or account 
for a particular proportion of disease.
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