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Aims of Lecture 5
• To consider polygenic models of genetic risk
• To demonstrate that many polygenic models are 

consistent with empirical data and that they can be 
considered equivalent

• To understand the conclusion that the liability 
threshold model is the model of choice

• To understand the criticisms and controversy of the 
liability threshold model

• Introduction to polygenic risk scores
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Genetic models of disease
Mendelian disease: 
• Individuals that possess the mutation get the disease.
• Dominant e.g Huntington’s  or recessive  e.g. Cystic fibrosis
Mendelian disease with variable penetrance. 
• Only those with the mutation get the disease
• Not everyone with the mutation gets the disease.
• E.g. C9orf72 in Motor Neurone Disease
Compound heterozygote disease.
• Like recessive Mendelian but individuals carry two different rare 

mutations in the same gene.
Two-hit diseases
• Hypothesized, but examples?
Oligogenic diseases –caused by presence of several genetic risk variants 
Polygenic diseases – caused by multiple genetic risk variants 
Multifactorial diseases- caused by multiple genetic risk variants and other 
risk factors

3



Common complex genetic diseases are 
likely to be polygenic multifactorial

Evidence:
Many risk variants of small effect identified

Implications: 
• We all carry risk alleles
• Each affected person may carry a unique portfolio
• Polygenic model can accommodate some people having few loci 

of larger effect and others having many loci of small effect
• The more loci involved, to be consistent with low prevalence, the 

probability of disease has to increase steeply with the number of loci.
• The more loci involved, the more likely they have a pleiotropic 

effect, which would be consistent with them being common in the 
population

• The more loci involved implies that we are highly robust to 
perturbations – but this breaks down when the burden of risk factors 
become too great
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Modeling polygenic genetic risk 
• “Easiest” to understand by thinking of individual risk loci and how they 

act together to cause disease
– The frequency of the risk alleles

• Drawn from a distribution
• All the same

– The effect size of the risk alleles
• Drawn from a distribution
• All the same – relative risk associated

– Interaction between risk loci
• Complex
• All act in the same way
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Start simple
- Assume all risk alleles have the same frequency
- Assume all risk alleles have the same effect size
- Then risk is a reflection of the count of the number of risk 

alleles
- What is the shape of the relationship between count of risk 

alleles and probability of disease?



Count risk alleles
SNP 1:  Aa 1
SNP 2:  Aa 1
SNP 3:  AA 2
SNP 4:  aa 0
SNP 5:  aa 0

4 risk alleles  =s
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Basic Model
p = freq of risk allele 0.1
1-p = freq of non-risk allele

Assume Hardy- Weinberg equilibrium in the population
Genotype frequencies

P(bb)  = (1-p)2

P(Bb) = 2p(1-p)
P(BB) = p2

Relative risk associated with one risk allele R

n loci

Theoretical minimum number of risk loci : 0
Theoretical maximum number of risk loci possible: 2n

Mean number of risk loci: 2np
Variance in number of risk loci: 2np(1-p)
Range in number of loci expected 2np +/- (3.5)√2np(1-p)

100

0
200

20
18
5 - 36   
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Visualising common complex genetic diseases
Polygenic genetic architecture

• Imagine a disorder underpinned by 
– 100 loci : 2 alleles at each locus
– Each risk allele has frequency 0.1

0 risk alleles = yellow
1 risk allele = light blue
2 risk alleles = dark blue
Average person a person carries 2 alleles * 100 loci *0.1 = 20 risk 
alleles
Everybody carries some risk alleles
Range in population ~5-36 (mean +/- 3.5 sd)
Polygenic burden : top 1% carry > 33 risk alleles
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Visualising variation between individuals for common 
complex genetic diseases

Not all affected individuals carry the risk allele at any particular locus
Unaffected individuals carry multiple risk loci
Consequences of risk alleles depend on the genetic and environmental 
background 9



How to combine risk loci to explain disease
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Additive on disease scale

