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Aims of Lecture 7

1. Stafistics to evaluate risk profile scores
Nagelkerke's R?

AUC

Decile Odds Ratio

Variance explained on liability scale

e. Risk stratification

2. Examples of Use of Risk Profile Scores
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Visualising variation between individuals for common
complex genetic diseases

Affected individuals
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Evaluate efficacy of score predictor

Regression analysis:
— y=phenotype, x = profile score.

— Compare variance explained from the full model (with x) compared to a
reduced model (covariates only).

— Check the sign of the regression coefficient to determine if the
relationship between y and x is in the expected direction.

— BINARY TRAIT



First Application of Risk Profile Scoring
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Statistics to evaluate polygenic

risk scoring 1.
Nagelkerke's R?

— Pseudo-R? statistic for logistic regression

http://www.ats.ucla.edu/stat/mult pka/fag/general/Psuedo RSguareds.htm

Cox & Snhell R2

2
=1- exp( ) (LogLikelihood (Reduced model)
— LogLikelihood (Full model))

Full model: y ~ covariates + score Logistic, y= case/control = 1/0
Reduced model: y ~ covariates
N: sample size

This definition gives R? for a quantitative trait.
For a binary trait in logistic regression, C&S RZ has maximum

2
=1- exp( ) (LogLikelihood (Reduced model))

Nagelkerke's R? divides Cox & Snell R2by its maximum to give an R? with usual
properties of between 0 and 1.

*



Nagelkerke's R?
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Problem with Nagelkerke’s R?

s K = 0.01 =K=0.1 RSE K = disease prevalence

Predictor explains 7% of
variance in liability

N
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Proportion of cases in the target sample (P)



Statistics to evaluate polygenic
risk scoring 2.

2. Area Under Receiver Operator Characteristic Curve

Well established measure of validity of tests for classifier diseased vs non-
diseased individuals

Nice property — independent to proportion of cases and controls in sample
Range 0.5 10 1
0.5 the score has no predictive value

Probability that a randomly selected case has a score higher than @
randomly selected control



Visualising AUC
Rank individuals on score from highest ranked to lowest
Start at origin on graph
Work through list of ranked individuals
Move one unit along y-axis if next individual is a case
Move one unit along x-axis if next individual is a control
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Problem with AUC

Well recognised as a measure of clinical validity
A measure of how well genomic profile predicts yes/no phenotype

But hides the fact that is should be judged as a measure of analytic validity
A measure of how well genomic profile predicts genotype

1.0

The maximum AUC achievable depends on the
heritability of the disease

0.9

0.8

a K=0.001
b K=0.01

AUC 4y

0.7

4 Koo
S Many useful properties
o ]! Problem is genetic interpretation

Wray et al (2010) The genetic interpretation of area under the receiver operator characteristic curve in genomic profilipg.
PLoS Genetics



Statistics to evaluate polygenic risk scoring 3.

3. Odds Ratio

§'

Denmarl k

| Cut distribution intfo deciles
Each decile will include both cases and controls
| Odds of being a case in each decile
wv Odds ratio for each decile compared to the 15t decile

25

« Good visualisation

« Shows that there could be utility in using
high vs low profile risk scores

* But remember case-control samples are
50% cases

« Would look less impressive if
population sample
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Statistics to evaluate polygenic risk scoring 3.

In case control samples Same data scaled to population risk
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Statistics to evaluate polygenic
risk scoring 4.

3. RZ?on liability scale

Linear model
Full model: y ~covariates + score y = case/control = 1/0
Reduced model: y~ covariates

Calculate R? attributable to score

If target sample is a population sample i.e. prevalence of cases in sample =
prevalence of cases in controls

Then R2is a measure of the proportion of variance in case-control status
attributable to the genomic risk profile score

= heritability attributable to genomic profile score hépps_o1 ON the disease scale

Convert to liability scale
h%RPS—OlK(l — K)

72

2 —
hGRPS -

Lee et al (2012) A better coefficient of determination for genetic profile analysis. Genetic Epidemiology 15



Relationship between heritabilities on
disease and liability scales

Consider a linear regression of genetic values on the disease
scale (A,;) on genetic values on the liability scale (A,):

Ay; = pt+bA; b=cov(Ay.A;)
var(A,)

*

Var(A,;) = b?Var(A;) =cov(A,,.A;)? by differential calculus normal
var(A,) distribution theory....

