
Genetic risk prediction in complex disease

Luke Jostins and Jeffrey C. Barrett∗

Statistical and Computational Genetics, Wellcome Trust Sanger Institute, Cambs CB10 1HH, UK

Received July 21, 2011; Revised and Accepted August 22, 2011

Attempting to classify patients into high or low risk for disease onset or outcomes is one of the cornerstones
of epidemiology. For some (but by no means all) diseases, clinically usable risk prediction can be performed
using classical risk factors such as body mass index, lipid levels, smoking status, family history and, under
certain circumstances, genetics (e.g. BRCA1/2 in breast cancer). The advent of genome-wide association
studies (GWAS) has led to the discovery of common risk loci for the majority of common diseases. These
discoveries raise the possibility of using these variants for risk prediction in a clinical setting. We discuss
the different ways in which the predictive accuracy of these loci can be measured, and survey the predictive
accuracy of GWAS variants for 18 common diseases. We show that predictive accuracy from genetic models
varies greatly across diseases, but that the range is similar to that of non-genetic risk-prediction models. We
discuss what factors drive differences in predictive accuracy, and how much value these predictions add
over classical predictive tests. We also review the uses and pitfalls of idealized models of risk prediction.
Finally, we look forward towards possible future clinical implementation of genetic risk prediction, and dis-
cuss realistic expectations for future utility.

EPIDEMIOLOGY AND RISK PREDICTION

Attempting to predict the onset and progression of disease is
one of the cornerstones of epidemiology. Accurate risk predic-
tion can enable targeted preventative treatments, such as
fitness regimens for patients at risk of cardiovascular
disease, or increased mammogram frequency for patients
with high breast cancer risk. Traditional epidemiological risk
prediction incorporates a small number of environmental and
clinical factors known to be associated with disease, such as
body mass index and lipid levels for type 2 diabetes (1) or
the various Framingham risk scores for predicting cardiovas-
cular outcomes (2). Some of these predictions (e.g. type 2 dia-
betes) are accurate enough to be clinically useful, but for many
diseases (e.g. Crohn’s) the prediction is barely better than
chance. Evaluating the accuracy of environmental prediction
is further complicated by recall-bias and the potential for
reverse causality when data are retrospectively collected.

The importance of genetic factors in risk prediction has long
been appreciated, and is exemplified in a simple form by the
value of family history in predicting many complex diseases.
Nevertheless, only a few specific molecular genetic variables
have played an important role in historical risk predictions
[e.g. BRCA1 and BRCA2 in familial breast and ovarian

cancer (3)]. The success of recent genome-wide association
studies (GWAS), however, has rapidly changed the outlook
for genetic risk prediction. These studies have unlocked thou-
sands of clearly validated genetic associations to complex dis-
eases, but their generally weak effects have left their
predictive value and clinical utility subject to hot debate.

The principal outputs of the GWAS revolution have been
the new insights into the biological mechanisms of disease
(4–6), but it is also possible to use the fruits of GWAS
extend genetic prediction from single large factors to aggrega-
tions of individually weak effects. In order to explore post-
GWAS risk prediction, we first discuss the relative merits of
different statistical summaries of prediction. We next consider
the state of prediction from current GWAS knowledge and
consider possible insights from idealized models of
prediction—as well as their potential pitfalls. Finally, we
look forward towards possible future clinical implementation
of genetic risk prediction.

QUANTIFYING PREDICTIVE ACCURACY

The widespread interest in risk prediction has led to the
development of an entire ecosystem of classification metrics.
The most appropriate statistics to use depend on the
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circumstances and the question being asked. We discuss below
the approaches to quantifying prediction that are most relevant
to the subsequent discussion in this paper. More detailed dis-
cussions of many of these metrics, how they are related and
how they can be classified are available elsewhere (7,8).

Predictive tests can produce either a binary classification of
each individual as high or low risk, or a quantitative risk score
that represents the degree of risk for each individual. Optimally,
such a risk score is equal to the posterior probability of devel-
oping the disease (e.g. from logistic regression), although
some widely used scores (such as risk allele counting) do
not meet this criterion. Scores can be transformed into
binary outcomes by defining high risk to be individuals with
a score greater than a threshold T, and all others as low risk.
Analysis of risk for quantitative traits is even more straightfor-
ward, as such transformations are unnecessary, and much of
the discussion below is equally applicable to such non-
categorical scenarios.