Multiplicative on disease scale

Constrained multiplicative on disease scale

Multiplicative Odds on disease scale

Liability threshold model



Single locus disease model:
G = genotype;  D=disease;  K = overall disease risk in population

Basic single locus risk model
	
	 P(G)	 P(D|G)	 P(D)=P(D|G)p(G)	 P(G|D)=P(G)/P(D)	
aa	 (1-p)2	 f0	 (1-p)2	f0	 (1-p)2	f0/K	
Aa	 2p(1-p)	 f0RBb	 2p(1-p)	f0RBb	 2p(1-p)	f0RBb/K	
AA	 p2	 f0RBB	 p2	f0RBB	 p2	f0RBB/K	
	 	 	 Sum=	K	 	
	
P(Disease)=K	=f0(1-p)2	+	f0RBb2p(1-p)	+	f0RBBp2	 =	f0(1+p(R-1))2	
	
	
	=	f0((1-p)2	+	RBb2p(1-p)	+	RBB	p2)	
	
f0		=	K/((1-p)2	+	RBb2p(1-p)	+	RBB	p2)	
	
if	RBb	=	R;	RBB	=	R2		multiplicative	on	disease	scale	
	
f0		=	K/(1+p(R-1))2	
	
RBB		=	2*	RBb		additive	on	the	disease	scale	
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Single locus disease model:
G = genotype;  D=disease;  K = overall disease risk in population

Two-locus risk model

	
#	risk	
alleles	

1st	locus/2nd	locus	 Frequency	 Risk	Additive	 Risk	
Multiplicative	

0	 0/0	 (1-p)4	 f0	 f0	
1	 1/0	or	0/1	 2p(1-p)(1-p)2	+	2p(1-p)(1-p)2	 f0R	 f0R	
2	 2/0	or	0/2	or	1/1	 p2	+	p2	+4p2(1-p)2	 2f0R	 f0R2	
3	 2/1	or	1/2	 p22p(1-p)	+	p22p(1-p)	 3f0R	 f0R3	
4	 2/2	 p4	 4f0R	 f0R4	
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P(D)P(G)

Sum P(D) = K

f0 = probability of disease with no risk alleles. This baseline probability 
differs between the models



Additive on the disease scale
Probability of disease increases additively/linearly with the number of 
loci (x) carried.

P(D|x = s) = b*R*s

Constraint 
P(D|x = s) = b*R*s

E(P(D|x )) = E(b*R*x) = b*R*E(x) = b*R*2np = K

So b = K/2npR
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Looking at the additive model
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Base
N = 1e5                        # number of families 100,000
n = 100                         # number of loci
R = 1.1                          # relative risk of each risk allele
p = 0.2                         # allele frequency of each risk allele
K = 0.01                 # probability of disease

Follow up:
Base, R=1.5, p=0.5, K =0.1
Look at maximum probability of disease and consider whether 
this model will generate an increased risk in relatives

SWITCH TO R
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Additive model
• Mathematically tractable
• To achieve additivity of risk loci and correct disease prevalence, 

does not give high probability of disease with large number of risk loci
• Not consistent with high heritability
• Not consistent with observed risks to relatives

• Can “fudge” the additive model by saying 
– P(D|x < n1) = 0
– P(D|n1<x<n2) = additive with x
– P(D|x> n2) = 1

Is non-linear with x
Not mathematically tractable
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Multiplicative on the disease scale
Probability of disease increases multiplicatively with the number of risk 
loci (x)

P(D|x = s) = f0Rs

When s =0, P(D|x = 0) = f0

Constraint 

Binomial expansion
E(P(D|x)) = E(f0Rs) =f0 (pR + (1-p))2n = f0 (1 + p(R-1)p)2n = K

f0  =  K/(1 + p(R-1)p)2n

Additive on  the log risk scale

Log(P(D|x=s)) = s log(f0R)

