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ABSTRACT

A model of unlinked diallelic loci affecting the risk of a complex inherited disease is explored. The loci are
equivalent in their effect on disease risk and are in Hardy–Weinberg and linkage equilibrium. The goal is to
determine what assumptions about dependence of disease risk on genotype are consistent with data for
diseases such as schizophrenia, bipolar disorder, autism, and multiple sclerosis that are relatively common
(0.1–2% prevalence) and that have high concordance rates for monozygotic twins (30–50%) and high risks
to first-degree relatives of affected individuals (risk ratios exceeding 4). These observations are consistent
with a variety of models, including generalized additive, multiplicative, and threshold models, provided that
disease risk increases rapidly for a narrow range of numbers of causative alleles. If causative alleles are in
relatively high frequency, then the combined effects of numerous causative loci are necessary to substantially
elevate disease risk.

COMPLEX inherited diseases are, by definition, af-
fected by more than one genetic locus. Although

many alleles associated with higher risks of complex
diseases have been identified, almost nothing is known
about interactions among them or whether there is any
commonality to the genetic architecture of different
diseases. In this article, I examine a class of models of
complex inherited diseases in which all loci increasing
disease risk are equivalent in their effects. The goal is
to find general properties of such models in randomly
mating populations.

I am particularly concerned with diseases that have
prevalences in the range 0.1–2% and that are highly
heritable, meaning that the concordance probability for
monozygotic (MZ) twins is in the range 30–50% and the
risk ratio for first-degree relatives [Risch’s (1990) l1] is
in the range 4–10. Such diseases are regarded as
common because their prevalence is much higher than
monogenic diseases and because they constitute a major
burden on health care systems in developed countries.
Several diseases, including autism (Szatmari et al.
2007), schizophrenia (Sullivan et al. 2003), bipolar
disorder (Smoller and Finn 2003), multiple sclerosis
(Oksenberg and Barcellos 2005), and type 1 and type
2 diabetes (Permutt et al. 2005), are of this type. Other
diseases, including congenital heart disease (Romano-
Zelekha et al. 2001) and most cancers (Amundadottir

et al. 2004), are as prevalent but have substantially lower
concordance rates for MZ twins and smaller risk ratios.

I show that evidence of high heritability requires that
there be a large variance in risk among individuals.

Consequently, risk considered as a function of the
number of causative alleles has to be steeply increasing
in the narrow range of genotypes found in appreciable
frequency in a population.

Most recent analyses of complex diseases have been
based on a model of multiplicative interactions across
loci. The use of the multiplicative model is traceable to
Risch (1990), who showed it provides a better fit to
estimates of recurrence risk in first-, second-, and third-
degree relatives than do models of additive and hetero-
geneous interactions. Specifically, Risch (1990) showed
that, under the multiplicative model, estimated recur-
rence risks for schizophrenia (and by implication other
complex diseases) decreased more rapidly with the
degree of relationship than is predicted by an additive
model. He also showed that a model of genetic het-
erogeneity (Morton et al. 1970), in which each of
several causative loci separately increases risk, is similar
to an additive model and hence also inconsistent with
the schizophrenia data.

The multiplicative model largely replaced two models
from classical quantitative genetics, the threshold model,
in which an underlying liability is treated as a normally
distributed quantitative character, and the major-gene
model, in which the risk conferred by a single locus
is affected by many modifier loci of small effect. Both
these models have been extensively analyzed (Smith

1971) and for some purposes they represent extremes
of the range of possible quantitative genetic models
(Curnow and Smith 1975). Neither model depends
on the number of loci, on the frequencies of alleles at
each locus, or on explicit assumptions about interac-
tions within and between loci. Instead they assume
normality of underlying genetic and environmental ef-
fects and are parameterized in terms of variance com-
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ponents. Edwards (1960) showed that it is very difficult
to distinguish between the threshold and major-gene
models by using recurrence risk data.

Risch’s (1990) multiplicative model differs from the
two quantitative genetic models because it makes
explicit assumptions about the effects of each locus.
Its popularity derives in part from its mathematical
simplicity. The recurrence risk attributable to each locus
is calculated separately and then the overall recurrence
risk is obtained by multiplying across loci. The multipli-
cative model has served as the basis for estimating the
number of causative loci (Farrall and Holder 1992;
Schliekelman and Slatkin 2002; Lindsey 2005) and
has been used in other theoretical studies, including
those addressing the question of whether rare or
common alleles are primarily responsible for complex
diseases (Pritchard 2001; Reich and Lander 2001;
Peng and Kimmel 2007).

