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Genome-wide association studies have facilitated the construction of risk predictors for disease from multiple Single Nu-
cleotide Polymorphism markers. The ability of such “genetic profiles” to predict outcome is usually quantified in an in-
dependent data set. Coefficients of determination (R2) have been a useful measure to quantify the goodness-of-fit of the
genetic profile. Various pseudo-R2 measures for binary responses have been proposed. However, there is no standard or
consensus measure because the concept of residual variance is not easily defined on the observed probability scale. Unlike
other nongenetic predictors such as environmental exposure, there is prior information on genetic predictors because for
most traits there are estimates of the proportion of variation in risk in the population due to all genetic factors, the heritability.
It is this useful ability to benchmark that makes the choice of a measure of goodness-of-fit in genetic profiling different
from that of nongenetic predictors. In this study, we use a liability threshold model to establish the relationship between
the observed probability scale and underlying liability scale in measuring R2 for binary responses. We show that currently
used R2 measures are difficult to interpret, biased by ascertainment, and not comparable to heritability. We suggest a novel
and globally standard measure of R2 that is interpretable on the liability scale. Furthermore, even when using ascertained
case-control studies that are typical in human disease studies, we can obtain an R2 measure on the liability scale that can be
compared directly to heritability. Genet. Epidemiol. 36:214–224, 2012. C© 2012 Wiley Periodicals, Inc.
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INTRODUCTION

The discovery of multiple genetic loci that are associated
with disease and other complex traits has sparked an in-
terest in making individual risk predictions from genetic
data [Demirkan et al., 2011; Evans et al., 2009; Kraft et al.,
2009; Lyssenko et al., 2008; Pharoah et al., 2008; Purcell
et al., 2009; The International Multiple Sclerosis Genetics
Consortium, 2010; Wray et al., 2007, 2010]. The genetic risk
of healthy individuals can be predicted from their mea-
sured genotype at multiple loci, and, since the total (phe-
notypic) risk is correlated with genetic risk, a prediction
can be made of total risk from genetic data. Typically, the
effects of measured genotypes on disease are estimated in
one or more discovery samples, and those estimated effects
are then combined with the genotypes at one or more in-
dependent validation samples that contain affected and un-
affected individuals. For each individual in the validation
sample, a genetic profile is calculated and these profiles are
correlated with outcome (affected/unaffected) to quantify
the precision of the genetic risk predictor.

What is a good measure to quantify the goodness-of-fit
of the genetic profile? Importantly, there is prior informa-
tion on genetic predictors because for most traits there are
estimates of the proportion of variation in risk in the pop-
ulation due to all genetic factors, the heritability. From the
heritability, we can calculate the maximum precision of a
genetic profile, i.e. the precision if all causal variants were
known and their effect sizes known without error [Wray
et al., 2007, 2010]. Therefore, we have a natural benchmark
in that we can compare the fit of the genetic profile in the
validation sample to the heritability. It is this useful ability to
benchmark that makes the choice of a measure of goodness-
of-fit in genetic profiling different from that of nongenetic
predictors.

Coefficients of determination (R2) for binary responses
have been used in measuring the goodness-of-fit of mod-
els containing genetic predictors of human disease [Baneshi
et al., 2010; Barrett et al., 2008, 2009, de Cid et al., 2009;
Demirkan et al., 2011; Gharavi et al., 2011; Janssens et al.,
2011; Labruna et al., 2011; Lyssenko et al., 2008; Painter
et al., 2011; Purcell et al., 2009; Richards et al., 2011; Sarafidis
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et al., 2007; Shea et al., 2010; Study, 2010; Tassone et al., 2000;
The International Multiple Sclerosis Genetics Consortium,
2010; Vaidya et al., 2010; Witte and Hoffmann, 2011]. In
the statistical literature, various pseudo-R2 measures for bi-
nary responses have been proposed [Cox and Snell, 1989;
DeMaris, 2002; Efron, 1978; McFadden, 1974; McKelvey and
Zavoina, 1975; Nagelkerke, 1991; Veall and Zimmermann,
1996]. However, there is no standard or consensus measure
because the concept of residual variance is not easily defined
on the observed disease scale [Menard, 2000; Nagelkerke,
1991]. Most of the pseudo-R2 measures use the likelihood
functions from logistic or probit models that are based on
the observed disease scale. This causes the obtained R2 to be
different from its value on the underlying liability scale, and
therefore obscures comparisons with heritability, since the
latter is usually expressed on the scale of liability. Further-
more, most case-control studies from which the precision
of genetic profiles are estimated are ascertained, and tradi-
tional R2 measures are not invariant with respect to ascer-
tainment because they are based on goodness-of-fit statistics
of the actual (ascertained) data. This complicates compar-
isons with other studies or inference about the population.
In the literature, the effect of ascertainment has been poorly
addressed or ignored [Barrett et al., 2008, 2009; Cubiella et
al., 2010; Kochi et al., 2010; Peel et al., 2006, 2007].

