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Aims of Lecture 5

To consider polygenic models of genetic risk

To demonstrate that many polygenic models are
consistent with empirical data and that they can be
considered equivalent

To understand the conclusion that the liability
threshold model is the model of choice

To understand the crificisms and controversy of the
liabillity threshold model

Intfroduction to polygenic risk scores



Genetlic models of disease

Mendelian disease:

* Individuals that possess the mutation get the disease.

« Dominant e.g Hunfington's orrecessive e.g. Cystic fibrosis
Mendelian disease with variable penetrance.

« Only those with the mutation get the disease

« Not everyone with the mutation gets the disease.

« E.g. C9%0rf72 in Motor Neurone Disease

Compound heterozygote disease.

« Like recessive Mendelian but individuals carry two different rare
mutations in the same gene.

Two-hit diseases

« Hypothesized, but examplese

Oligogenic diseases —caused by presence of several genetic risk variants
Polygenic diseases — caused by multiple genetic risk variants

Multifactorial diseases- caused by multiple genetic risk variants and other
risk factors



Common complex genelic diseases are
likely to be polygenic multifactorial

Evidence:

Many risk variants of small effect identified

Implications:

We all carry risk alleles
Each affected person may carry a unique portfolio

Polygenic model can accommodate some people having few loci
of larger effect and others having many loci of small effect

The more loci involved, to be consistent with low prevalence, the
probability of disease has to increase steeply with the number of loci.

The more loci involved, the more likely they have a pleiotropic
effect, which would be consistent with them being common in the
population

The more loci involved implies that we are highly robust to
perturbations — but this breaks down when the burden of risk factors
become too great



Modeling polygenic genetic risk

« “Easiest” to understand by thinking of individual risk loci and how they
act together to cause disease

— The frequency Qf Thg risk alleles GENETIC ARCHITECURE
Drawn from a distribution

All the same \\
. . 2 b
— The effect size of the risk alleles : \
.. . ffect
Drawn from a distribution 1 size
All the same - relative risk associated Wicle
— Interaction between risk loci ‘
Complex

All act in the same way

Mumbe,
variants
i

Genetic variance
Start simple
- Assume all risk alleles have the same frequency

- Assume all risk alleles have the same effect size

- Thenrisk is a reflection of the count of the number of risk
alleles

- What is the shape of the relationship between count of risk
alleles and probability of disease?



Countrisk alleles

SNP 1: Aa 1
SNP 2: Ac ]
SNP 3: AA 2
SNP 4: ca 0
SNP §5: aa 0

4 risk alleles =s



Basic Model

p =freq ofrisk allele 0.1
1-p = freq of non-risk allele

Assume Hardy- Weinberg equilibrium in the population
Genotype frequencies

P(bb) = (1-p)?
P(Bb)  =2p(1-p)
P(BB) =p?

Relative risk associated with one risk allele R

n loci 100
Theoretical minimum number of risk loci : 0 0
Theoretical maximum number of risk loci possible: 2n 200
Mean number of risk loci: 2np 20
Variance in number of risk loci: 2np(1-p) 18

Range in number of loci expected 2np +/- (3.5)N2np(1-p) 5-36



Visualising common complex genetic diseases
Polygenic genetic architecture

* Imagine a disorder underpinned by
— 100 loci : 2 alleles at each locus
— Each risk allele has frequency 0.1

O risk alleles = yellow
1 risk allele = light blue
2 risk alleles = dark blue

Average person a person carries 2 alleles * 100 loci *0.1 = 20 risk
alleles

Everybody carries some risk alleles
Range in population ~5-36 (mean +/- 3.5 sd)
Polygenic burden : top 1% carry > 33 risk alleles




Visualising variation between individuals for common
complex genetic diseases

Affected individuals

= =

—
e

=

Not all affected individuals carry the risk allele at any particular locus
Unaffected individuals carry mulfiple risk loci

Consequences of risk alleles depend on the genetic and environmental
background



How to combine risk loci to explain disease

Additive on disease scale

Multiplicative on disease scale

Constrained multiplicative on disease scale

Multiplicative Odds on disease scale

Liability threshold model

10



Basic sin

Single locus disease model.

