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Aims of Lecture 7
1. Statistics to evaluate risk profile scores

a. Nagelkerke’s R2

b. AUC
c. Decile Odds Ratio
d. Variance explained on liability scale
e. Risk stratification

2. Examples of Use of Risk Profile Scores
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Visualising variation between individuals for common 
complex genetic diseases
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Evaluate efficacy of score predictor
Regression analysis: 
– y= phenotype, x = profile score. 
– Compare variance explained from the full model (with x) compared to a 

reduced model (covariates only). 
– Check the sign of the regression coefficient to determine if the 

relationship between y and x is in the expected direction.

– BINARY TRAIT
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Purcell	/	ISC	et	al.	 Common	polygenic	variation	contributes	to	risk	of	schizophrenia	and	bipolar	disorder	Nature 2009

First	Application	of	Risk	Profile	Scoring
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Statistics to evaluate polygenic 
risk scoring 1.

1. Nagelkerke’s R2

– Pseudo-R2 statistic for logistic regression

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm

Cox & Snell R2

Full model: y ~ covariates + score         Logistic, y= case/control = 1/0
Reduced model: y ~ covariates
N: sample size

This definition gives R2 for a quantitative trait.
For a binary trait in logistic regression, C&S R2 has maximum 

Nagelkerke’s R2 divides Cox & Snell R2 by its maximum to give an R2 with usual 
properties of between 0 and 1.

= 1− exp 2
! !"#!$%&'$ℎ!!"!(!"#$%"#!!"#$% )!!
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Problem with Nagelkerke’s R2

K = disease prevalence

Predictor explains 7% of 
variance in liability
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Statistics to evaluate polygenic 
risk scoring 2.

2. Area Under Receiver Operator Characteristic Curve

– Well established measure of validity of tests for classifier diseased vs non-
diseased individuals

– Nice property – independent to proportion of cases and controls in sample
– Range 0.5 to 1
– 0.5 the score has no predictive value
– Probability that a randomly selected case has a score higher than a 

randomly selected control
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Visualising AUC

AUC = Probability that a randomly 
selected case has a higher test score 

than a randomly selected control

• Rank individuals on score from highest ranked to lowest 
• Start at origin on graph
• Work through list of ranked individuals
• Move one unit along y-axis if next individual is a case
• Move one unit along x-axis if next individual is a control



Problem with AUC

Complex genetic diseases
Table 1 lists AUCmax for a range of complex genetic diseases

calculated using equation 3, with h2
L calculated using equation 1

from published estimates of K and lS. Despite being observable,
the parameters K and lS are subject to considerable sampling
variance; we have tried, where possible, to take estimates from
reviews or large studies, but large study samples simply do not
exist for some low prevalence disorders. The values of AUCmax

show that it should be possible for a genomic profile for complex
diseases to exceed 0.75, the threshold regarded [20] as making a
diagnostic classifier clinically useful when applied to a sample
considered to be at increased risk. However, based on the results
in Table 1 only the diseases with high heritability and low
prevalence, such as Type I diabetes, Crohn’s Disease and Lupus,
can achieve an AUC, by genomic profiling alone, above the 0.99
threshold regarded [20] as being required for a diagnostic
classifier to be applied in the general population. In Table 1, we
also consider the AUC expected under scenarios where a
genomic profile accounts for only a half (AUChalf) or a quarter
(AUCquar) of the known genetic variance. These results show that
for rare diseases genomic profiles can be useful classifiers of
disease (AUC.0.8 when K,0.01), when the profile explains only
a quarter of the genetic variance.

Using equations (4) and (5) we calculate r2
ĜGG

for the diseases
listed in Table 1 when AUC = 0.75. The results (Table 1) show
that the same AUC can represent quite different successes of the
genomic profile in representing the known genetic variance,
ranging from 0.10 to 0.74. If we are able to explain half of the
known genetic variance with identified risk variants then genomic
profiles for most complex genetic disease (AUChalf, Table 1) will
achieve some clinical validity as AUC is .0.75 for all but bladder
cancer, for the examples provided.

Example: age related macular degeneration
Consider the first listed example in Table 1, age related macular

degeneration (AMD).

Based on the review of Scholl et al [21] and the large twin study
of Seddon et al [22] we have used a prevalence after 80 years age
of advanced AMD K = 11.8% and a sibling recurrence risk
representing the genetic contribution of lS = 2.2, which corre-
spond to heritability on the liability scale of h2

L = 0.68 (equation 1).
If the genetic test explains all the genetic variance (r2

ĜGG
= 1), the

maximum AUC that could be achieved by a genomic profile is
AUCmax = 0.92. If only half or a quarter of the genetic variance can
be detected by genomic markers then the maximum AUC that can
achieved are AUChalf = 0.81 and AUCquar = 0.72, respectively,
values that exceed the prediction of genetic risk based of the most
optimistic scenario from a prediction based on family history (Text
S1). If complete disease status is known for all siblings, parents,
grandparents, aunts, uncles and cousins then the maximum AUC
that could be achieved is 0.71, translating to a genomic profile that
explains 0.21 of the genetic variance (Table S1). In practice, the
AUC for a risk predictor based on rs1061170 a single nucleotide
polymorphism in the complement factor H (CFH) gene was 0.69
[23] (and was approximately equal for advanced AMD cases vs
controls and all AMD cases vs controls). From equations 4–6,
h2

L x½ " = 0.12, lS[x] = 1.17, r2
ĜGG

= 0.17 and (lS[x] – 1)/(lS – 1) = 0.15.