Multiplicative on  the risk scale
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Looking at the multiplicative model
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Base
N = 1e5                        # number of families
n = 100                         # number of loci
R = 1.1                          # relative risk of each risk allele
p = 0.2                         # allele frequency of each risk allele
K = 0.01                       # probability of disease

Follow up:
Base, K=0.1
Base  K = 0.1, R =1.2
Look at maximum probability of disease and consider whether this 
model will generate an increased risk in relatives

Add fix

SWITCH to R



K=0.1, p=0.2, R=1.1

20



21

K=0.1, p=0.2, R=1.2



Multiplicative model
• Mathematically tractable
• High probability of disease with large number of risk loci so consistent 

with high heritability and can be consistent with observed risks to 
relatives

BUT
• Probability of disease for an individual can be > 1

IF constrain so that max probability of disease is 1
THEN 
• E(P(D|x)) is no longer K
• Need to fudge to retain this property
• Loses mathematical tractability
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Epidemiology risk model
Odds(Disease)= P(Disease)/(1-P(Disease))

Odds(Disease|x =s) = Odds(Disease|x =0)γx = Cγx

s = number of risk loci carried by an individuals

γ = odds ratio for each risk locus

P(Disease| x = s)= Cγs/(1-Cγs)

Good: probability of disease does not exceed 1
Bad: mathematically intractable

Janssen et al (2006) Predictive testing for complex diseases using multiple genes: Fact or fiction? Genet Med 8 395
Lu & Elston (2008) Using the optimal ROC to design a predictive test, exemplified with Type 2 Diabetes AJHG 82
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Epidemiology risk modelling
• R = risk = probability of disease
• logR =  y ~N(𝞵, 𝞼2)
• R ~ LogNormal(𝞵, 𝞼2) = LN(𝞵, 𝞼2)
• 𝞵 is arbitrary but Pharaoh set as 𝞵 = -𝞼2/2, but can also be 

calculated from disease prevalence K

24Pharaoh	et	al	(2002)	Polygenic	susceptibility	to	breast	cancer	and	implications	for	prevention.	Nature	Genetics
Sieh et	al	(2014)	The	role	of	genome	sequencing	in	personalised	breast	cancer	prevention.	Cancer	Epi	Biom &	Prev



Epidemiology risk model

See thesis from Luke Jostins ftp://ftp.sanger.ac.uk/pub/resources/theses/lj4/thesis.pdf chapter 2 – contains typos
25



Liability threshold model
Doesn’t directly parameterise in terms of number of risk loci
Only parameterises in terms of 

– prevalence of disease and heritability of liability 

OR
– prevalence of disease and risk to relatives

i.e.
– In terms of total variance explained which could cover a range of genetic 

architectures – so can be indirectly parameterised in terms of number of risk loci

• BUT is the liability threshold model realistic?

Variance explained by a locus
depends on frequency (p) and effect size(a) :   2p(1-p)a2

Variance explained is the same for 
p= 0.1, a=0.1            as for                  p= 0.5, a=0.06
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Controversy – the abrupt threshold is not 
biological

Mitchell (2012) What is complex about complex disorders Genome Biol 12: 237
Edwards(1969) Familial predisposition in man, Br Med Bull 
Melnick & Shields (1976) Allelic restriction: a biologic alternative to multifactorial threshold model. The Lancet
Many references to the criticism in papers of the time eg Smith (1970)

“Contrary to the argument regarding the 
conservatism of the multifactorial threshold model 
for describing the inheritance of congenital 
malformations, little biological insight has resulted 
from the series of tautological, albeit grandiose, 
mathematical assumptions currently comprising 
the basis for this hypothesis.” Melnick & Shields 

(RP) [11]. Each of these, in turn, can arise due to 
mutations in any of a large number of different genes 
(over 100 for RP) [12]. Calculating the heritability of 
blindness or the relative risks to family members, 
averaged across all of these conditions, would not be a 
worthwhile or informative endeavor; in fact, the resultant 
figures would be pretty meaningless. Even within one 
‘condition’, such as RP, such calculations would not be 
worthwhile as some cases are dominant, others recessive, 
some X-linked and others autosomal.