b2 _ _ZChi_ PPKhj L
M KA1-K) (1-K) T
i =z/K
2
h? = (1 —K)ho1 B Estimates of narrow heritability on observed scale from
i’K family data often contaminated by non-additive
heritability

Robertson (1950) Appendix of Dempster & Lerner (1950) Heritability of threshold characters. Genetics 35 16



Relationship between heritability on the
disease and liability scales

z?h*  i?Kh?
K1-K) (1-K)

2 _
ho1 =

LN /
JINAN /1

2 4 / Lines are heritability
s ——— of liability

Ya
N4

EPISTATIC AS A PROPORTION OF TOTAL VARIANCE
o ° o ° o o o
° - N " Ky ~ (o]
° /
[+]
-

On the disease scale
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= Prevalence

Dempster & Lerner (1950) Appendix by Alan Robertson. Heritability of threshold characters. Genetics 35



Ascertainment in case-control studies

-5~ . Estimate of proportion of variance explained

h2 * by SNP between cases and controls
Occ

Control (]Y-P) Case (P)

2 — L2
= — o KO- K=K
Robertson (1950) S Occ Z2 P(l - P)

Appendix of Dempster and Lerner (1950) Lee et al (2011)AJHG
See Lecture 1 Zhou & Stephens (2013) Polygenic Modeling with Bayesian Sparse

Linear Mixed Models PLoSG Text S3
Golan et al (2014) Measuring missing heritability: Inferring thie
conftribution of common variants PNAS




Statistics to evaluate polygenic
risk scoring 4 cont.

3. R?on liability scale cont.
If target sample is a case-control sample
l.e. prevalence of cases in sample >> prevalence of cases in controls

Then R2is a measure of the proportion of variance in case-control status
atftributable to the genomic risk profile score

= heritability attributable to genomic profile score on the case-control scale
hérs—cc
Convert to the liability scale

2 hérs—ccC
GRS = 2
1+ hGrs—ccC

Where C is:
c _K(l—K)K(l—K)
~ z2 P1-P)

hZps is on the same scale as heritability estimated from family studies and
GREML SNP-chip heritability

Lee et al (2012) A better coefficient of determination for genetic profile analysis. Genetic Epidemiology



Statistics to evaluate polygenic
risk scoring
5.Stratification & health economics

Population risk of 1%

80% of cases in
top 18% of genetic risk

Proportion of population

For every 1,000 people treated with intervention could “save” 10
Treat only 18% = 180 and “save” 8 (4%)

Number of people freated to save 1 reduced from 100 to 22.5

Polychronakos & Li NRG (2011) Understanding Type | Diabetes through genefics. Nat Rev Genetics



Improvement between predictors

Difference in AUC

Net reclassification index

The NRI, as originally proposed, seeks to quantify
whether a new marker provides clinically relevant improve-
ments in prediction. In the definition of “net reclassification
indices,” the risk prediction model with established predictors
is called the “old” model. The model that adds the new marker
is the “new” model. “Events” are cases—persons who have or
will have the disease or outcome in the absence of intervention.
“Nonevents™ are controls. The formula defining the NRI is*

NRI = P(up|event) — P(down|event) + P(down|nonevent)

— P(up[nonevent).

NRI_ = P(up|event)— P(down|event)

NRI . = P(down|nonevent)— P(up|nonevent)

ne

Topic of debate
Needs more research

Kerr et al (2014) NRI for
evaluating risk
prediction indices.

21
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Applications of polygenic Risk Profile Scoring

Discovery & Target samples could be:

A. Same Disorder - demonstrates polygenicity even in absence of
genome-wide significant SNP associations
B. Different disorders - demonstrates genetic overlap between disorders

C. Target samples are disorder subtypes
- investigates genetic genefic heterogeneity
- think carefully about how the heterogeneity is
represented in the Discovery sample if Target
and Discovery are the same disease



Example Disorder Sub-types. Discovery: PGC-BPD
Target: Postnatal depression in MDD

Postnatal depression —  a more homogeneous subtype of
depression?