Discussion

Relationship of AUCmax to heritability and disease
prevalence when the disease classifier is a genetic risk
predictor

The AUC is a widely used statistic that summarises the clinical
validity of a diagnostic or prognostic test. However, the AUC
statistic of a genomic profile alone has an upper limit (i.e. AUCmax)
which depends on the genetic epidemiology of the disease, namely
the disease prevalence and heritability. It is important that in the
first instance, particularly when genomic profiling is in its infancy,
that genomic profiles are judged on their ability to predict genetic
risk (their analytic validity) rather than on the basis of clinical

Figure 2. Relationship between maximum AUC (AUCmax) from a
genomic profile and heritability on the liability scale h2

L. For
different disease prevalences (A–D) from simulation (dashed line) and
from equation 3 (solid line).
doi:10.1371/journal.pgen.1000864.g002

Figure 3. The relationship between maximum AUC (AUCmax)
from a genomic profile and heritability on the liability scale h2

L
(dashed line) or heritability on the observed scale H2

01 (solid
line), for disease prevalences in order from top left, K = 0.001,
0.01, 0.1, 0.3.
doi:10.1371/journal.pgen.1000864.g003

Genetic Interpretation of AUC

PLoS Genetics | www.plosgenetics.org 6 February 2010 | Volume 6 | Issue 2 | e1000864

Well recognised as a measure of clinical validity
A measure of how well genomic profile predicts yes/no phenotype

But hides the fact that is should be judged as a measure of analytic validity 
A measure of how well genomic profile predicts genotype

The maximum AUC achievable depends on the 
heritability of the disease 

Many useful properties
Problem is genetic interpretation

Wray	et	al	(2010)	The	genetic	interpretation	of	area	under	the	receiver	operator	characteristic	curve	in	genomic	profiling.
PLoS Genetics
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3. Odds Ratio

Statistics to evaluate polygenic risk scoring 3.

PGC-SCZ	2014	108	loci	Nature
13

Cut distribution into deciles
Each decile will include both cases and controls
Odds of being a case in each decile
Odds ratio for each decile compared to the 1st decile

analysis (Extended Data Fig. 5 and 6a). However, using the same target
sample as earlier studies and PT 5 0.05, R2 is now increased from 0.03
(ref. 10) to 0.184 (Extended Data Fig. 5). Assuming a liability-threshold
model, a lifetime risk of 1%, independent SNP effects, and adjusting for
case-control ascertainment, RPS now explains about 7% of variation on
the liability scale46 to schizophrenia across the samples (Extended Data
Fig. 6b), about half of which (3.4%) is explained by genome-wide signi-
ficant loci.

We also evaluated the capacity of RPS to predict case-control status
using a standard epidemiological approach to a continuous risk factor.
We illustrate this in three samples, each with different ascertainment
schemes (Fig. 3). The Danish sample is population-based (that is, inpa-
tient and outpatient facilities), the Swedish sample is based on all cases
hospitalized for schizophrenia in Sweden, and the Molecular Genetics
of Schizophrenia (MGS) sample was ascertained specially for genetic
studies from clinical sources in the US and Australia. We grouped indi-
viduals into RPS deciles and estimated the odds ratios for affected status
for each decile with reference to the lowest risk decile. The odds ratios
increased with greater number of schizophrenia risk alleles in each sam-
ple, maximizing for the tenth decile in all samples: Denmark 7.8 (95%
confidence interval (CI): 4.4–13.9), Sweden 15.0 (95% CI: 12.1–18.7)
and MGS 20.3 (95% CI: 14.7–28.2). Given the need for measures that
index liability to schizophrenia47,48, the ability to stratify individuals by
RPS offers new opportunities for clinical and epidemiological research.
Nevertheless, we stress that the sensitivity and specificity of RPS do not

support its use as a predictive test. For example, in the Danish epide-
miological sample, the area under the receiver operating curve is only
0.62 (Extended Data Fig. 6c, Supplementary Table 6).

Finally, seeking evidence for non-additive effects on risk, we tested
for statistical interaction between all pairs of 125 autosomal SNPs that
reached genome-wide significance. P values for the interaction terms
were distributed according to the null, and no interaction was significant
after correction for multiple comparisons. Thus, we find no evidence for
epistatic or non-additive effects between the significant loci (Extended
Data Fig. 7). It is possible that such effects could be present between
other loci, or occur in the form of higher-order interactions.

Discussion
In the largest (to our knowledge) molecular genetic study of schizophre-
nia, or indeed of any neuropsychiatric disorder, ever conducted, we dem-
onstrate the power of GWAS to identify large numbers of risk loci. We
show that the use of alternative ascertainment and diagnostic schemes
designed to rapidly increase sample size does not inevitably introduce a
crippling degree of heterogeneity. That this is true for a phenotype like
schizophrenia, in which there are no biomarkers or supportive diagnostic
tests, provides grounds to be optimistic that this approach can be suc-
cessfully applied to GWAS of other clinically defined disorders.