In this article, I first review the population genetics of
multiple loci in randomly mating populations and then
define three exchangeable models (additive, multipli-
cative, and threshold) in which loci are equivalent in
their effect on disease risk. I show that when allele
frequencies are the same at each locus, the results of the
three classes of models are similar provided that risk
increases steeply in a narrow range of numbers of caus-
ative alleles. Finally, the threshold model is explored to
illustrate how different features of the risk model affect
the frequencies of causative alleles and the pattern of
recurrence risk.

THEORY

Multilocus Mendelism: Throughout, the genotypes of
each locus are assumed to be in their Hardy–Weinberg
(HW) frequencies and all loci are assumed to be in
linkage equilibrium (LE), assumptions summarized as
HWLE (Barton and Turelli 2004). Each locus has only
two alleles, 1 and –, where 1 tends to increase disease
risk. There are L loci and the frequency of 1 at locus j is pj .

Under HW, the probabilities that an individual has
genotypes 1/1, 1/–, and –/– at locus j are p2

j , 2pj(1 �
pj), and (1 � pj)2. If the loci are in LE, the joint
probability that a randomly chosen individual has
i1 1/1 loci, i2 1/– loci, and i3 –/– loci (i1 1 i2 1 i3 ¼ L)
is obtained by taking the convolution of L distributions
with these probabilities. If all pj are equal, that distribu-
tion is a trinomial with sample size L.

The joint probability of pairs of genotypes at each
locus in relatives with relationship R depends on two
quantities, u, the probability that the relatives share
exactly one allele identical by descent (IBD), and g, the
probability that they share two alleles IBD. In an outbred
population, u ¼ 1

2 and g ¼ 1
4 for full siblings, u ¼ 1 and

g ¼ 0 for parents and offspring, and so on. The joint
probability of genotypes at a locus is computed from
Mendelism combined with the HW frequencies

Prð1 =1 ; 1 =1 Þ ¼ ð1� u� gÞp4 1 up3 1 gp2

Prð1 =1 ; 1 =�Þ ¼ Prð1 =�; 1 =1 Þ
¼ ð1� u� gÞ2p3ð1� pÞ1 up2ð1� pÞ

Prð1 =1 ;�=�Þ ¼ Prð�=�; 1 =1 Þ ¼ ð1� u� gÞp2ð1� pÞ2

Prð1 =�; 1 =�Þ ¼ ð1� u� gÞ4p2ð1� pÞ2

1 upð1� pÞ1 g2pð1� pÞ
Prð1 =�;�=�Þ ¼ Prð�=�; 1 =�Þ

¼ ð1� u� gÞ2pð1� pÞ3 1 upð1� pÞ2

Prð�=�;�=�Þ ¼ ð1� u� gÞð1� pÞ4 1 uð1� pÞ3 1 gð1� pÞ2;

ð1Þ

where the subscript j is omitted for notational conve-
nience. Equation 1 is adapted from Table 5 of Liu and
Weir (2005). In Risch’s (1990) notation cR ¼ u/2 1 g

and uR ¼ g.
For unlinked loci, the joint probabilities of the nine

pairs of genotypic configurations are obtained by taking
the L-fold convolution of the probabilities in Equation
1. If p is the same at every locus, the result is a multi-
nomial with nine categories and sample size L.

Exchangeable models of risk: In the sense used here,
a model is exchangeable if the identities of the loci can
be exchanged and leave the risk unchanged. In that case,
the overall risk depends on i1, the number of 1/1 loci,
i2, the number of 1/– loci, and i3, the number of –/–
loci (i1 1 i2 1 i3 ¼ L). That usage is consistent with the
meaning of ‘‘exchangeable’’ in probabilistic models such
as that of Cannings (1974). I consider four exchange-
able models in this article, the unconstrained multipli-
cative, the constrained multiplicative, the additive, and
the threshold models. The unconstrained multiplicative
and additive models were analyzed by Risch (1990). The
threshold model is from classical quantitative genetics
and is also a generalization of the model of genetic
heterogeneity analyzed by Risch (1990).