‘Mental retardation’ is another common condition that 
has very high underlying genetic heterogeneity [13,14]. In 
many cases, this heterogeneity is apparent because the 
condition often arises as part of a distinct and discernible 
genetic syndrome (causing typical facial morphology, for 
example). But if we had only the intellectual disability to 
go on, there would be no way to distinguish these sub-
types. If we looked at the inheritance of mental retarda-
tion as a whole, it would indeed fit the criteria for a 
‘complex’ disorder. Yet there is no reason to think that 
most, or indeed any, cases of mental retardation arise due 
to a polygenic mechanism (that is, in the absence of a 
reasonably penetrant mutation).

Are ‘diabetes’, ‘schizophrenia’ or ‘coronary artery 
disease’ any more specific than ‘mental retardation’ as 
diagnoses? If two patients had different underlying 
causes, would we have any way to know this on the basis 
of their symptom profiles? Is it not possible, even likely, 
that as with blindness or mental retardation, many 
different insults could give rise to a similar end-state? 
This is especially likely if our descriptors are crude. For 
psychiatric disorders, for example, there is no definitive 
biomarker, brain scan or blood test that can aid in clinical 
diagnosis. These disorders are defined on the basis of 
surface criteria: the patient’s behavior and reports of their 
subjective experience. The diagnostic categories are 
constantly being debated and the borders between them 
redefined (for example, [15]). Many patients’ diagnoses 
are fluid over time and two patients can have the same 
diagnosis without sharing a single symptom in common.

None of this gives much confidence that many disease 
categories are natural kinds. Treating them as such is 
thus a massive leap of faith, and as we will see, the 
empirical evidence has not upheld this belief. GWAS 
have not uncovered the expected common variants that 
would explain polygenic inheritance across each of these 
disorders. By contrast, the identification of rare, indi-
vidually causal variants in a large number of different 
genes in different people clearly demonstrates a very high 
degree of genetic heterogeneity underlying common, 
complex conditions.

This is especially noteworthy for psychiatric disorders 
such as autism and schizophrenia, where mutations in 
over 100 different loci have been found [16-19]. For 

schizophrenia, genetic heterogeneity had supposedly 
been definitively rejected on the basis of the observed 
distribution of familial relative risks [2-4]. As we have 
seen, this is a circular argument: those numbers only 
make any sense if the condition is indeed monolithic. As 
it happens, it is trivial to show that a similar distribution 
can be generated on the basis of genetic heterogeneity, 
even by an arbitrary division of cases into different modes 
of inheritance [18]. Indeed, as originally pointed out by 
James [20]: there is ‘an infinite number of parameter 
sets … which lead to the same frequencies in relatives’.

The other argument against genetic heterogeneity is 
that if rare mutations of high penetrance exist, they 
should have been found by linkage analysis [4,21,22]. This 
conclusion again rests on several assumptions: that 
linkage was sought with the right phenotype, that the 
inconsistent replication of linkage results necessarily 
means that the large number found are all false positives, 
and that the level of genetic heterogeneity is low enough 
that even lumping many different families together into 
one analysis should still yield real linkage peaks [18,23]. 
Again, the data indicate otherwise. Thus, the hypothesis 
of a polygenic architecture for these disorders arises from 
the unfounded assumption that they are actually 
common disorders, as opposed to umbrella terms for a 
diverse set of very rare genetic conditions that happen to 
share symptoms. This is, however, just the first of a series 
of assumptions underlying the search for common 
variants conferring disease risk.