gle locus risk model

G = genotype; D=disease; K = overall disease risk in population

# risk alleles

0
1
2

P(G) P(D|G) |P(D)=P(D|G)p(G) |P(G|D)=P(G)/P(D)
aa_|(1-p)* |fo (1-p)*fo (1-p)*fo/K
Aa |2p(1-p) |foRgp 2p(1-p) foRgp 2p(1-p) foRey/K
AA pz foRgs pz foRgp p2 foRBB/K
Sum= K

P(Disease)=K =fo(1'p)2 + fORBpr(l-p) + foRBsz = f0(1+p(R-1))2

= fo((1-p)? + Rep2p(1-p) + Res p?)

fo = K/((1-p)? + Rep2p(1-p) + Res p?)

if Rgp = R; Rgg = R? multiplicative on disease scale

fo = K/(1+p(R-1))?

Rgg = 2* Rpy, additive on the disease scale




Two-locus risk model

Single locus disease model:
G = genotype; D=disease; K = overall disease risk in population

P(G) P(D)
# risk | 1stlocus/2md locus | Frequency Risk Additive | Risk
alleles Multiplicative
0 0/0 (1-p)4 f() fo
1 1/00r0/1 2p(1-p)(1-p)* + 2p(1-p)(1-p)? foR foR
2 2/00r0/20r1/1 | p?+ p? +4p?(1-p)? 2foR foR?
3 2/1lor1/2 p?2p(1-p) + p?2p(1-p) 3foR foR3
4 2/2 p* 4£,R foR*

Sum P(D) =K

fo = probability of disease with no risk alleles. This baseline probability
differs between the models




Additive on the disease scale

Probability of disease increases additively/linearly with the number of
loci (x) carried.

Relationship between # alleles & prob of disease

P(D|x =s) = b*R*s
Constraint g
2n fé g °
ZP(D|x)P(x) =K o 5
x=0 o 4
E(P(D|x)) = E(b*R*x) = b*R*E(x) = b*R*2np = K I

indA = #risk alleles

So b =K/2npR



Looking at the additive model

Base

N=1e5 # number of families 100,000

n =100 # number of loci

R=1.1 # relative risk of each risk allele
p=0.2 # allele frequency of each risk allele
K=0.01 # probability of disease

Follow up:

Base, R=1.5, p=0.5, K =0.1

Look at maximum probability of disease and consider whether
this model will generate an increased risk in relatives

SWITCHTOR



Histogram of # risk alleles Histogram of probability of dise
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Frequency

onship between # alleles & prob «

probability of disease

indR

Histogram of # risk alleles
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Additive model

Mathematically tractable

To achieve additivity of risk loci and correct disease prevalence,
does not give high probability of disease with large number of risk loci

Not consistent with high heritability
Not consistent with observed risks to relatives

Can “fudge’” the additive model by saying
— P(D|x<nl)=0
— P(D|n1<x<n2) = additive with x
— P(D|x>n2)=1

Is non-linear with x
Not mathematically tractable



Multiplicative on the disease scale

Probability of disease increases multiplicatively with the number of risk
loci (X)

P(D|x=5s)=f,Rs Multiplicative on the risk scale
When s =0, P(D|x=0) =1,

Constraint

2n
ZP(D|x)P(x) - K
x=0

i Binomial expansion
E(P(D1x)) = E(foR®) =fo (PR + (1-p))*" =1 (1 + p(R-1)p)*" =K

fo = K/(1 +p(R-1)p)?"