The simplest measures of classification accuracy are the
sensitivity and specificity of the test, respectively defined as
the proportion of individuals who develop the disease who
were classified as high risk, and the proportion of healthy indi-
viduals classified as low risk. These values vary with the
choice of T, which represents the unavoidable trade-off
between sensitivity and specificity: predicting everyone will
become ill will guarantee complete sensitivity, but without
any specificity. A plot of the sensitivity against 1-specificity
for all possible choices of T is known as a receiver-operating
characteristic (ROC) curve (9). The area under the ROC curve
(the AUC, sometimes called the C statistic) has the pleasing
property of being equal to the probability that a randomly
selected individual with the disease has a higher score than
a randomly selected healthy individual.

ROC statistics are not without their disadvantages, however.
They are not dependent on the prevalence of the disease, with the
result that even a high AUC predictor of a very rare disease is
often of little practical use. For instance, consider a predictor
of a disease with a prevalence of 1%: even with specificity
and sensitivity of 0.93 (typical of a test with an AUC of
around 0.98) only 12% of the individuals who test positive
will go on to develop the disease. Alternate statistics such as
the positive and negative predictive values account for preva-
lence. The positive predictive value (PPV) is the proportion of
people who test positive for the disease who go on to develop
it, and the negative predictive value (NPV) is the proportion
of people who test negative who remain healthy. Note that,
like sensitivity and specificity, the positive and negative predict-
ive values are dependent on the risk score threshold T. These sta-
tistics can be used to tune the parameter T: for instance, while in
the example above a test of a 1% disease with an AUC of 0.98
had a PPV of 12% and a sensitivity of 93%, by raising the thresh-
old we could also produce a test with a sensitivity of only 40%,
but a PPV of 75%. This test would miss a larger proportion of
people with the disease, but would have much higher confidence
that those it caught will go on to show symptoms.

PREDICTION IN THE POST-GWAS ERA

The most basic means of incorporating genetic information
in risk prediction is via family history, which has predictive

accuracy proportional to both the heritability and prevalence
of disease (the AUC of a single sibling family history is
1/2+K(lS − 1)/2(1 − K), where K is the prevalence and
lS the sibling relative risk, see Supplementary Methods for
derivation). The information from a single affected sibling,
for instance, predicts Crohn’s disease with AUC of 0.56
(10). Prediction based on molecular measurements of
genotype began with common loci of unusually large
effect, such as the HLA effect in autoimmune diseases like
type 1 diabetes [which alone gives an AUC of 0.85 (11)],
rheumatoid arthritis and lupus or the effect of APOE in Alz-
heimer’s. Many of these loci were identified in the
pre-GWAS era by linkage studies, which further mark
them as exceptions in complex disease genetics. Rare high
penetrance mutations (such as BRCA1 and BRCA2 for
breast cancer), while obviously very important to the fam-
ilies who carry them, are of surprisingly little value in
population-level prediction (12,13). BRCA1/2 population
screening has an AUC of only 0.52, assuming a mutation
frequency of 1% (14), a penetrance of 50% (15) and a
breast cancer lifetime risk of 12% (16) (see Supplementary
Methods for derivation).

Hundreds of GWAS and ever-larger meta-analyses have
discovered a lengthening list of variants associated with
complex disease. Figure 1 shows the AUC of predictors

Figure 1. The predictive accuracy of variants discovered by GWAS, as a
function of the effective sample size [= 2/(1/Ncase + 1/Ncontrol)], adjusted
for the number of stages in the study (three stage studies have a smaller
fraction of samples with GWAS data, and thus have lower power). Risk
prediction is performed using logistic regression evaluated on data sets
simulated from allele frequencies and odds ratios taken from replication
data. PD: Parkinson’s disease (45,46), AMD, age-related macular degener-
ation (47); T1D, type 1 diabetes (11); T2D, type 2 diabetes (48); UC, ul-
cerative colitis (49); CD, Crohn’s disease (18,50); RA, rheumatoid arthritis
(51); CAD, coronary artery disease (52); BRCA, breast cancer (53);
LOAD, late-onset Alzheimer’s disease (54,55); MS, multiple sclerosis
(56); MDD, major depressive disorder (57); BP, bipolar disorder (58);
SLE, systemic lupus erythematosus (59); SZ, schizophrenia (29); CRCA,
colorectal cancer (60); PRCA, prostate cancer (61); OVCA, ovarian
cancer (62,63).
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based on the current genetic knowledge of 18 diseases. Several
of these have rapidly improved the prospects of genetic predic-
tion via GWAS. For example, good genetic prediction of
age-related macular degeneration was quickly enabled by mul-
tiple large-effect variants identified by relatively small
GWAS. Another notable GWAS success story (17,18),
Crohn’s disease, can be reasonably well predicted by a large
number of weak effects. Note that the range of AUCs for
these diseases is very similar to the range found in classical
prediction (1,19–22).