In the unconstrained multiplicative model, the risk at-
tributable to locus j is fj: fj ¼ b1=Lð1 1 rÞ if locus j is 1/1,
fj ¼ b1=Lð1 1 hr Þ if locus j is 1/–, and fj ¼ b1=L if locus j
is –/–. With this parameterization, b (the background
risk) is the risk to an individual homozygous for – at all
L loci, h is the degree of dominance, and 1 1 r is the
ratio of the risk to an individual with 1/1 at a locus to
an individual with –/– at that locus (the odds ratio). The
overall risk is obtained by multiplying across loci,
weighting each locus by the probability of its genotype.
For a given set of parameter values, the risks assigned to
some genotypes by the multiplicative model may exceed
1. In the unconstrained multiplicative model, risks .1
are allowed, and in the constrained multiplicative model
the risk is set to 1 if the computed risk is .1.

In the additive model, the contribution of each locus
to overall risk is the same as in the multiplicative model.
The difference is that overall risk is the sum of the
contributions from each locus: f ¼

PL
i¼1 fi . The risk for

the additive model is defined to be f ¼ b 1 r ði1 1 hi2Þ.
Here, the additive model is constrained so that 0 # f # 1.
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The threshold model comes from the theory of
quantitative genetics (Falconer 1981; Chap. 18). The
model assumes an underlying liability, x, which is the
sum of a genetic component g ¼ i1 1 hi2 and an
independent environmental component e : x ¼ g 1 e,
where e is a normally distributed random variable with
mean 0 and variance s2

e . The parameter T is the
threshold value of x; the risk is b if x , Tand 1 otherwise.
With these definitions f ðg Þ ¼ b 1 1� bð Þerfc T � gð Þ=½
se

ffiffiffi
2
p� �
�=2, where erfc is the complementary error

function, erfcðzÞ ¼ 2=
ffiffiffiffi
p
pð Þ

Ð ‘

z e�t2

dt. For se , 1
4 f is

equivalent to a step function of g, considered by
Lindsey (2005). If se , 1

4 and 0 , T , 1, the threshold
model is equivalent to the heterogeneous model ana-
lyzed by Risch (1990). For larger values of se, f is a
sigmoid function centered at g ¼ T with a slope at T
proportional to 1/se.

OBSERVABLE QUANTITIES

Prevalence and recurrence risk: The data available for
a complex disease are the prevalence K and the recur-
rence risks to relatives of relationship R, KR. The risk ra-
tio is defined to be lR ¼ KR=K . In the notation used here,

K ¼
X

G

f ðGÞPrðGÞ; ð2Þ

where G represents the multilocus genotype (i1, i2, i3)
and the sum is over all possible genotypes.

From James (1971),

KR ¼
1

K

X
G ;G9

f ðGÞf ðG9ÞPrðG ;G9Þ; ð3Þ

where G9 is the genotype of a relative with relationship
R. The joint probability of G and G9 is obtained from
Equation 1 and the assumption of no linkage. For MZ
twins, Equation 3 is equivalent to Equation 2 with f(G)
replaced by f 2ðGÞ. Consequently, KM depends on the
variance in risk: KM ¼ K 1 Varðf Þ=K .

Here, I consider five classes of relatives: MZ twins (R¼
M: u ¼ 0, g ¼ 1), full siblings (R ¼ S: u ¼ 1

2 , g ¼ 1
4 ), first-

degree relatives (parent–offspring) (R¼ 1: u¼ 1, g¼ 0),
second-degree relatives (grandparent–offspring, half
siblings, aunt– or uncle–niece or nephew) (R ¼ 2:
u ¼ 1

2 , g ¼ 0), and third-degree relatives (first cousins)
(R¼ 3: u ¼ 1

4 , g¼ 0). Results are reported in terms of the
prevalence, K, the concordance probability for MZ
twins, KM, and the risk ratios for other relatives,
lR ¼ KR=K . Of particular interest are the values of l1,
l2, and l3. Risch (1990) showed that for the additive
model, l1 � 1 ¼ 2 l2 � 1ð Þ ¼ 4 l3 � 1ð Þ and for the mul-
tiplicative model l1 � 1 . 2 l2 � 1ð Þ. 4 l3 � 1ð Þ.