We further show that the associations are not randomly distributed
across genes of all classes and function; rather they converge upon genes
that are expressed in certain tissues and cellular types. The findings include
molecules that are the current, or the most promising, targets for ther-
apeutics, and point to systems that align with the predominant aeti-
ological hypotheses of the disorder. This suggests that the many novel
findings we report also provide an aetiologically relevant foundation
for mechanistic and treatment development studies. We also find over-
lap between genes affected by rare variants in schizophrenia and those
within GWAS loci, and broad convergence in the functions of some of
the clusters of genes implicated by both sets of genetic variants, parti-
cularly genes related to abnormal glutamatergic synaptic and calcium
channel function. How variation in these genes impact function to increase
risk for schizophrenia cannot be answered by genetics, but the overlap
strongly suggests that common and rare variant studies are complemen-
tary rather than antagonistic, and that mechanistic studies driven by rare
genetic variation will be informative for schizophrenia.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 3 | Odds ratio by risk score profile. Odds ratio for schizophrenia by
risk score profile (RPS) decile in the Sweden (Sw1-6), Denmark (Aarhus), and
Molecular Genetics of Schizophrenia studies (Supplementary Methods).
Risk alleles and weights were derived from ‘leave one out’ analyses in which
those samples were excluded from the GWAS meta-analysis (Supplementary
Methods). The threshold for selecting risk alleles was PT , 0.05. The RPS
were converted to deciles (1 5 lowest, 10 5 highest RPS), and nine dummy
variables created to contrast deciles 2-10 to decile 1 as the reference. Odds ratios
and 95% confidence intervals (bars) were estimated using logistic regression
with PCs to control for population stratification.
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• Good visualisation
• Shows that there could be utility in using 

high vs low profile risk scores
• But remember case-control samples are 

50% cases
• Would look less impressive if a 

population sample



Statistics to evaluate polygenic risk scoring 3.
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analysis (Extended Data Fig. 5 and 6a). However, using the same target
sample as earlier studies and PT 5 0.05, R2 is now increased from 0.03
(ref. 10) to 0.184 (Extended Data Fig. 5). Assuming a liability-threshold
model, a lifetime risk of 1%, independent SNP effects, and adjusting for
case-control ascertainment, RPS now explains about 7% of variation on
the liability scale46 to schizophrenia across the samples (Extended Data
Fig. 6b), about half of which (3.4%) is explained by genome-wide signi-
ficant loci.

We also evaluated the capacity of RPS to predict case-control status
using a standard epidemiological approach to a continuous risk factor.
We illustrate this in three samples, each with different ascertainment
schemes (Fig. 3). The Danish sample is population-based (that is, inpa-
tient and outpatient facilities), the Swedish sample is based on all cases
hospitalized for schizophrenia in Sweden, and the Molecular Genetics
of Schizophrenia (MGS) sample was ascertained specially for genetic
studies from clinical sources in the US and Australia. We grouped indi-
viduals into RPS deciles and estimated the odds ratios for affected status
for each decile with reference to the lowest risk decile. The odds ratios
increased with greater number of schizophrenia risk alleles in each sam-
ple, maximizing for the tenth decile in all samples: Denmark 7.8 (95%
confidence interval (CI): 4.4–13.9), Sweden 15.0 (95% CI: 12.1–18.7)
and MGS 20.3 (95% CI: 14.7–28.2). Given the need for measures that
index liability to schizophrenia47,48, the ability to stratify individuals by
RPS offers new opportunities for clinical and epidemiological research.
Nevertheless, we stress that the sensitivity and specificity of RPS do not

support its use as a predictive test. For example, in the Danish epide-
miological sample, the area under the receiver operating curve is only
0.62 (Extended Data Fig. 6c, Supplementary Table 6).

Finally, seeking evidence for non-additive effects on risk, we tested
for statistical interaction between all pairs of 125 autosomal SNPs that
reached genome-wide significance. P values for the interaction terms
were distributed according to the null, and no interaction was significant
after correction for multiple comparisons. Thus, we find no evidence for
epistatic or non-additive effects between the significant loci (Extended
Data Fig. 7). It is possible that such effects could be present between
other loci, or occur in the form of higher-order interactions.

Discussion
In the largest (to our knowledge) molecular genetic study of schizophre-
nia, or indeed of any neuropsychiatric disorder, ever conducted, we dem-
onstrate the power of GWAS to identify large numbers of risk loci. We
show that the use of alternative ascertainment and diagnostic schemes
designed to rapidly increase sample size does not inevitably introduce a
crippling degree of heterogeneity. That this is true for a phenotype like
schizophrenia, in which there are no biomarkers or supportive diagnostic
tests, provides grounds to be optimistic that this approach can be suc-
cessfully applied to GWAS of other clinically defined disorders.

We further show that the associations are not randomly distributed
across genes of all classes and function; rather they converge upon genes
that are expressed in certain tissues and cellular types. The findings include
molecules that are the current, or the most promising, targets for ther-
apeutics, and point to systems that align with the predominant aeti-
ological hypotheses of the disorder. This suggests that the many novel
findings we report also provide an aetiologically relevant foundation
for mechanistic and treatment development studies. We also find over-
lap between genes affected by rare variants in schizophrenia and those
within GWAS loci, and broad convergence in the functions of some of
the clusters of genes implicated by both sets of genetic variants, parti-
cularly genes related to abnormal glutamatergic synaptic and calcium
channel function. How variation in these genes impact function to increase
risk for schizophrenia cannot be answered by genetics, but the overlap
strongly suggests that common and rare variant studies are complemen-
tary rather than antagonistic, and that mechanistic studies driven by rare
genetic variation will be informative for schizophrenia.
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to these sections appear only in the online paper.
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Figure 3 | Odds ratio by risk score profile. Odds ratio for schizophrenia by
risk score profile (RPS) decile in the Sweden (Sw1-6), Denmark (Aarhus), and
Molecular Genetics of Schizophrenia studies (Supplementary Methods).
Risk alleles and weights were derived from ‘leave one out’ analyses in which
those samples were excluded from the GWAS meta-analysis (Supplementary
Methods). The threshold for selecting risk alleles was PT , 0.05. The RPS
were converted to deciles (1 5 lowest, 10 5 highest RPS), and nine dummy
variables created to contrast deciles 2-10 to decile 1 as the reference. Odds ratios
and 95% confidence intervals (bars) were estimated using logistic regression
with PCs to control for population stratification.
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In case control samples Same data scaled to population risk



3. R2 on liability scale

Linear model  
Full model: y ~covariates + score          y = case/control = 1/0
Reduced model: y~ covariates

Calculate R2 attributable to score

If target sample is a population sample i.e. prevalence of cases in sample = 
prevalence of cases in controls
Then R2 is a measure of the proportion of variance in case-control status 
attributable to the genomic risk profile score 
= heritability attributable to genomic profile score                 on the disease scale

Convert to liability scale

ℎ!"#$!!"! !