The wide spectrum of AUC values shown in Figure 1 is
attributable to a number of factors. Sample size and study
design (such as the ‘three stage’ designs used in several
cancer studies) play important roles in the process of variant
discovery which feeds into risk prediction. Clinical heterogen-
eity and the complexity of affected tissues likely contribute to
the recalcitrance of psychiatric illness to genetic prediction
(and GWAS more generally). Highly heritable diseases are un-
surprisingly usually easier to predict [a review of heritabilities
is in Wray et al. (23)]. These principles are exemplified in
Crohn’s disease, which has been subject to large GWAS, is
more heritable than the etiologically similar (but harder to
predict) ulcerative colitis and has a definitive clinical diagno-
sis. Other differences are harder to explain using any of these
arguments, such as the significantly greater predictive accur-
acy of type 2 diabetes compared with coronary artery
disease, which is more heritable and has been subjected to
larger GWAS meta-analyses.

GWAS-based predictions can be further improved by
returning to first principles and incorporating family history
conditional on genotype at known loci (10,24). For instance,
AUC from a [now out-dated (18)] list of 30 Crohn’s loci is
0.71 (10), much higher than the 0.56 mentioned above for
family history alone, but less than the AUC of 0.74 for
family history and GWAS combined. Since collecting family
history is an important part of standard medical assessment,
and can contribute independent genetic information beyond
GWAS variants, it seems sensible to incorporate it into
genetic risk prediction.

For diseases where non-genetic prediction is already well
established, it is important to evaluate the information added
by genetic loci. Clearly, if classical prediction is strong and
genetic prediction is weak, little additional value is added.
Furthermore, GWAS risk factors are not necessarily independ-
ent of the classical predictors. For instance, if a risk variant
increases the risk of developing a disease through increasing
the level of a blood biomarker, and that blood biomarker is
part of the classical test, then the genetic factor will substan-
tially increase the predictive accuracy. Even this example is
more complex than it may appear, as genetic variants that in-
fluence lipid levels do grant some increase in prediction even
when lipid levels are measured (25), likely due to the fact that
they can predict lipid production over longer time periods than
a blood lipid measurement at a single time point can. Prospect-
ive studies are required to disentangle these issues, and recent
examples run the gamut from success stories, such as using
common variants to increase the AUC of risk prediction
from 0.76 to 0.83 in age-related macular degeneration (21),
to negligible improvements for prediction of metabolic
diseases (1,26).

MODELLING CONCERNS

The predictive accuracies mentioned in the previous section
are all based on replicated risk variants discovered by
GWAS to date. However, established GWAS loci typically
explain only a small fraction of the heritability of complex dis-
eases [an observation known as ‘missing heritability’ (27)].
Regardless of the explanation for this phenomenon, it raises
questions about broader methods of risk prediction using the
entire genome. A number of approaches have been developed
to address this issue, but the answers they provide depend on
the assumptions inherent in different models of as-yet undis-
covered genetic risk.

Recent studies have estimated that a large proportion of her-
itability can be explained by common variation, based on
identity-by-descent sharing of distantly related individuals
(28). It has been shown that �3% of variance (corresponding
to an AUC of 0.65) (23) in schizophrenia risk can be explained
by a polygenic model, including a large number of loci that
did not achieve genome-wide significance (29). Various
attempts have been made to use highly polygenic risk scores
based on these non-significant loci for prediction in different
diseases, with varying degrees of success (30–32).