Female only @
Same bio-social stressor
V. ] 5 5 L
mgg . | Enda Tania
o emales
S ® PPD cases/ All Controls Byrnﬁ
° *** m PPD Cases/ Screened Controls Carillo-Roa
Samantha Melizer-
* Brody
- Nick Martin
- Brenda Penninx

Signed Nagelkerke R2

NB. Null result in the ALSPAC
community sample measured for
PND but not MDD

0.005
1

* %

NS

,7
NESDA

QIMR
Byrne et al (2014) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Archives of Women24
Health. In press

0.000



Applications of polygenic Risk Profile Scoring

Discovery & Target samples could be:

A. Same Disorder - demonstrates polygenicity even in absence of
genome-wide significant SNP associations
B. Different disorders - demonstrates genetic overlap between disorders

C. Target samples are disorder subtypes
- investigates genetic genefic heterogeneity
- think carefully about how the heterogeneity is
represented in the Discovery sample if Target and
Discovery are the same disease

D. Target samples have the same disease as the discovery sample and have
environmental risk factors recorded
- investigate GxE
- think carefully about how the environmental risk
factor is represented in the Discovery sample

25



Application of Polygenic Risk Profiling Scores to
investigate GxE, e.g., depression and childhood
frauma

All MDD

Severe childhood trauma

Moderate childhood trauma
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g 2
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-2 -1 0 1 2

PRS based on threshold P<0.1 (s.d.)

Peyrof et al (2014) Effect of polygenic risk scores on depression in childhood frauma Biol
Psychiatry



Applications of polygenic Risk Profile Scoring

Discovery & Target samples could be:

A.

B.

A.

Same Disorder - demonstrates polygenicity even in absence of
genome-wide significant SNP associations
Different disorders - demonstrates genetic overlap between disorders

Target samples are disorder subtypes
- investigates genetic genefic heterogeneity
- think carefully about how the heterogeneity is
represented in the Discovery sample if Target and
Discovery are the same disease

Target samples have the same disease as the discovery sample and have
environmental risk factors recorded
- investigate GxE
- think carefully about how the environmental risk
factor is represented in the Discovery sample
Target samples are recorded for an environmental risk factor
- insight into GxE



Example: E in target sample
Discovery: schizophrenia
Target: Cannabis use

Schizophrenia polygene scores and cannabis use
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Figure 2. Mean standardized polygenic risk scores for pairs of twins
when neither (n=272), one (n=273) or both twins (n=445) had
reported use of cannabis. An ordinal regression reported a
significant association (P=0.001).

Power et al (2014) Effect of polygenic risk scores on depression in childhood trauma Mol

Psychiatry



Factors affecting accuracy of risk
prediction

Genetic architecture of the trait — unknown
« Number, frequency, effect size
« How well marker effects are correlated with causal variants (LD)

Sample size of discovery sample — maximise
« How well marker effects are estimated

Sample size of target sample — be sufficiently large (once achieved not so
much gained by increasing further)

« Precision of estimation of R?

Number of SNPs in GWAS panel
P-value thresholds to select SNPs predictor/ Method to estimate SNP effects
Disease lifetime risk and case/control sampling fractions

Dudbridge (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genetics
Wray et al (2014) Polygenic methods and their application to psychiatric traits. Journal of Child Psychology & Psychiatry (in press)



Simulation study demonstrating the impact of sample
size and genetic architecture on profile scoring

Figure S8: Impact of increasing sample size on score analysis.
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Sampling error in the polygenic risk

score

« The weights in the risk score must be estimated from
finite discovery sample data: we have the
estimated risk score

S — ZBi'xi
var(S) = Varz ﬁixi = Z Vaf(,g,-)

 The more SNPs in the score:
— The more variation we could explain ©
— The greater its sampling error ®

e A frade-off



Prediction - errors in estimating single SNP effect
Yi = bx; + e

y= Bxi‘

R ; =cov(y,y)’ /{var(y)var(y)}

E[cov(y,y)]=E [cov(xb,xlg)] = var(x,)E (I;)b

= var(x)b’

E[var($)] = E[var(xb)] = var(x)E[b*]

= var(x)[b” + var(h)] = var(x)b> + var(x) var(y) /[N var(x)]
= var(x)b” + var(y)/ N

E(R};) =R /[1+1/{NR;,,}]



Prediction - errors in estimating SNP effects

with m causal variants together explain h? proportion of variance
N2 2 2
E(R;)~h*/[1+m/{Nh’}]

even if we knew all m causal variants but needed to
estimate their effect sizes then the variance explained
by the predictor is less than the variance explained by
the causal variants in the population.