The theoretical foundation of genome-wide 
association studies
GWAS are founded on the polygenic model of disease 
liability, which itself arises from an assertion of 
breathtaking audacity by the godfather of quantitative 
genetics, DS Falconer. In an attempt to demonstrate the 
relevance of quantitative genetics to the study of human 
disease, Falconer, based on work of others before him (for 
example, [24]), came up with a nifty solution [25]. Even 
though disease states are typically all-or-nothing, and 
even though the actual risk of disease is clearly very 
discontinuously distributed in the population (being 
dramatically higher in relatives of affected people, for 
example), he claimed that it was reasonable to assume 
that there was something called the underlying liability to 
the disorder that was actually continuously distributed. 
This could be converted to a discontinuous distribution 
by further assuming that only individuals whose burden 
of genetic variants passed an imagined threshold actually 
got the disease. To transform discontinuous incidence 
data (that is, mean rates of disease in various groups, 
such as people with different levels of genetic relatedness 
to affected individuals) into mean liability on a 
continuous scale, it was necessary to further assume that 

Mitchell Genome Biology 2012, 13:237 
http://genomebiology.com/2012/13/1/237

Page 2 of 11
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Is the abrupt threshold non-biological?
• People are classed as diseased or not disease, any error in this classification, 

contributes of a heritability of < 1.

• Wright(1934) showed that 3 vs 4 toes in guinea pigs “cannot correspond to 
alternate phases of a single factor (=gene)” and used crosses to show several 
factors (“> 3”) underly a physiological threshold

• Fraser (1976) Detailed explanation of the biology consistent with a 
multifactorial threshold model for cleft palate

Fraser(1976) The multifactorial/Threshold concept –uses and misuses Teratology
Wright (1934) An analysis  of variability in number of digits in an inbred strain of guineapig. Genetics 19 506
Wright (1934) The results of crosses between inbred strains of guinea pigs, differing in the number of. Genetics 19 537
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No need to invoke abrupt threshold of phenotypic liability – instead use 
Probability of risk of disease under liability threshold model

Two parameters: disease prevalence and heritability

“The abrupt threshold is thus 
conceptual rather than real and 
may be avoided by redefining the 
variance and risk function.” Smith 
1970

Curnow (1972) The multifactorial model for the inheritance of liabilty to disease and its implications for risk to relatives. 
Biometrics
Curnow & Smith (1975) Multifactorial models for familial diseases in man. J Royal Stat Soc A 138

! !"#$%#$ !"#"$%&!!"#$"!"%& = !)
= !Φ x− t

!!!
= !Φ x− t

1− ℎ!
!

Probit model

Probit model can be parameterised in terms of number of risk loci
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Controversy – many models fit empirical data

Fraser(1976) The multifactorial/Threshold concept –uses and misuses Teratology

“One cause of scepticism of the liability threshold model was the realization 
that the empirical data would also fit other models (Morton, ’67; Smith, ’71), 
such as a major gene combined with polygenic and environmental 
variation (Morton and MacLean, ’74,a single locus with two alleles, each 
with incomplete penetrance (Reich et al., ’72, or a heterogeneous mixture 
of cases determined either by a major locus with incomplete dominance 
and reduced penetrance or by environmental factors (Chung et al., ’74, or 
various combinations of these (Elston and Stewart, ’73; Lange and Elston, 
’75). 

This is because the extreme tail of the distribution (which is all one can 
usually see when diseases are uncommon) are not good indicators of the 
shape of the main body of the distribution. ”

Need risk to disease from relatives of different types of 
relatives to start to distinguish between models
Not easy to collect, large sampling variances
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Exchangeable models of disease
• For diseases 0.5%-2%
• High heritability
• Requires there be a large variance in risk among individuals. 

Consequently risk considered as a function of the number of 
causative alleles has to be steeply increasing.