A natural extension of considering genome-wide risk pre-
diction is the theoretical accuracy one might achieve if the
genetic architecture of a disease were completely described.
Some diseases might be difficult to predict due to poor
current understanding of the underlying genetics, whereas
others might never be tractable to genetic prediction. Epi-
demiological estimates of heritability (23) can be used to
create such theoretically complete risk models. Three models
have been proposed (33), each of which corresponds to a dif-
ferent assumption about the distribution of disease probability
in the population. One of these models (the log model) is an
analytically tractable but relatively unrealistic, assuming that
probabilities are log-normally distributed, which can create
disease probabilities greater than 1. The other two models
are more complex but also more realistic, with each making
different but apparently equally valid assumptions. The logit
(or logistic) model assumes that odds ratios are log-normally
distributed, and as a result has similar properties to, and is
easy to integrate with, the logistic regression techniques
used in GWAS. The probit (or liability threshold) model is a
generalization of the variance component models used in
quantitative trait modelling, and assumes a continuous distri-
bution of a disease phenotype (called the liability) in the popu-
lation, with heritable and non-heritable components. An
individual who develops the disease is assumed to have a
liability value above a certain threshold. Clayton (11)
derived expressions for the AUC and the ROC curves given
the log model, which showed surprisingly small AUCs for
most scenarios. However, Wray and Goddard (33)’s calcula-
tions based on the probit model showed very high AUCs for
a similar range of heritabilities. Similar expressions cannot
be easily derived for the logistic model, although they can
be calculated numerically.

Figure 2 shows the predicted ROC curves for diseases with
a prevalence of K ¼ 1/200 and K ¼ 1/20, and a sibling relative
risk of lS ¼ 9 and lS ¼ 3 for the three models. These values
represent conservative parameter estimates for uncommon
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diseases, such as Crohn’s disease or type 1 diabetes, and more
common diseases such as cardiovascular disease. For the rarer
disease, all the models give divergent answers, with the probit
model giving an AUC of 0.98, a logit model an AUC of 0.96
and the log model an AUC of 0.89. For the common disease,
the logit and probit models agree on an AUC of 0.93, although
with a different sensitivity–specificity trade-off, and the log
model gives a much lower AUC of 0.84. Part of this discrep-
ancy is explained by an assumption in the log model that
Kls,, 1, to avoid troublesome risk probabilities .1 (33).
In practice, we have found that the log model is inaccurate
if Kls. 0.01 (Supplementary Material, Fig. S1) and therefore
agree with Wray and Goddard (33) that this model should not
be used for common diseases. A plausible maximum AUC for
rare diseases therefore likely lies between 0.96 and 0.98, and
common diseases around 0.93, as predicted by the logit and
probit models. If future genetic studies are able to account
for a significant proportion of the heritability of common dis-
eases, then genetic prediction has the potential to become
much more powerful.

THE FUTURE OF GENETIC RISK PREDICTION

GWAS results available today allow prediction for a large
number of common diseases, with accuracies ranging from
slight to moderately high, similar to the range of predictive ac-
curacies found in classical prediction (although the specific
diseases that can be predicted well differ by method).
Indeed, genetic prediction has already been incorporated into
clinical practice in situations where relatively rare, but power-
ful predictors have been discovered, such as HLA-B∗701
mediated hypersensitivity reaction to the antiretroviral

abacavir (34). In addition, larger meta-analyses and future se-
quencing studies will identify further risk variants, possibly in-
cluding lower frequency variants of large effect size. Such
studies could bring risk prediction ever closer to the high-
accuracy theoretical predictions described above.

Irrespective of predictive power, there are a number of ben-
efits of such genetic prediction over classical alternatives. For
instance, unlike classical risk prediction, genetic risk predic-
tion is highly stable over time, as a person’s genetic sequence
is essentially constant throughout their life. Some currently
used clinical biomarkers, in contrast, are powerful predictors
of disease risk in the near term but less valuable in assessing
lifetime risk. A study in type 2 diabetes (35) showed that
the AUC for clinical predictors declines from 0.76 to 0.64 as
mean follow-up time increases from 16 to 28 years, but
genetic prediction improves from 0.57 to 0.62 over the same
timescale (see also the lipid level example above). This
allows risk prediction to be performed on a much longer
time scale than is currently plausible. Such stable risk stratifi-
cation could be especially important when the proposed inter-
ventions are more effective if started at an early age, or
continued over a long time period.