Statistics to evaluate polygenic 
risk scoring 4.

ℎ!"#$! = ℎ!"#$!!"! !(1− !)
!! !

Lee	et	al	(2012)	A	better	coefficient	of	determination	for	genetic	profile	analysis.	Genetic	Epidemiology 15



Relationship between heritabilities on 
disease and liability scales

Consider a linear regression of genetic values on the disease 
scale (A01) on genetic values on the liability scale (AL):
A01	=	µ+bAL b=cov(A01,AL)

var(AL)

Var(A01)=	b2Var(AL)	=cov(A01,AL)2					 by	differential	calculus	normal	
var(AL)									distribution	theory….

Robertson (1950) Appendix of Dempster & Lerner (1950) Heritability of threshold characters. Genetics 35

ℎ!"! = ! !!ℎ!!
!(1− !) = !

!!!ℎ!!
(1− !)!

z
K

t
i = z/K

ℎ!! = !
(1− !)ℎ!"!

!!! !
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NB Estimates of narrow heritability on observed scale from 
family data often contaminated by non-additive 
heritability



Relationship between heritability on the 
disease and liability scales

ℎ!"! = ! !!ℎ!
!(1− !) = !

!!!ℎ!
(1− !)!!

224 EVERETT R. DEMPSTER AND I. MICHAEL LERNER 

while the remainder of is the non-additive variance. The latter, on the 
assumption that individual gene differences have small effects, is epistatic 
and may be indicated by UG~:. We may, then, write: 

U G ~ ' / U G ~ :  = 1 - rxp2. 

This method of estimating epistatic variance is probably more accurate than 
that based on the difference between the approximately determined total 
variance and the exactly computed additive variance. 

INCIDENCE OF CHARACTER 

FIGURE 3. The proportion of total genetic variance that is epistatic, expressed as a function 
of character incidence in the population. 

Table 3 presents the p scale estimates of variances and heritabilities ob- 
tained by the methods described for heritabilities of 0.36, 0.64, and 1.0 a t  
varying levels of incidence. Very close agreement between the two sets of 
values of u G , ~  (segmental versus the exact) may be noted for hx2 of 0.36 and 
0.64. Approximate methods are not required where hx2 approaches zero or 
unity. 

Ratios of epistatic to  total genetic variance on the p scale are also listed in 
table 3 and shown graphically in figure 3. It may be noted that the epistatic 
variance is trivial where the heritability is low and the incidence near 0.5 
but may constitute most of the genetic variance under other conditions, having 
a value of over 77 percent of the total variance under the most extreme con- 
dition listed. It will be shown later that serious errors resulting from the use 
of heritability on the p scale in estimating gains from mass selection occur 
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= Prevalence

Dempster & Lerner (1950) Appendix by Alan Robertson. Heritability of threshold characters. Genetics 35
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Ascertainment in case-control studies

18

Robertson (1950)
Appendix of Dempster and Lerner (1950)
See Lecture 1

Lee et al (2011)AJHG
Zhou & Stephens (2013) Polygenic Modeling with Bayesian Sparse 
Linear Mixed Models PLoSG Text S3
Golan et al (2014) Measuring missing heritability: Inferring the 
contribution of common variants PNAS

Estimate of proportion of variance explained 
by SNP between cases and controls

Unaffected (1-K) Affected (K)
Control (1-P) Case (P)



3. R2 on liability scale cont.
If target sample is a case-control sample 

i.e. prevalence of cases in sample >> prevalence of cases in controls
Then R2 is a measure of the proportion of variance in case-control status 
attributable to the genomic risk profile score 
= heritability attributable to genomic profile score on the case-control scale

Convert to the liability scale

Where C is:

is on the same scale as heritability estimated from family studies and                    
GREML SNP-chip heritability

Statistics to evaluate polygenic 
risk scoring 4 cont.

ℎ"#$% = ℎ"#$'((% )
1 + ℎ"#$'((% )	

Lee	et	al	(2012)	A	better	coefficient	of	determination	for	genetic	profile	analysis.	Genetic	Epidemiology

ℎ"#$%&&' 	

! = !(1− !)
!!

!(1− !)
!(1− !) !

ℎ"#$% 	
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Statistics to evaluate polygenic 
risk scoring 

5.Stratification & health economics

For every 1,000 people treated with intervention could “save” 10
Treat only 18% = 180 and “save” 8 (4%)

Number of people treated to save 1 reduced from 100 to 22.5

Polychronakos & Li NRG (2011) Understanding Type I Diabetes through genetics. Nat Rev Genetics

Population risk  of 1%

80% of cases in 
top 18% of genetic risk



Improvement between predictors

21

Difference in AUC

Net reclassification index

Topic of debate
Needs more research

Kerr et al (2014) NRI for 
evaluating risk 
prediction indices.
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Discovery & Target samples could be:

A. Same Disorder                - demonstrates polygenicity even in absence of 
genome-wide significant SNP associations

B. Different disorders - demonstrates genetic overlap between disorders

C.   Target samples are disorder subtypes           
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is 

represented in  the Discovery sample if Target       
and Discovery are the same disease

Applications	of	polygenic	Risk	Profile	Scoring
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NB. Null result in the ALSPAC 
community sample measured for 
PND but not MDD

Example Disorder Sub-types. Discovery: PGC-BPD
Target: Postnatal depression in MDD

Postnatal depression – a more homogeneous subtype of 
depression?