In addition to an R2 statistic to measure the goodness-
of-fit of a genetic profile, the area under the curve (AUC)
of receiver-operator characteristic (ROC) is frequently used
to assess the precision with which a genetic predictor can
correctly classify individuals into those that will become
affected and those that will not. ROC curves have an ad-
vantage that they are not affected by ascertainment of the
sample in which the goodness-of-fit of the genetic predictor
is tested. Although the AUC can be interpreted as an R2 on
the liability scale [Wray et al., 2010], the AUC statistic does
not provide a direct measure of how well the predictor per-
forms relative to capturing all genetic variation or relative
to the maximum value it can attain from genetic data [Wray
et al., 2010].

In this study, we use a liability threshold model to es-
tablish the relationship between the probability of disease
on the observed scale and an underlying scale of liability.
We propose a novel measure of R2 that is based upon a
transformation between the observed probability scale and
underlying liability scale. The R2 on the liability scale can
be obtained from a linear, logit, or probit model. Further-
more, we are interested in obtaining an R2 at the population
level even when the validation sample is ascertained. We
used a modified version of the transformation between the
observed and liability scale that corrects for bias due to as-
certainment in case-control studies. Therefore, we obtain an
R2 measure on the scale of liability that can be compared
directly to heritability.

MATERIALS AND METHODS

RELATIONSHIP BETWEEN THE OBSERVED
PROBABILITY SCALE AND THE PROBIT OR
LOGIT LIABILITY SCALE

Liability of disease is assumed to be the sum of environ-
mental and additive genetic factors that are sampled from
independent normal distributions. The model for liability

can be written as,

li = � + gi + ei , (1)

where li is the liability “phenotype” for the ith individ-
ual � is the overall mean, gi the random genetic effect
on the liability scale, and ei is the residual. For most of
the theoretical derivations and simulations, we make the
distributional assumptions that g and e are independently
normally distributed with variances �2

g and �2
e . For the the-

oretical validation and analyses of simulated data, we used
gi as an explanatory variable in linear, probit, or logistic
models to validate the relationship between the observed
disease scale and underlying liability scale. For real data,
where gi is not observed, we can use its estimate generated
from genetic marker data and effect sizes estimated from in-
dependent data [Baneshi et al., 2010; Barrett et al., 2009; Gail,
2008; Lyssenko et al., 2008; Purcell et al., 2009; Wacholder et
al., 2010]. In the Discussion section, we discuss the conse-
quences of estimating g with error. Liability l is ∼N(0,1), and
the proportion of variance on the liability scale due to the
genetic profile is h2

l = �2
g . In the liability threshold model, all

affected individuals have a liability phenotype exceeding a
certain threshold value t. This leads to observations (y) that
are 0 or 1 for unaffected and affected individuals, with a
Bernoulli distribution with a probability, p, i.e., y ∼ Bern(p).