A perfect predictor of genetic component can be @
lousy predictor of a phenotype

The regression R? has a maximum that depends on
heritabllity (or in this context variance explained by all
SNPs, SNP-heritability)

Daetwyler et al. 2008, PLoS Genetics; Visscher, Yang, Goddard 2010, Twin Research Human Genetics 2010



Disease

Several things to take account of compared to quantitative traits:
» Binary trait (disease prevalence K)
« Qver-ascertainment of cases (proportion of cases P)

h®z?
i T 2,2 1 (K(1 - K))2/(zP(1 — P))

h? propoftion of variance of case control status attributable to predictor

z height of normal curve at K
T = M/N
M is the number of markers, N is the discovery sample size

Lee & Wray (2013) Novel genetic analysis for case-control GAS: quantification of power and genomic prediction accuracy. PLoS One
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Pitfall 1: No target (=validation) sample

— Report R?2 or AUC from discovery sample only
— Small n large p problem

— Even under null can get high R? within discovery
sample when p >>n

Wray, Yang, Hayes, Price, Goddard, Visscher (2013) Pitfalls of predicting complex traits from SNPs. Nat Rev Genetics



Variance explained by a predictor under the null
hypothesis
y=Xb*x + e

m markers, sample size N
Allb =0, ie null hypothesis
Multiple linear regression of y on m markers

E(R?) = m/N {strictly m/(N-1)}

- Variation “explained” by chance

Wishart, 1931



Selection bias

ARTI CLE d0i:10.1038/nature 10811
Select m ‘best’ markers out of M in total The Drosophila melanogaster
Genetic Reference Panel
Prediction” in same sample ~15 best markers selected
from 2.5 million markers
b Female c Male
E(R?) >> m/N :
110+ 707
. . (ﬂ100- 8 60.
- Lots of variation $ 90 e
. © >
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o 701 °
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Pitfall 2: Overlapping Discovery &
Target Sample

« Overlapping discovery & target samples

« Greater similarity between discovery & target samples
than discovery & true validation samples

— E.g. cross-validation samples
— Noft a pitfall, as such, but to be aware

Wray, Yang, Hayes, Price, Goddard, Visscher (2013) Pitfalls of predicting complex traits from SNPs. Nat Rev Genetics



b estimated in discovery sample and applied to
target sample

cov(;,3,) = cov{ > (x;5,), > x,b; + €.}
j-1 j=1

m

= 2 var(x;, )I; b

j=1

x; cov(b;.e;)

If b estimated from the same data in which
prediction iIs made, then the second term is non-zero



Pitfall 3: Less obvious non-independence

 Cross-validation but select associated SNPs from total
sample

« Select SNPs in discovery sample, for those SNPs re-
estimate effects in the target sample

Wray, Yang, Hayes, Price, Goddard, Visscher (2013) Pitfalls of predicting complex traits from SNPs. Nat Rev Genetics



Practical

Have Folder Practical 7

— Practical7_ProfileScoring.R

— Plink binary file for executing plink

— target.bim, target.bam, target.bed

— = PLINK genotype files —binary cant open (simulated)

— See http://pngu.mgh.harvard.edu/~purcell/plink/binary.shiml
— Discovery_PLT_x.txt x= pvalue cut-offs from Discovery GWAS

Open R script
Set working directory

Run PLINK from within R to generate scores per person
in the target sample based on weights from Discovery
sample

42



Skipping web check... [ --noweb ]
Writing this text to log file [ 5e8_scores.log ]
Analysis started: Fri Jul 29 05:48:54 2016

Options in effect:
--bfile target
--score Discovery_PLT_5e8.txt
--out 5e8_scores
--noweb

Reading map (extended format) from [ target.bim ]

5000 markers to be included from [ target.bim ]

Reading pedigree information from [ target.fam ]

10000 individuals read from [ target.fam ]

10000 individuals with nonmissing phenotypes

Assuming a disease phenotype (1l=unaff, 2=aff, @=miss)
Missing phenotype value is also -9

2981 cases, 7019 controls and @ missing

4988 males, 5012 females, and @ of unspecified sex

Reading genotype bitfile from [ target.bed ]

Detected that binary PED file is v1.00 SNP-major mode
Before frequency and genotyping pruning, there are 5000 SNPs
10000 founders and @ non-founders found

Total genotyping rate in remaining individuals is 1

@ SNPs failed missingness test ( GENO > 1 )

@ SNPs failed frequency test ( MAF < @ )

After frequency and genotyping pruning, there are 5000 SNPs
After filtering, 2981 cases, 7019 controls and @ missing
After filtering, 4988 males, 5012 females, and @ of unspecified sex
Reading set of predictors from [ Discovery_PLT_5e8.txt ]
Read 5 predictors; 5 mapped to SNPs; 5 to alleles

Writing problem SNPs in predictor to [ 5e8_scores.nopred ]
Writing profiles to [ S5e8_scores.profile ]

43