Female only 
Same bio-social stressor

Enda Tania
Byrne
Carillo-Roa
Samantha Meltzer-
Brody
Nick Martin
Brenda Penninx

Byrne et al (2014) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Archives of Women’s 
Health. In press
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Discovery & Target samples could be:

A. Same Disorder                - demonstrates polygenicity even in absence of 
genome-wide significant SNP associations

B. Different disorders - demonstrates genetic overlap between disorders

C. Target samples are disorder subtypes           
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is 

represented in  the Discovery sample if Target and 
Discovery are the same disease

D. Target samples have the same disease as the discovery sample and have 
environmental risk factors recorded

- investigate GxE
- think carefully about how the environmental risk 

factor  is represented in  the Discovery sample

Applications	of	polygenic	Risk	Profile	Scoring
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Application of Polygenic Risk Profiling Scores to 
investigate GxE, e.g., depression and childhood 
trauma

Peyrot et al (2014) Effect of polygenic risk scores on depression in childhood trauma Biol
Psychiatry

Peyrot et al

Thus far, polygenic information has not been taken into
account in research on G6E interaction in MDD, but there has
been ongoing research for interaction with candidate genes. The
motivation for research on G6E interaction in MDD is found
in its contribution to understanding the complex aetiology of
MDD,33 and its possibility to select environmental conditions
with increased genetic effects. Nevertheless, research on candidate
genes has led to rather contradictory results: in research on
the well-known serotonin transporter gene (5-HTTLPR) even
meta-analyses differ in their conclusions,5,6,34 with concerns about
publications bias.1 However, because genetic effects on MDD are

polygenic in nature,11,12 we argued that G6E interaction should
be tested with polygenic information.

The interaction effect thus found within our sample between
polygenic risk scores and childhood trauma in MDD has two
implications. The first is that polygenic risk scores have increased
effects in the presence of childhood trauma (as illustrated in
Fig. 1), which indicates that research on direct genetic effects
potentially gains power by focusing on individuals exposed to
childhood trauma. Therefore, if numbers would allow, it would
be very useful to perform a GWAS within, for example, the
collaborative PGC15 in individuals who experienced childhood

4

Table 2 Interaction between polygenic risk score (PRS) and childhood trauma in predicting major depressive disorder risk
and direct effects of PRSs and childhood trauma

Direct effectsa PRS6childhood trauma interactionb

PRS (model 1) Childhood trauma (model 2) Multiplicative (model 3) Additive (model 4)

PRS thresholds OR P OR P OR P RERI 95% CI

All major depressive disorderc

P50.001 1.01 0.808 1.64 50.001 1.06 0.288 0.08 70.08 to 0.25
P50.01 1.12 0.059 1.64 50.001 1.09 0.080 0.21 0.04 to 0.47
P50.05 1.22 0.001 1.64 50.001 1.14 0.008 0.37 0.14 to 0.71
P50.1 1.18 0.005 1.64 50.001 1.15 0.005 0.34 0.13 to 0.64
P50.2 1.15 0.021 1.64 50.001 1.12 0.014 0.29 0.10 to 0.56
P50.3 1.13 0.037 1.64 50.001 1.14 0.005 0.30 0.11 to 0.56
P50.4 1.13 0.035 1.64 50.001 1.13 0.010 0.28 0.08 to 0.55
P50.5 1.11 0.081 1.64 50.001 1.12 0.018 0.24 0.04 to 0.50

Severe major depressive disorderd

P50.001 1.02 0.805 1.69 50.001 1.07 0.185 0.09 70.08 to 0.28
P50.01 1.11 0.116 1.69 50.001 1.11 0.054 0.21 0.02 to 0.46
P50.05 1.22 0.002 1.69 50.001 1.14 0.013 0.37 0.14 to 0.72
P50.1 1.2 0.005 1.69 50.001 1.14 0.008 0.36 0.13 to 0.69
P50.2 1.17 0.016 1.69 50.001 1.13 0.017 0.33 0.10 to 0.67
P50.3 1.17 0.017 1.69 50.001 1.16 0.005 0.36 0.13 to 0.69
P50.4 1.17 0.016 1.69 50.001 1.14 0.009 0.34 0.11 to 0.70
P50.5 1.15 0.032 1.69 50.001 1.14 0.014 0.30 0.07 to 0.63

OR, odds ratio.
a. Direct effects of the PRSs, childhood trauma and their interaction effects were estimated in four separate logistic regression models. The effects of the PRS (model 1) and
childhood trauma (model 2) were estimated in models with age, gender and three principal components as covariates.
b. The interaction effects were estimated in a model additionally including PRS and childhood trauma as covariates (model 3 and model 4). The relative excess risks due to interaction
(RERI) represent tests for interaction as departure from additivity and were computed by ebCT+bPRS+bPRSxCT-ebCT-ebPRS+1.
c. 1645 cases and 340 controls.
d. 956 cases and 340 controls.
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Severe childhood trauma

Moderate childhood trauma
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Fig. 1 Interaction between childhood trauma and polygenic risk score (PRS) on the risk for major depressive disorder (MDD).