Slatkin (2008)Exchangeable models of complex inherited diseases Genetics
most of the population has very low risk and a few
individuals have much higher risks. For example, if f is
beta distributed, i.e., Prð f Þdf } f a#1ð1# f Þb#1df , then
a ¼ 0.34 and b ¼ 3.31 for Var( f )/K2 ¼ 29. The as-
sumption of multiplicative interactions, with or without
the constraint that f # 1, is only one way to obtain a risk
function with such a large coefficient of variation of risk.
Any function for which the risk increases steeply in the
narrow range of genotypes present in relatively high
frequency will have the same qualitative properties. To
illustrate, consider the threshold model with parame-
ters chosen to approximate the constrained multiplica-
tive model. The solid line in Figure 1 shows the risk
under the multiplicative model as a function of i2 with
i1 ¼ 0 for the parameters given above. The dashed line
in Figure 1 shows the dependence of f on i2 for the
threshold model with b ¼ 5.7 3 10#8, p ¼ 0.198, T ¼ 22,
se ¼ 1.5, and L ¼ 70. The simulation results for this
model are similar to those from both multiplicative
models (Table 1). Even the additive model produces
similar results provided that it is constrained so that
values ,0 are set to 0 and values .1 are set to 1 (Table
1). These results demonstrate that it is not the multipli-
cative interaction among loci but the steep increase in
risk that creates the pattern of low prevalence and high
recurrence risk.

Additional simulation results confirm this conclu-
sion. The patterns are easiest to see in the threshold
model because the background risk (b), the range of
genotypes for which risk increases (T), and the steep-
ness of increase (1/se) can be varied independently.
In the multiplicative model, the overall shape of the
risk function depends on combinations of the parame-

ters. For example, the value of i2 for which f ¼ 0.5
(corresponding to T in the threshold model) is
# logð0:5Þ1 logðbÞ½ &=logð1 1 hrÞ.

The background risk, b, makes little difference in the
results as long as it is substantially smaller than the
average risk, K. Table 2 shows some typical results for a
series of cases in which K was constrained to 0.01. This
lack of sensitivity to changes in b confirms that the
behavior of the risk function only as risk starts to increase
determines patterns of recurrence risk and other measur-
able quantities.

If the model is fixed and L is allowed to vary, again
holding K constant, the main effect is to increase p, with
a smaller effect on KM, l1, and OR2 as shown in Figure 2.
The results are similar for other combinations of
parameters. Assuming a smaller number of loci does
not affect the qualitative conclusions and it reduces any
effects of linkage.

Increasing T while holding L and the other parame-
ters fixed has the opposite effect to increasing L: p
increases with increasing T, although KM and l1 are
somewhat more sensitive to changes in T (Figure 3).

Changes in se have almost no effect on p, but the
recurrence risks all increase as se becomes smaller, thus
confirming the importance of the steepness of the risk
function for recurrence risks. Some results are shown
in Table 3.

The results presented so far assume p is the same at
every locus. If p varies among loci, the results are
surprisingly similar. An example is shown in Table 4.
The parameter values are the same as for the threshold
model in Table 1 and Figure 1. The value of p that
yielded K ¼ 0.01 was used as the mean of a beta
distribution with a specified coefficient of variation
(CV) to generate a set of pj. That set of pj was tested to
determine whether 0.09 , K , 0.11 in the simulation
program, and the process continued until a set of pj

satisfying that condition was obtained. Then the simu-
lation program computed the other quantities of in-
terest. Results in Table 4 are based on averages of 106

replicates for each of five independent sets of pi. The
realized coefficients of variation in the five sets are 0.78,
0.72, 0.77, 0.71, and 0.72.

Figure 1.—Graphs of risk functions f 0; i2; L # i2ð Þ for the
models described in the text plotted against i2, the number of
heterozygous loci. For the two multiplicative models, b ¼ 5.7 3
10#8, r¼ 1; for the threshold model, b¼ 5.7 3 10#8, T¼ 22, and
se ¼ 2.5; for the constrained additive model, b ¼ #18

7 and
d ¼ 1

7 .

TABLE 2

Effect of varying b, the background risk, in the
threshold model

b p PAR OR1 OR2 KM l1

10#6 0.199 0.08 1.46 2.09 0.13 4.6
10#5 0.199 0.08 1.46 2.08 0.13 4.5
10#4 0.198 0.08 1.45 2.08 0.13 4.4
10#3 0.197 0.08 1.41 1.98 0.12 4.0

In all cases, L ¼ 70, T ¼ 22, se ¼ 2.5, h ¼ 0.5, and p is ad-
justed so that K¼ 0.01. All results are based on the averages of
106 replicates of the simulation program described in the text.