Population-attributable risk and odds ratios: The
population-attributable risk of locus j (PARj) of 1 at

locus j is the scaled difference between the frequency in
affected individuals and the frequency in the population,

PARj ¼
pC

j � pj

1� pj
; ð4Þ

where pC
j is the frequency of 1 at locus j among affected

individuals (i.e., cases) (Bengtsson and Thomson 1981).
Other denominators are also used.

The odds ratios for a locus are the ratios of average
risks to individuals with known genotypes. Let f1/1, f1/–,
and f–/– be the average risks to individuals with geno-
types 1/1, 1/–, and –/– at a locus. The two odds ratios
of interest are OR2 ¼ f1/1/f–/– and OR1 ¼ f1/–/f–/–.

Analytic results for the unconstrained multiplicative
model: For the unconstrained multiplicative model
(Risch 1990), the overall risk to an individual is the
product across loci: f ¼

QL
j¼1 fj . Therefore, in the nota-

tion used here,

f ¼ bð1 1 rÞi1ð1 1 hr Þi2 : ð5Þ

The unconstrained multiplicative model is particularly
simple to analyze because the average risk (K) and the
risks to relatives of affected individuals are obtained
by finding the contribution for each locus and then
multiplying across loci (Risch 1990).

The average risk attributable to locus j is �fj ¼
b1=L

�
1 1 p2

j r 1 2pjð1� pjÞhr
�

and hence the prevalence
is

K ¼ b
YL
j¼1

�
1 1 p2

j r 1 2pjð1� pjÞhr
�
: ð6Þ

Risch (1990) showed that lR ¼
QL

j¼1 lj R
, where

ljR ¼ 1 1
ðu 1 2gÞVjA=2 1 gVj D

�f 2
j

ð7Þ

and VjA and Vj D
are the additive and dominance com-

ponents of the variance in risk attributable to locus
j. Using the standard theory of quantitative genetics
(Falconer 1981),

VjA ¼
1

2
pjð1� pjÞb2=Lr 2 1 1 ð2h � 1Þð1� 2pjÞ

� �2 ð8Þ

and

Vj D ¼ pjð1� pjÞb1=Lrð2h � 1Þ
� �2

: ð9Þ

The PAR for the multiplicative model depends only
on pj:

PARj ¼
p2

j r 1 pjhrð1� 2pjÞ
1 1 p2

j r 1 2pjð1� pjÞhr
: ð10Þ

If h ¼ 1
2 , this equation reduces to PARj ¼ pj r= 2ð1 1½

pj r Þ�.
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Obviously OR1 ¼ 1 1 r and OR2 ¼ 1 1 hr.
Numerical analysis: To obtain numerical results I

wrote a Mathematica program to evaluate the above
expressions. It provides exact results but is very slow if
L . 15. To analyze models with larger L, I wrote a
stochastic simulation program in C that randomly
generates pairs of genotypes in relatives by using
Equation 1 with specified values of u and g, computes
the risk for each genotype generated, and then averages
over a large number of replicates. Results from the
simulation program agree with those from the Mathe-
matica program and with the analytic results for the
multiplicative model. Both the Mathematica and C
programs numerically determine the average allele
frequency necessary to obtain a specified K. Copies of
the Mathematica and C programs are available from the
Slatkin lab web site.

I first consider the unconstrained multiplicative
model and then show that the other models produce
comparable results. If h ¼ 1

2 and pj ¼ p, the analytic
results for the unconstrained multiplicative model
reduce to

K ¼ bð1 1 rpÞL; ð11Þ

KM ¼ K 1 1
pð1� pÞr 2

2ð1 1 pr Þ2
	 
L

; ð12Þ

and

l1 ¼ 1 1
pð1� pÞr 2

4ð1 1 pr Þ2
� �L

: ð13Þ

There are only four parameters, p, b, r, and L. Typical
values for the odds ratios found in recent genomewide
association (GWA) studies are on the order of 2 for
individuals homozygous for the SNP associated with the
disease, so it is reasonable to set r to 1. There are then
three equations satisfied by the remaining three param-
eters. These equations can be used to find parameter
values consistent with low K, and relatively high KM, and
l1. For example, if b ¼ 5.7 3 10�8, p ¼ 0.1882, and L ¼
70, then K¼ 0.01, KM¼ 0.4, and l1¼ 6.48. Other results
for this model are shown in Table 1 in the column for
the unconstrained multiplicative model.