Additive on the log risk scale

Log(P(D | x=s)) = s log(fyR)



Looking at the multiplicative model

Base

N=1e5 # number of families

n =100 # number of loci

R=1.1 # relative risk of each risk allele
p=0.2 # allele frequency of each risk allele
K=0.0T # probability of disease

Follow up:

Base, K=0.1

Base K=0.1,R=1.2

Look at maximum probability of disease and consider whether this
model will generate an increased risk in relatives

Add fix

SWITCH fo R



K=0.1, p=0.2, R=1.1

Histogram of # risk alleles Histogram of probability of dise
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K=0.1, p=0.2, R=1.2

Histogram of # risk alleles Histogram of probability of dise
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Multiplicative model

«  Mathematically tractable

« High probability of disease with large number of risk loci so consistent
with high heritability and can be consistent with observed risks to
relatives

BUT
« Probability of disease for an individual can be > 1

IF constrain so that max probability of disease is 1
THEN

« E(P(D|x))is nolongerK

 Need to fudge to retain this property

« Loses mathematical tractability



Epidemiology risk model

Odds(Disease) = P(Disease)/(1-P(Disease))
Odds(Disease | x =s) = Odds(Disease | x =0)y* = Cy*

s = number of risk loci carried by an individuals

Yy = odds ratio for each risk locus

P(Disease | x =)= Cys/(1-Cy?)

Good: probability of disease does not exceed 1
Bad: mathematically intfractable

Janssen et al (2006) Predictive testing for complex diseases using multiple genes: Fact or fiction? Genet Med 8 395
Lu & Elston (2008) Using the optimal ROC to design a predictive test, exemplified with Type 2 Diabetes AJHG 82

23



Epidemiology risk modelling

« R =risk = probability of disease

* logR =y ~N(u, a?)

« R~ LogNormal(u, 62) = LN(u, o?)

« uis arbitrary but Pharaoh set as u = -62/2, but can also be
calculated from disease prevalence K

0% =log(Ayz) = 2log (Asip)

u=logK —c?/2

Pharaoh et al (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nature Genetics 24
Sieh et al (2014) The role of genome sequencing in personalised breast cancer prevention. Cancer Epi Biom & Prev



Epidemiology risk model

E[R] =K = je””ax([)(x)dx = .. = gHtd?/2

Two relatives, with risk of disease RiR;

eh+ozy

R,
R, = eu+pazl+\/(1—p2)azz|

Probability that both are affected RiR,

E[R,R,] = fR1¢)(zl)R2¢(z2)dz1 dz, = - = p2H1+0%(1+p)
Recurrence risk = A, p14¢ipe = w —eP?

Ayz = e’

Agip = g0.50%

0% =log(Ayz) = 2log (Asp)

u=logK —o?/2

See thesis from Luke Jostins ftp://ftp.sanger.ac.uk/pub/resources/theses/lj4/thesis.pdf chapter 2 — contains typos
25



Liability threshold model

Doesn’t directly parameterise in terms of number of risk loci

Only parameterises in terms of
— prevalence of disease and heritability of liability

OR

— prevalence of disease and risk to relatives

I.e.

— Interms of total variance explained which could cover a range of genetic
architectures — so can be indirectly parameterised in terms of number of risk loci

Variance explained by a locus
depends on frequency (p) and effect size(a) : 2p(1-p)a?

Variance explained is the same for
p=0.1, a=0.1 as for p= 0.5, 0=0.06

« BUT is the liability threshold model realistic?

26



Controversy - the abrupt threshold is not
biological

“Contrary to the argument regarding the
L conservatism of the multifactorial threshold model
: s for describing the inheritance of congenital
L malformations, little biological insight has resulted
e from the series of tautological, albeit grandiose,

mathematical assumptions currently comprising
the basis for this hypothesis.” Melnick & Shields

The theoretical foundation of genome-wide
association studies

GWAS are founded on the polygenic model of disease
3 2 4 o0 1 2 3 liability, which itself arises from an assertion of
breathtaking audacity by the godfather of quantitative
genetics, DS Falconer. In an attempt to demonstrate the
relevance of quantitative genetics to the study of human
disease, Falconer, based on work of others before him (for
example, [24]), came up with a nifty solution [25]. Even
though disease states are typically all-or-nothing, and
even though the actual risk of disease is clearly very
discontinuously distributed in the population (being
dramatically higher in relatives of affected people, for
example), he claimed that it was reasonable to assume
that there was something called the underlying liability to
the disorder that was actually continuously distributed.
Mitchell (2012) What is complex about complex disorders Genome Biol 12: 237

Edwards(1969) Familial predisposition in man, Br Med Bull

Melnick & Shields (1976) Allelic restriction: a biologic alternative to multifactorial threshold model. The Lancet

Many references to the criticism in papers of the time eg Smith (1970) 27

prevalence= 0.01

0.8

probability of disease
04

0.0

phenotypic liability



Is the abrupt threshold non-biological?