The inherent value of any disease predictor, however, is a
function not just of predictive power, but also the cost and
invasiveness of the prediction procedure, and the cost and ef-
fectiveness of the interventions available. This balance of
practicality and predictive power is central to the incorpor-
ation of any predictor to routine medical practice, including
genetics. Genetic risk prediction is currently not straightfor-
ward, as it requires obtaining a blood or saliva sample and
ordering a bespoke genotyping assay for a locus of interest.
However, the marginal cost of prediction could be very low
in the future if full genome sequences are available and infra-
structure is developed to interpret it. The continuing plunge in
the cost of sequencing individual genomes (36) is making this
scenario increasingly likely. Cheap and readily available
genome sequencing is already being used in clinical genetics
practice to diagnose genetic disease (37,38), to guide cancer
treatment (39) and as a cost-effective form of carrier testing
(40). Once a patient’s genome is on file, risk prediction can es-
sentially be performed for free and can then be used to inform
diagnostics, screening and preventative measures in an auto-
mated way.

Attaching a patient’s genome to an electronic medical
record will enable a variety of prediction scenarios depend-
ent on disease aetiology, prevalence and prevention and
treatment options. For some diseases, such as age-related
macular degeneration, the high accuracy of genetic predic-
tion could be applied to entire populations so that regular
ophthalmological examinations for at-risk individuals could
allow early detection and treatment of this degenerative
disease. For rarer diseases, population screening is less
useful due to low positive predictive values, but genetic pre-
diction could be applied when patients present with early
symptoms. For instance, while the rarity of Crohn’s disease
results in a low positive predictive value in the population,
genetic data could aid in the diagnosis of a patient who pre-
sents with early symptoms such as abdominal pain, diarrhoea
and weight loss. Complex risk prediction also interacts with
clinical genetics because some diseases, such as diabetes,

Figure 2. The ROC curves for the log, logit and probit models of disease risk for
a rare disease with a prevalence K ¼ 1/200 and sibling relative risk of lS ¼ 9,
and a common disease with K ¼ 1/20 and ls ¼ 3, given that has been explained.
The corresponding AUCs are 0.89, 0.96 and 0.98, respectively, for the rare
disease, and 0.84, 0.93 and 0.93 for the common disease.
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have similar presentation of both complex and monogenic
forms (41). An accurate prediction of either must take into
account the possibility of different underlying genetic
models: conditional on disease symptoms, the probability
of having a monogenic mutation increases as complex
disease risk decreases.

Widespread clinical incorporation of genetic risk prediction
will also require development of sophisticated infrastructure to
perform prediction and deliver interpretable results to patients
and health care professionals. Such systems will need to be
designed both to provide evidence at the bedside to doctors,
and to enable communication of these results to patients in a
maximally beneficial way. Furthermore, complete genome
sequences will inevitably lead to potentially worrisome inci-
dental findings, such as APOE homozygosity for a high Alz-
heimer’s risk allele. Procedures will need to be put in place
to handle such discoveries in a consistent manner which
avoids unintended psychological harm. While early reports
have not shown drastic behavioural consequences of genetic
testing (42–44), a more detailed understanding of the psycho-
logical response to genetic risk prediction, and how best to
communicate such predictions to patients, is required. In the
longer term, clinical trials will be required to learn how effect-
ive these applications are at improving outcomes, as well as
how much of a cost burden is associated with them.

The promise of risk prediction has (sometimes ominous-
ly) hovered over the study of disease genetics since the
initial sequencing of the human genome. Genetic risk pre-
diction has never become as powerful as some early hype
suggested it would be, but neither is it as useless as some
detractors claim. Genetic risk prediction can already
improve upon classical prediction, in some cases substan-
tially so. However, as is true for classical predictors, the
utility of genetic risk prediction is dependent not just on pre-
dictive accuracy, but also on cost and the ability of clini-
cians and patients to effectively use this information. The
falling cost of whole-genome sequencing will drive the mar-
ginal cost of prediction lower and lower, but further pro-
gress in gene-mapping research, infrastructure and medical
practice will be needed to take full advantage of genetic
risk prediction.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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