The interaction effects as departure of multiplicativity in predicting risk on all MDD and risk on severe MDD are visualised by displaying the direct effects of the PRS based on
threshold P50.1 and P50.3 respectively for three childhood trauma levels, with childhood trauma scores of 0–1, 2–3 and 4–8 respectively.
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Discovery & Target samples could be:

A. Same Disorder                - demonstrates polygenicity even in absence of 
genome-wide significant SNP associations

B. Different disorders - demonstrates genetic overlap between disorders

A. Target samples are disorder subtypes           
- investigates genetic genetic heterogeneity
- think carefully about how the heterogeneity is 

represented in  the Discovery sample if Target and 
Discovery are the same disease

D. Target samples have the same disease as the discovery sample and have 
environmental risk factors recorded

- investigate GxE
- think carefully about how the environmental risk 

factor  is represented in  the Discovery sample
E. Target samples are recorded for an environmental risk factor

- insight into GxE

Applications	of	polygenic	Risk	Profile	Scoring
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Example: E in target sample
Discovery: schizophrenia
Target: Cannabis use

Power et al (2014) Effect of polygenic risk scores on depression in childhood trauma Mol
Psychiatry

PGC-SZ1+
SWE

AUS
Community 
sample

MATERIALS AND METHODS
The data used in this study come from the Australian Twin Registry. Data
were obtained from two studies in which twins and their families
participated in semi-structured diagnostic telephone interviews aimed
primarily at assessing psychiatric health. Informed consent was obtained
from all participants.
Sample 1 consisted of 6265 individuals aged between 23 and 39 years

(mean= 29.9 ± 2.5) interviewed between 1996 and 2000. Participants were
members of the young adult cohort, a volunteer panel of twins born
between 1964 and 1971. The interview was based on a modified version of
the SSAGA (Semi-Structured Assessment of the Genetics of Alcoholism33).
Detailed information about the sample recruitment, the study procedure
and the measures can be found elsewhere.34 Sample 2 comprised 9688
individuals aged between 18 and 91 years (mean= 46.3 ± 11.3) interviewed
between 2001 and 2005. Participants were members of the older and
younger adult cohort of Australian twin pairs (born between 1895 and
1964, and between 1964 and 1971, respectively). A subset of this sample
was ascertained based on large sibship size, or having a relative with
nicotine or alcohol dependence. The interview used for this sample was
also based on a modified version of the SSAGA. Further details about the
sample and assessment can be found in Heath et al.35

A subset of the participants (N= 1866; 11.7%) participated in both
studies, in which case we used data from the last assessment. The
combined phenotypic sample consisted of 14 087 individuals, of whom
7172 were genotyped. In both studies, twins were asked the same items
about cannabis use: (1) did you ever use marijuana?, (2) how old were you
the very first time you tried marijuana (not counting the times you took it
as prescribed)? and (3) how many times in your life have you used
marijuana (do not count times when you used a drug prescribed for you
and took the prescribed dose). Ever use was measured on a dichotomous
scale (ever versus never), whereas age at initiation and frequency of use
were open questions. Table 1 shows the prevalence of cannabis use for
individuals included in the present study.
Genotype data were obtained using three different Illumina single nucleotide

polygmorphism (SNP) genotyping platforms (317K, HumanCNV370-
Quadv3, Human CNV370v1 and Human610-Quad). Standard quality control
procedures were applied as outlined previously,36 including checks for
ancestry outliers, Hardy–Weinberg equilibrium (Po10−6), Mendelian errors,
call rate, genotypic missingness (>5%), individual missingness (>5%) and
minor allele frequency (o0.01). Individuals were pruned on relatedness,
removing one individual from each pair with relatedness >0.05, as
determined from genetic data. The final sample therefore comprised
2082 ‘unrelated’ individuals (see Table 1 for sample details).
Polygenic risk profile scores were constructed using the P-values and

log10 odds ratios from the most recent large GWAS of schizophrenia, a
meta-analysis of the Psychiatric Genomics Consortium’s studies with
additional Swedish samples totalling 13 833 cases and 18 310 controls.27

SNPs were pruned for linkage disequilibrium using P-value informed
clumping in PLINK,37 using a cutoff of R2 = 0.25 within 200 kb window. The

Q2 MHC region of the genome was excluded, due to its complex linkage
disequilibrium structure. After linkage disequilibrium pruning, 147 830
SNPs remained. Multiple scores were generated for each individual using
the PLINK score option and based on top SNPs from the schizophrenia
GWAS using varying significance thresholds (P= 0.0001, 0.001, 0.01. 0.05,
0.1, 0.2, 0.3, 0.4, 0.5 and 1.0). Polygenic risk profile scores were tested for
association with a binary ever versus never used cannabis and two
quantitative traits for quantity of use and age at first use, in logistic and
linear regressions, respectively. These analyses were corrected for the first
10 ancestry-informative principal components, genotyping platform, sex,
age, age squared and sex by age. Analysis was performed in STATA.38