 People are classed as diseased or not disease, any error in this classification,
conftributes of a heritability of < 1.

«  Wright(1934) showed that 3 vs 4 toes in guinea pigs “cannot correspond to
alternate phases of a single factor (=gene)” and used crosses to show severadl
factors ("> 3") underly a physiological threshold

« Fraser (1976) Detailed explanation of the bioclogy consistent with @
multifactorial threshold model for cleft palate

Fraser(1976) The multifactorial/Threshold concept —uses and misuses Teratology
Wright (1934) An analysis of variability in number of digits in an inbred strain of guineapig. Genetics 19 506
Wright (1934) The results of crosses between inbred strains of guinea pigs, differing in the number of. Genetics 19 537

28



probability of disease

probability of disease

No need to invoke abrupt threshold of phenotypic liability — instead use
Probability of risk of disease under liability threshold model

prevalence= 0.25

. h2= 0.2 prevalence= 0.25 . h2= 0.8 prevalence= 0.25 HThe Obrup.l. .I.hreshold is .I.hUS
3 5 3 g 3 conceptual rather than real and
: . : may be avoided by redefining the
N £ s £ 4 variance and risk function.” Smith
3 2 -1 0 1 2 3 S '. L, T 3 '. ) .‘ . ! ]970
phenotypic liability genetic liability genetic liability
prevalence= 0.01 h2= 0.2 prevalence= 0.01 h2= 0.8 prevalence= 0.01 .
. 2 2 P(Disease|genetic liability = x)
3 g 2 g3 CI)<X_t> q)( x—t)
3 E{ : § : Vol V1 — h?
5 . g .
. -3 -2 -1 0 1 2 3 : .-3 2 -1 0 I 2 3 ’ .-3 2 .Tx 0 ; 2 3 Pro b”- mOdel
phenotypic liability genetic liability genetic liability

Two parameters: disease prevalence and heritability

Probit model can be parameterised in terms of number of risk loci

Curnow (1972) The multifactorial model for the inheritance of liabilty to disease and its implications for risk to relatives.
Biometrics

Curnow & Smith (1975) Multifactorial models for familial diseases in man. J Royal Stat Soc A 138 20



Controversy — many models fit empirical data

“One cause of scepticism of the liability threshold model was the realization
that the empirical data would also fit other models (Morton, '67; Smith, '71),
such as a major gene combined with polygenic and environmental
variation (Morton and MaclLean, '74,a single locus with two alleles, each
with incomplete penetrance (Reich et al., '72, or a heterogeneous mixture
of cases determined either by a major locus with incomplete dominance
and reduced penetrance or by environmental factors (Chung et al., '74, or
various combinations of these (Elston and Stewart, '73; Lange and Elston,
'75).

This is because the extreme tail of the distribution (which is all one can
usually see when diseases are uncommon) are not good indicators of the
shape of the main body of the distribution. ™ ~

Need risk to disease from relatives of different types of
relatives to start to distinguish between models
Not easy to collect, large sampling variances

Fraser(1976) The multifactorial/Threshold concept —uses and misuses Teratology 30



Exchangeable models of disease

e For diseases 0.5%-2%
« High heritability

« Requires there be a large variance in risk among individuals.
Consequently risk considered as a function of the number of
causative alleles has to be steeply increasing.

1.5+

Probability 7

1

of disease / °5| ;

7
/

0

— Multiplicative (unconstrained)
— Multiplicative (constrained)

— = -Threshold

----- Additive (constrained)

-1 w
0 10 20 30 40 50 60 70

05+

Number of risk alleles(x)

Slatkin (2008)Exchangeable models of complex inherited diseases Genetics

Multiplicative model - standard
model used but allows probability of
disease to be >1.
P(Disease)=P(Disease | x=0)RX
Constrained multiplicative model -
constrain the multiplicative model
to have a maximum probability of 1

“Additive” model
P(Disease)=b+xR, b=-18/7 set
P(Disease)<0 to 0 and
P(Disease)>1to 1

31



Which polygenic model to use?