Although these parameters predict the desired re-
sults, there are two problems. First, the risk is .1 for
individuals with a sufficient number of 1 alleles. In
fact, with these parameters, the risk for an individual
homozygous for 1 at all loci exceeds 1010. Second,
assuming 70 unlinked loci with odds ratios of 2 makes
the assumption of free recombination implausible.
With only 26 chromosome pairs, 70 randomly chosen
loci are not likely to be all freely recombining.

The effect of allowing f . 1 is minor because, under
HWLE, individuals with risks .1 are present only in very

low frequencies. In this case, Pr( f . 1) ¼ 3.67 3 10�4.
Table 1 shows that simply setting the risks for those
individuals to 1—the constrained multiplicative model—
makes only a small difference in p although a somewhat
larger difference in the recurrence risks. The average
risk, from which p is computed, depends on the first
moment of f while the recurrence risks depend on the
second moment: hence the greater sensitivity of the
recurrence risks to disallowing unfeasibly large f. Other
results for this model are shown in Table 1.

In general, linkage of pairs of loci increases recur-
rence risk. The reason is that linkage causes the
probabilities of IBD at pairs of loci to differ from the
product of the probabilities for each locus separately.
For example, in full siblings the probability that loci on
two randomly chosen chromosomes have both alleles
IBD is not the square of the one-locus probabilities,
ðu=2 1 gÞ2 ¼ 1

4 , but is slightly larger, (1 1 (1 – 2c)2)/4,
where c is the recombination rate between the loci
(Lynch and Walsh 1998, p. 147). Consequently, the
covariance in risk between full siblings is slightly
elevated because multiplicative interactions between
loci create a small additive 3 additive epistatic compo-
nent of the variance. The effect will be minor unless loci
are very closely linked or several loci are linked, in which
case a simulation study would be required to determine
the exact dependence of recurrence risks on the linkage
map. Interestingly, the recurrence risk for parent–
offspring pairs is unaffected by linkage because exactly
one allele at every locus is necessarily IBD.

We can understand why we are getting these results
from the two multiplicative models by considering
further the relationship between recurrence risk and
the distribution of risk. In general, large KM is associated
with large l1. Recall that KM ¼ K 1 Varð f Þ=K ¼
K ½1 1 Varð f Þ=K 2�. If KM ? K, then Var( f )/K2 ? 1.
For example, if K¼ 0.01 and KM¼ 0.3, then Var( f )/K2¼
29. Because f . 0, that condition can be satisfied only if

TABLE 1

Comparison of results from simulations of the multiplicative,
threshold, and constrained additive models with
parameter values chosen so that the dependence

of f on i2 with i1 ¼ 0 is similar

Multiplicative

Unconstrained Constrained Threshold Additive

p 0.1883 0.1889 0.198 0.204
KM 0.33 0.16 0.13 0.29
l1 6.5 4.9 4.6 7.80
l2 3.2 2.3 2.3 3.3
l3 1.6 1.5 1.6 1.8
PAR 0.08 0.08 0.08 0.10
OR1 1.5 1.48 1.46 1.57
OR2 2.0 1.94 2.08 2.40

In all cases, K ¼ 0.01. The parameter values for the four
models illustrated in Figure 1 were used.
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most of the population has very low risk and a few
individuals have much higher risks. For example, if f is
beta distributed, i.e., Prð f Þdf } f a�1ð1� f Þb�1df , then
a ¼ 0.34 and b ¼ 3.31 for Var( f )/K2 ¼ 29. The as-
sumption of multiplicative interactions, with or without
the constraint that f # 1, is only one way to obtain a risk
function with such a large coefficient of variation of risk.
Any function for which the risk increases steeply in the
narrow range of genotypes present in relatively high
frequency will have the same qualitative properties. To
illustrate, consider the threshold model with parame-
ters chosen to approximate the constrained multiplica-
tive model. The solid line in Figure 1 shows the risk
under the multiplicative model as a function of i2 with
i1 ¼ 0 for the parameters given above. The dashed line
in Figure 1 shows the dependence of f on i2 for the
threshold model with b ¼ 5.7 3 10�8, p ¼ 0.198, T ¼ 22,
se ¼ 1.5, and L ¼ 70. The simulation results for this
model are similar to those from both multiplicative
models (Table 1). Even the additive model produces
similar results provided that it is constrained so that
values ,0 are set to 0 and values .1 are set to 1 (Table
1). These results demonstrate that it is not the multipli-
cative interaction among loci but the steep increase in
risk that creates the pattern of low prevalence and high
recurrence risk.