Exchangeable Models of Disease Risk 2257

Probability 
of disease

Number of risk alleles(x)

Multiplicative model – standard 
model used but allows probability of 
disease to be >1.
P(Disease)=P(Disease|x=0)Rx

Constrained multiplicative model –
constrain the multiplicative model 
to have a maximum probability of 1

“Additive” model
P(Disease)=b+xR, b=-18/7 set 
P(Disease)<0 to 0 and 
P(Disease)>1to 1
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Which polygenic model to use?
The liability threshold model is the model of choice because

• It is the simplest parameterization that fits the observable data

• It is mathematically tractable

• It makes least assumptions about genetic architecture

“Most models are wrong some models are useful”
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From theory to data

Profile risk scoring
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Discovery                         
Target Variance of target 

sample phenotype
explained by 
predictor

GWAS
association
results

Genome-
Wide 
genotypes

Select 
top SNPs 
and
identify 
risk 
alleles

Apply Genomic profiles
weighted sum of 
risk alleles

Evaluate   

SNP profiling schematic

Methods to identify risk 
loci and estimate SNP 
effects

Methods

Common pitfalls

Applications



Visualising variation between individuals for common 
complex genetic diseases

• Not all affected individuals carry the risk allele at any particular locus
• Unaffected individuals carry multiple risk loci
• Consequences of risk alleles depend on the genetic and environmental 

background 35
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Acronyms, synonyms
• PRS

– Polygenic risk score
• GPRS

– Genomic profile risk score
• PGS

– Polygenic score
• GRS

– Genetic risk score
• Gene score
• Genetic score
• Genotypic score
• Allele score
• Profile score
• Linear predictor

Slide credit: Frank Dudbridge

• Discovery = Training
• Target = Replication = Test



Polygenic risk predictons turns SNP efects into 
predicted genetic risk for an individual

Slide credit: Robert Maier

When SNP effects are estimated by standard 
GWAS there are arbitary decisions
• P-value threshold of SNPs
• LD pruning of SNPs

Discovery sample

Target sample



Purcell	/	ISC	et	al.	 Common	polygenic	variation	contributes	to	risk	of	schizophrenia	and	bipolar	disorder	Nature 2009

First	Application	of	Risk	Profile	Scoring
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PRS (“profile scoring”) in PLINK

• Reduce the SNPs to a set in approximate LD
– Best done using “clumping”: keep the most 

associated SNP, remove those in LD with it, then 
keep the next most associated remaining SNP, 
etc

– Recommend LD threshold of r2<0.1
plink --clump-p1 1 --clump-p2 1 --clump-r2 0.1 --clump-kb 500

• Estimate effect sizes of these SNPs
plink --assoc



PRS (“profile scoring”) in PLINK

• Create a file listing SNPs and their effect sizes
– Take logs of odds ratios
awk

• Create a file listing p-value thresholds to 
select SNPs into PRS

• Generate PRS for subjects in the target 
sample
plink --score --q-score-range

• Regress target phenotype against PRS
glm(y~prs, family=binomial)



PRSice
• R package to simplify calculations of PRS
• http://prsice.info



Practical –Risk Models
1. Additive risk model.

a. Run code
b. Change parameters

2. Multiplicative risk model.
a. Run code
b. Change parameters

3. Logistic risk model.
a. Run code
b. Change parameters

4. Liability threshold model
a. Run code
b. Change parameters
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Practical – Polygenic risk scoring
• Demonstrate impact of overlap 

between Discovery & Target sample
• Learn to simulate SNP data
• Explore impact of
– N sample size
–M markers
– h2 true variance explained by SNPs

on variance explained by predictor
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