The liability threshold model is the model of choice because

« It is the simplest parameterization that fits the observable data

« [tis mathematically tractable

« |t makes least assumptions about genetic architecture

“Most models are wrong some models are useful”



From theory to data

Profile risk scoring



SNP profiling schematic
ecoven @ # Common pitfalls
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Visualising variation between individuals for common
complex genetic diseases

Affected individuals

—————

A 4

« Not all affected individuals carry the risk allele at any particular locus
« Unaffected individuals carry multiple risk loci
« Consequences of risk alleles depend on the genetic and environmental

background -



Acronyms, synonyms

PRS
— Polygenic risk score

GPRS
— Genomic profile risk score

PGS
— Polygenic score

GRS
— Genetic risk score

Gene score
Genetic score
Genotypic score
Allele score
Profile score
Linear predictor

« Discovery = Training
« Target = Replication = Test

Slide credit: Frank Dudbridge




Polygenic risk predictons turns SNP efects into
predicted genetic risk for an individual

When SNP effects are estimated by standard
offect size astimates GWAS there are arbitary decisions
» P-value threshold of SNPs
» LD pruning of SNPs

Discovery sample

SNPs phenotype

Target sample

SNPs

GWAS

—_—

Individuals

Predicted phenotype

Compare predictors with true
phenotype (correlation, AUC)

/

Individuals

B measured

M estimated

Slide credit: Robert Maier



First Application of Risk Profile Scoring

P=2x10728
0.08 1
mP; <0.1
— mP;<0.2
c mP; <03
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38
Purcell /ISC et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder Nature 2009



PRS (“profile scoring”) in PLINK

Research Review: Polygenic methods and their

"JOURNAL«CHILD : . E a B
B B CHIATRY application to psychiatric traits

Naomi R. Wray,! Sang Hong Lee,’ Divya Mehta,’ Anna A.E. Vinkhuyzen,! Frank
Dudbridge,? and Christel M. Middeldorp®*

 Reduce the SNPs to a set in approximate LD

— Best done using “clumping’: keep the most
associated SNP, remove those in LD with it, then
keep the next most associated remaining SNP,
efc

— Recommend LD threshold of r?2<0.1
plink --clump-p1 1 --clump-p2 1 --clump-r2 0.1 --clump-kbb 500

¢ Estimate effect sizes of these SNPs

plink --assoc



PRS (“profile scoring”) in PLINK

Create a file listing SNPs and their effect sizes

— Take logs of odds ratios
awk

Create a file listing p-value thresholds to
select SNPs info PRS

Generate PRS for subjects in the target
sample

plink --score --g-score-range

Regress target phenotype against PRS

alm(y~prs, family=binomial)



PRSice

* R package to simplity calculations of PRS
* http://prsice.info

Bioinformatics, 31(9), 2015, 1466—1468

PRSice: Polygenic Risk Score software
Jack Euesden*, Cathryn M. Lewis and Paul F. O’'Reilly*

MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience,
King's College London, London, United Kingdom



Practical —Risk Models

1. Additive risk model.

a. Run code
b. Change parameters

2. Multiplicative risk model.
ad. Run code
b. Change parameters

3. Logistic risk model.

a. Run code
b. Change parameters

4. Liability threshold model

a. Run code
b. Change parameters



Practical - Polygenic risk scoring

« Demonstrate impact of overlap
between Discovery & Target sample
» Learn to simulate SNP data

» Explore impact of
— N sample size
— M markers
— h? frue variance explained by SNPs

on variance explained by predictor

2017_SISG...ileScorePrac *  |r| 2017_SISG...actical_CC.R
2017_SISG...c_wAnswers » = 2017_SISG..._instructions

'r| 2017_SISG...iskModels.R 'r|] 2017_SISG...actical_QT.R

= 2017.SISG_10_5.pptx Mdaa >
"L slatkin_com...etics08.pdf logistic >
M plink

scores
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