RESULTS
After pruning, 2082 unrelated individuals remained in our sample
with both genotype and phenotype measures. Within the sample,
1011 individuals (48.6%) had ever used cannabis, of whom 997
had data on quantity of use. Mean number of usages of cannabis
over lifetime was 62.7 (95% CI 53.8–71.6), and the mean age of
initiation of use was 20.1 (95% CI 19.7–20.5). Males showed higher
rates of use than females, 53.5% compared with 43.9% (Po0.001),
although no difference in age at initiation. Table 1 shows the
summary statistics for the samples.
Polygenic risk scores for schizophrenia showed positive

associations for ever versus never use of cannabis across all P-
value thresholds, with the strongest association for those SNPs
with P-values below 0.01 in the original schizophrenia GWAS (see
Figure 1, R2 = 0.47%, P= 2.6× 10− 4). Significant associations were
also seen in the analysis of quantity of cannabis use for 9 of the 10
SNP cutoffs, with the top association seen for those SNPs with
P⩽ 0.05 for schizophrenia (R2 = 0.85%, P= 0.003). No association
was seen with age at initiation of use, although the association
with quantity of use remained significant when number of years of
usage was accounted for (results not shown).
As a secondary analysis, polygenic risk score for schizophrenia

risk alleles with Po0.01 (the threshold with the greatest
association in the primary analysis) was examined within 990
twin pairs (608 dizygotic and 382 monozygotic) where data on
cannabis use of both twins was available. Taking the mean
polygenic risk score within each twin pair, an ordinal regression
was performed to predict whether neither (n= 272), one (n= 273)
or both twins (n= 445) were cannabis users. After correcting for
age, sex and zygosity, a significant association was observed
(P= 0.001). Those twin pairs where both reported using cannabis
had the greatest burden of schizophrenia risk alleles, pairs with
only one user were found to have an intermediate level and the
lowest burden was found in pairs where neither twin reported use
(see Figure 2).

Table 1. Summary statistics of sample for cannabis use traits

Users Non-users

N 1011 1071
Mean age (s.e.) 41.3 (0.23) 53.0 (0.37)
Percentage female (%) 46.5 56.0
Mean age at initiation (s.e.) 19.6 (0.06) —
Mean number of usesQ5 over lifetime (s.e.) 62.7 (4.56) —

Schizophrenia polygene scores and cannabis use
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Figure 1. Results of polygenic risk scores for schizophrenia predict-
ing variance explained (R2) in cannabis use as both a binary trait of
ever versus never, and as a quantitative trait of lifetime use within
only users. Polygenic scores were created using different cutoffs for
the inclusion of risk variants for schizophrenia, ranging from
P= 0.0001 to 1.0.
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DISCUSSION
Our results show that to some extent the association between
cannabis and schizophrenia is due to a shared genetic aetiology
across common variants. They suggest that individuals with an
increased genetic predisposition to schizophrenia are both more
likely to use cannabis and to use it in greater quantities. This is not
to say that there is no causal relationship between use of cannabis
and risk of schizophrenia, but it does establish that at least part of
the association may be due to causal relationship in the opposite
direction. Although the variance in cannabis use explained by
schizophrenia polygenic risk profiles is small, it is in line with other
cross-phenotype analyses, largely due to the polygenic risk scores
for schizophrenia predicting only ~ 7% of the variation for
schizophrenia itself. Previous associations between polygenic risk
scores for schizophrenia and other psychiatric illnesses, such as
bipolar disorder, major depression and autism,39 have shown
effects of similar sizes. Further research will be needed to see
whether the genetic overlap observed here is specific to cannabis
use or is present across illicit drug use and addiction phenotypes,
data for which was not widely available in this sample. For now,
these findings have important implications for the current
perception of cannabis use as a risk factor for schizophrenia,
and other psychotic disorders.
It is important to emphasize that the implication of schizo-

phrenia risk alleles predicting cannabis use, if true, does not rule
out the possibility of cannabis independently being a risk factor
for schizophrenia. A bidirectional association between cannabis
use and psychosis has previously been suggested.40 Further, one
caveat to interpreting the direction of causation concerns the
discovery sample used to identify schizophrenia risk alleles. The
schizophrenia GWAS sample will likely include many more
cannabis users among cases than controls. This may lead to an
excess of causal SNPs associated with cannabis use, as opposed to
schizophrenia itself, identified as schizophrenia risk alleles. Only if
the discovery schizophrenia sample was comprised entirely of
non-cannabis users could causation be inferred without any risk of
confounding. This is an important consideration as to whether
polygenic risk scores overestimate individuals’ un-modifiable
genetic risk by including their genetic predisposition to modifiable
environmental risk factors.
These results highlight the blurring between behavioural

phenotypes and environment, and have wider implications for
how we perceive supposedly environmental risks for disease.
Individuals select their own environments based on their innate
and learned preferences, and have their environments react to

their own behaviour. Further, parents pass down both genes and
environment to their children. All of these can contribute to
gene–environment correlation, particularly with respect to beha-
vioural traits. Several studies have shown that supposedly environ-
mental risk factors such as urbanicity, religiosity and stressful life
events have heritable components to them.41–43 The existence of
heritability for supposedly environmental risk factors does not
mean they are inevitable, only that causality is more complicated
to discern. Future studies will need to explore the matching of
cases and controls on environmental risk variants to fully
disentangle causation. Q3This can be supplemented exploring the
generation of polygenic risk scores for environmental risk factors,
and their role in predicting disease status. The wider availability of
genetic data in richly phenotyped samples should allow for the
integration of genetics into an epidemiological framework, and so
the discovery of gene–environment correlations where they exist.
With ongoing debate over the legalization of cannabis and the

potential health risks it poses, understanding the association
between its use and schizophrenia is a priority. It has previously
been suggested that, even assuming an entirely causal relation-
ship, the required reduction in the number of cannabis users to
prevent one case of schizophrenia is in the thousands.44

Our findings here highlight the possibility that this association
might be bidirectional in causation, and that the risks of cannabis
use could be overestimated. This is an important subtlety to
consider when calculating the economic and health impact of
cannabis use.
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Factors affecting accuracy of risk 
prediction

Dudbridge (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics
Wray et al (2014) Polygenic methods and their application to psychiatric traits. Journal of Child Psychology & Psychiatry (in press)
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Genetic architecture of the trait – unknown
• Number, frequency, effect size
• How well marker effects are correlated with causal variants (LD)