Additional simulation results confirm this conclu-
sion. The patterns are easiest to see in the threshold
model because the background risk (b), the range of
genotypes for which risk increases (T), and the steep-
ness of increase (1/se) can be varied independently.
In the multiplicative model, the overall shape of the
risk function depends on combinations of the parame-

ters. For example, the value of i2 for which f ¼ 0.5
(corresponding to T in the threshold model) is
� logð0:5Þ1 logðbÞ½ �=logð1 1 hrÞ.

The background risk, b, makes little difference in the
results as long as it is substantially smaller than the
average risk, K. Table 2 shows some typical results for a
series of cases in which K was constrained to 0.01. This
lack of sensitivity to changes in b confirms that the
behavior of the risk function only as risk starts to increase
determines patterns of recurrence risk and other measur-
able quantities.

If the model is fixed and L is allowed to vary, again
holding K constant, the main effect is to increase p, with
a smaller effect on KM, l1, and OR2 as shown in Figure 2.
The results are similar for other combinations of
parameters. Assuming a smaller number of loci does
not affect the qualitative conclusions and it reduces any
effects of linkage.

Increasing T while holding L and the other parame-
ters fixed has the opposite effect to increasing L: p
increases with increasing T, although KM and l1 are
somewhat more sensitive to changes in T (Figure 3).

Changes in se have almost no effect on p, but the
recurrence risks all increase as se becomes smaller, thus
confirming the importance of the steepness of the risk
function for recurrence risks. Some results are shown
in Table 3.

The results presented so far assume p is the same at
every locus. If p varies among loci, the results are
surprisingly similar. An example is shown in Table 4.
The parameter values are the same as for the threshold
model in Table 1 and Figure 1. The value of p that
yielded K ¼ 0.01 was used as the mean of a beta
distribution with a specified coefficient of variation
(CV) to generate a set of pj. That set of pj was tested to
determine whether 0.09 , K , 0.11 in the simulation
program, and the process continued until a set of pj

satisfying that condition was obtained. Then the simu-
lation program computed the other quantities of in-
terest. Results in Table 4 are based on averages of 106

replicates for each of five independent sets of pi. The
realized coefficients of variation in the five sets are 0.78,
0.72, 0.77, 0.71, and 0.72.

Figure 1.—Graphs of risk functions f 0; i2; L � i2ð Þ for the
models described in the text plotted against i2, the number of
heterozygous loci. For the two multiplicative models, b ¼ 5.7 3
10�8, r¼ 1; for the threshold model, b¼ 5.7 3 10�8, T¼ 22, and
se ¼ 2.5; for the constrained additive model, b ¼ �18

7 and
d ¼ 1

7 .

TABLE 2

Effect of varying b, the background risk, in the
threshold model

b p PAR OR1 OR2 KM l1

10�6 0.199 0.08 1.46 2.09 0.13 4.6
10�5 0.199 0.08 1.46 2.08 0.13 4.5
10�4 0.198 0.08 1.45 2.08 0.13 4.4
10�3 0.197 0.08 1.41 1.98 0.12 4.0

In all cases, L ¼ 70, T ¼ 22, se ¼ 2.5, h ¼ 0.5, and p is ad-
justed so that K¼ 0.01. All results are based on the averages of
106 replicates of the simulation program described in the text.
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Overall the effect of increasing CV is to reduce
recurrence risks slightly. The reason is simple. Allowing
variation in pj reduces the extent of variation in i1 and i2
in the population. Recurrence risks reflect the shape of
the risk function within a narrow range of genotypes.
Hence, reducing the range of genotypes somewhat
reduces recurrence risks.