Sample size of discovery sample – maximise
• How well marker effects are estimated

Sample size of target sample – be sufficiently large (once achieved not so 
much gained by increasing further)
• Precision of estimation of R2

Number of SNPs in GWAS panel
P-value thresholds to select SNPs predictor/ Method to estimate SNP effects
Disease lifetime risk and case/control sampling fractions



Simulation study demonstrating the impact of sample 
size and genetic architecture on profile scoring

Purcell et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature

M1-M7 vary in 
• proportion of SNPs associated in 

disease
• distribution of effect sizes
• Frequency distribution
• LD between SNPs and causal 

variants
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Sampling error in the polygenic risk 
score

• The weights in the risk score must be estimated from 
finite discovery sample data: we have the 
estimated risk score

• The more SNPs in the score:
– The more variation we could explain J
– The greater its sampling error L

• A trade-off
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R̂y, ŷ
2 = cov(y, ŷ)2 / {var(y)var(ŷ)}

E[cov(y, ŷ)]= E[cov(xb, xb̂)]= var(xi )E(b̂)b
= var(x)b2

E[var(ŷ)]= E[var(xb̂)]= var(x)E[b̂2 ]

= var(x)[b2 + var(b̂)] ≈ var(x)b2 + var(x)var(y) / [N var(x)]
= var(x)b2 + var(y) / N

E(R̂y, ŷ
2 ) ≈ RSNP

2 / [1+1/ {NRSNP
2 }]

Prediction – errors in estimating single SNP effect



even if we knew all m causal variants but needed to 
estimate their effect sizes then the variance explained 
by the predictor is less than the variance explained by 
the causal variants in the population.

A perfect predictor of genetic component can be a 
lousy predictor of a phenotype

The regression R2 has a maximum that depends on 
heritability (or in this context variance explained by all 
SNPs, SNP-heritability)

Daetwyler et al. 2008, PLoS Genetics; Visscher, Yang, Goddard 2010, Twin Research Human Genetics 2010

Prediction – errors in estimating SNP effects
with m causal variants together explain h2 proportion of variance



Several things to take account of compared to quantitative traits:
• Binary trait (disease prevalence K)
• Over-ascertainment of cases (proportion of cases P)

Disease 

h2 proportion of variance of case control status attributable to predictor
z height of normal curve at K
𝜏 = M/N
M is the number of markers, N is the discovery sample size

Lee & Wray (2013) Novel genetic analysis for case-control GAS: quantification of power and genomic prediction accuracy. PLoS One



Discovery                         
Target Variance of target 

sample phenotype
explained by 
predictor

GWAS
association
results

Genome-
Wide 
genotypes

Select 
top SNPs 
and
identify 
risk 
alleles

Apply Genomic profiles
weighted sum of 
risk alleles

Evaluate   

SNP profiling schematic

Methods to identify risk 
loci and estimate SNP 
effects

Methods

Common pitfalls

Applications



Pitfall 1: No target (=validation) sample

– Report R2 or AUC from discovery sample only
– Small n large p problem
– Even under null can get high R2 within discovery 

sample when p >> n

Wray,	Yang,	Hayes,	Price,	Goddard,	Visscher	(2013)	Pitfalls	of	predicting	complex	traits	from	SNPs.	Nat	Rev	Genetics	



y = 𝚺b*x + e

m markers, sample size N

All b = 0, ie null hypothesis

Multiple linear regression of y on m markers

E(R2) = m/N {strictly m/(N-1)}

à Variation “explained” by chance

Wishart, 1931

Variance explained by a predictor under the null 
hypothesis



Select m ‘best’ markers out of M in total

‘Prediction’ in same sample

E(R2) >> m/N

à Lots of variation 
explained by chance

~15 best markers selected 
from 2.5 million markers

Selection bias



Pitfall 2: Overlapping Discovery & 
Target Sample

• Overlapping discovery & target samples
• Greater similarity between discovery & target samples 

than discovery & true validation samples
– E.g. cross-validation samples
– Not a pitfall, as such, but to be aware

Wray,	Yang,	Hayes,	Price,	Goddard,	Visscher	(2013)	Pitfalls	of	predicting	complex	traits	from	SNPs.	Nat	Rev	Genetics	



cov(ŷi, yi ) = cov{ (xijb̂j ), xijbj + ei
j=1

m

∑ }
j=1

m

∑

= var(xij )b̂jbj + xij cov(b̂j,
j=1

m

∑ ei )
j=1

m

∑

If b estimated from the same data in which 
prediction is made, then the second term is non-zero

estimated in discovery sample and applied to 
target sample



Pitfall 3: Less obvious non-independence
• Cross-validation but select associated SNPs from total 

sample

• Select SNPs in discovery sample, for those SNPs re-
estimate effects in the target sample  

Wray,	Yang,	Hayes,	Price,	Goddard,	Visscher	(2013)	Pitfalls	of	predicting	complex	traits	from	SNPs.	Nat	Rev	Genetics	



Practical
• Have Folder Practical 7

– Practical7_ProfileScoring.R
– Plink binary file for executing plink
– target.bim, target.bam, target.bed
– = PLINK genotype files –binary cant open (simulated)
– See http://pngu.mgh.harvard.edu/~purcell/plink/binary.shtml
– Discovery_PLT_x.txt x= pvalue cut-offs from Discovery GWAS

• Open R script
• Set working directory
• Run PLINK from within R to generate scores per person 

in the target sample based on weights from Discovery 
sample
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