The results so far assume h ¼ 1
2 . Varying h has a strong

effect on p: lower h requires larger p to obtain the same

K, as shown in Figure 4. Once again, whether p is large
or small depends on the details of the risk model.
Surprisingly, the recurrence risks are slightly smaller for
intermediate h, probably because assuming the same p
at all loci constrains the variation in genotypic values
more for h ¼ 0 or 1 than for intermediate values of h.

Testing for epistasis: Several GWA studies have tested
for interactions among SNPs found in their studies and
have concluded that there is no evidence for deviations
from the multiplicative model. The most extensive
testing was done by Maller et al. (2006) in a study of
three loci containing five SNPs affecting the risk of age-
related macular degeneration (AMD). Together these
five SNPs account for about half of the recurrence risk to
siblings. Maller et al. found no significant deviations
from the multiplicative model. The question is whether
significant deviations would have been found if the
threshold model were the true model. To answer this
question, I simulated a threshold model with L¼ 20, b¼
10�5, T ¼ 10, se ¼ 1.5, and pj generated from a beta
distribution with CV ¼ 0.75, as described above. The
average frequency needed to obtain K ¼ 0.01 is p ¼
0.259. Then the first five loci for which pj . 0.1 were
assumed to be recognized as causative. One thousand
cases and 1000 controls were randomly sampled from
the simulated population and tested for a significant
deviation from the multiplicative model. The sample
sizes in the Maller et al. study were 1238 cases and 934
controls. Eight of 100 replicates of this experiment
deviated from the multiplicative model at the 5% level.

Figure 2.—Dependence of p, OR2, KM, and l1 on L, the
number of loci, while other parameters are held constant.
In all cases, the threshold model was used with h ¼ 1

2 , b ¼
10�5, T ¼ 22, and se ¼ 2.5. For each set of parameter values
p was chosen so K ¼ 0.01. All results are based on 106 repli-
cates of the simulation program described in the text.

Figure 3.—Dependence of p, OR2, KM, and l1 on T, the
number of loci, while other parameters are held constant.
In all cases, the threshold model was used with h ¼ 1

2 , b ¼
10�5, L ¼ 70, and se ¼ 2.5. For each set of parameter values
p was chosen so K ¼ 0.01. All results are based on 106 repli-
cates of the simulation program described in the text.

TABLE 3

Effect of varying se in the threshold model

se p PAR OR1 OR2 KM l1

1.0 0.22 0.11 1.6 2.5 0.49 10.7
1.5 0.22 0.10 1.6 2.4 0.32 8.2
2.5 0.20 0.08 1.5 2.1 0.13 4.6
3.5 0.18 0.06 1.4 1.9 0.06 2.7
4.5 0.15 0.04 1.3 1.7 0.03 2.0

In all cases, L ¼ 70, T ¼ 22, h ¼ 0.5, b ¼ 10�5, and p is ad-
justed so that K¼ 0.01. All results are based on the averages of
106 replicates of the simulation program described in the text.

TABLE 4

Effect of allowing for variation in allele frequencies
among loci

CV KM lS l1 l2 l3

0 0.13 4.6 4.6 2.3 1.6
0.5 0.12 4.4 4.4 2.3 1.5
0.75 0.11 4.1 4.1 2.2 1.5

In all cases, the threshold model with L ¼ 70, h ¼ 1
2 , b ¼

10�5, and T ¼ 22 was used. All results for the cases with
CV . 0 are averages of five sets of pj generated as described
in the text, with 106 replicates for each set.
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In a similar experiment with the multiplicative model, 5
of 100 replicates deviated at the 5% level.

Population-attributable risk: The PAR of an allele is
proportional to the difference in allele frequency in
cases and controls. It is a convenient description of an
allele’s effect because the difference in allele frequen-
cies can be related to standard population-genetics
theory of selection (Lynch and Walsh 1998). The
constant of proportionality differs among studies. Here
I use the scaling suggested by Bengtsson and Thomson

(1981, Equation 4). When p varies among loci, the
simulation program described above computes PAR for
each locus. Figure 5a shows scatter plots of PARj against
pj for the unconstrained multiplicative, threshold, and
constrained additive models shown in Figure 1, with the
CV in pj being 0.75. The results for the unconstrained
multiplicative model follow the prediction of Equation
10. The comparable threshold and additive models
produce similar results, as shown.

To determine whether there is any similarity between
these results and available information from GWA
studies, I compiled frequencies of SNPs significantly
associated with type II diabetes in three recent GWA
studies (Scott et al. 2007; Sladek et al. 2007; Zeggini

et al. 2007). The results are summarized in Table 5 and
the scatter plot of PAR vs. p is shown in Figure 5b. Except
for one SNP (rs9300039), values of PAR are not far from
a single line, suggesting that the assumption of equal
effects across loci, at least those detected in these
studies, may be roughly valid.

DISCUSSION AND CONCLUSIONS

The conclusion from the analysis presented here is
that the genetic architecture of complex inherited
diseases with relatively high heritabilities is constrained
in such a way that there has to be a large variance in risk
among genotypes present in a population. A large var-
iance in risk can be achieved under a variety of models of
gene interaction, including the exchangeable multipli-
cative, threshold, and additive models examined here.
The observations that have supported the use of the
multiplicative model—namely the pattern of decrease
of risk to first-, second-, and third-degree relatives and
the failure to reject the multiplicative model for SNPs
identified in GWA studies—are consistent with other
models as well, provided that they result in the right
pattern of variation in risk. The assumption of Hardy–
Weinberg frequencies and linkage equilibrium implies
that the distribution among individuals of the number
of causative alleles is narrow. The risk function only for
genotypes that are present in appreciable frequencies
affects observable quantities.

An alternative and more positive way to view these
results is that, because other models of gene interaction
create patterns that are hardly distinguishable from the
multiplicative model even under idealized conditions,
that model can be used for many practical purposes.
That is true, but the utility the multiplicative model for
some purposes does not mean that its assumptions are
true in general. Conclusions from population genetic

Figure 4.—Dependence of p, KM, and l1 on h, the degree
of dominance, while other parameters are held constant. In
all cases, the threshold model was used with L ¼ 70, b ¼
10�5, T ¼ 22, and se ¼ 2.5. For each set of parameter values
p was chosen so K ¼ 0.01. All results are based on 106 repli-
cates of the simulation program described in the text.

Figure 5.—Allele frequency vs. popula-
tion-attributable risk (PAR). (a) Results
from simulations of the three models (un-
constrained multiplicative, threshold, and
constrained additive) illustrated in Figure
1. In all cases, K ¼ 0.01, CV ¼ 0.75, and re-
sults are based on a single set of pj gener-
ated as described in the text and 106

replicates for each model. PAR is the pop-
ulation-attributable risk calculated from
Equation 4 in the text. (b) Scatter plot of
data in Table 5.
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models that assume multiplicative interactions across
loci have to be checked for robustness to ensure they are
still valid under more general models of the kind
analyzed here.

The models analyzed in this article assumed equal ef-
fects on risk of a possibly unrealistic number of unlinked
loci. These models are not intended to represent the
architecture of any particular complex inherited disease
but instead allow exploration of the consequences of
what is assumed about many diseases, namely that they
are affected by numerous loci that independently in-
crease risk. More realistic models that are consistent with
observations have to have the same overall property that
the variance in risk has to be relatively large.

The results presented here have some bearing on the
question of whether alleles that cause inherited diseases
tend to be common or rare. Population genetics theory
has been used to argue both for and against the
generalization that complex diseases are caused by
common alleles (Pritchard 2001; Reich and Lander

2001; Pritchard and Cox 2002). Even if the number of
loci (L) that can carry causative alleles is relatively large,
the number that has to interact to produce substantially
elevated risk (T in the threshold model) may be small
or large. Recurrence risk data do not strongly constrain
T. If T is relatively small, then causative allele frequen-
cies have to be in low frequency. Otherwise, average risk
would be too high. If most causative alleles are common,
T has to be much larger, implying that the combined
effects of many loci are required for risk to be elevated.

I thank N. B. Freimer and G. J. Thomson for helpful discussions of
this topic, A. Albrechtsen for writing the program in R that did the
statistical test for epistasis, and R. R. Hudson and the referees for
helpful comments on an earlier version of this manuscript. This
research was supported in part by grant R01-GM40282 from the
National Institutes of Health.
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