For analysis of data, a generalized linear model can be
used to link probabilities to effects on a linear scale. Using
a logit link, the probability of disease pi for individual i can
be written as a function of linear predictors as,

logit(pi ) = ln
(

pi

1 − pi

)
= �logit + blogitgi ,

where gi is an explanatory variable and a measure of ge-
netic value for an individual; for theoretical validation and
analyses of simulated data, we used the gi defined in (1)
above. For real data, where gi is not observed, gi is the
estimated genetic predictor (profile score). The term �logit
and blogit are regression coefficients for the mean and ge-
netic effects estimated in a logistic regression. The probabil-
ity pi = 1

1+exp(−�logit−blogitgi ) . The log-likelihood for the logistic
regression is,

ln L =
Ncase∑
i=1

ln
1

1 + exp(−�logit − blogitgi )

+
Ncontrol∑

i=1

ln
(

1 − 1
1 + exp(−�logit − blogitgi )

)
. (2)

Similarly, a probit model is,

pi = �(�probit + bprobitgi ),

where � is the standard cumulative density function, and
�probit and bprobit are regression coefficients for the mean
and genetic effects estimated in a probit model. The log-
likelihood for the probit model is,
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ln L =
Ncase∑
i=1

ln[�(�probit + bprobitgi )]

+
Ncontrol∑

i=1

ln[1 − �(�probit + bprobitgi )]. (3)

Under the null model without the genetic effects, the
probability can be expressed as pi = ȳ = K̂ , where K̂ is the
mean proportion of cases in the sample, and the likelihood
for the null model is,

ln Lnull =
Ncase∑
i=1

ln(K ) +
Ncontrol∑

i=1

ln(1 − K )

= K · N · ln(K ) + (1 − K ) · N · ln(1 − K ). (4)

In the classical liability threshold model (1), the proba-
bility of an individual being affected given his or her ge-
netic value can be derived using normal distribution theory
[Dempster and Lerner, 1950], hence assuming that total li-
ability follows a normal distribution. The relationship with
the probit estimates of the parameters is,

pi = 1√
2��2

e

∫ ∞

t−gi

e−x2/2�2
e dx = �(�probit + bprobitgi ).

Dempster and Lerner [1950] showed that the additive ge-
netic value expressed as a probability on the observed dis-
ease scale can be written as a linear function of the additive
genetic value on the liability scale,

pi = c + ûi = �obs + bobsgi = �obs + zgi , (5)

where c is a constant, u is the genetic value on the ob-
served scale, and �obs and bobs are regression coefficients
for the mean and genetic effects on the observed scale esti-
mated in a linear model with 0, 1 observations. According
to the Robertson transformation (1950), the regression co-
efficient for the genetic effects is the same as the probabil-
ity density at the threshold t, i.e. bobs = cov(y, g)/var(g) =
[E(y · g) − E(y)E(g)]/h2

l = K m = z, where m is the mean li-
ability for cases and z is the height of a normal density curve
at the point that truncates the proportion K in the upper tail.
Therefore, the likelihood (2) and (3) can be approximated
as,

ln L ∼=
Ncase∑
i=1

ln(�obs + zgi ) +
Ncontrol∑

i=1

ln[1 − (�obs + zgi )]. (6)

PSEUDO-R2 MEASURES BASED ON THE
LIKELIHOOD FUNCTION

The linear approximation of the likelihood function (6)
implies that the likelihood function is based on probabil-
ities on the observed disease scale, and not based on the
logit or probit liability scales. This explains why pseudo-R2

based on the likelihood [Cox and Snell, 1989; McFadden,

1974; Nagelkerke, 1991] do not give an appropriate inter-
pretation when measuring the goodness-of-fit of the lin-
ear predictor for the logit (�logit + blogitgi ) or probit model
(�probit + bprobitgi ). Since observations and underlying ex-
planatory factors are not on the same scale for binary traits,
it has been observed that the pseudo-R2 based on the like-
lihood never reach one even when a model has a perfect fit
[Cox and Snell, 1989; Nagelkerke, 1991]. For example, the
R2 proposed by Cox and Snell (C&S) is,

R2
C&S = 1 −

[
Ncase∏
i=1

(
K̂

/
1

1 + exp(−�̂logit − b̂logitgi )

)

×
Ncontrol∏

i=1

(
(1 − K )

/
exp(−�̂logit − b̂logitgi )

1 + exp(−�̂logit − b̂logitgi )

)]2/N

∼= 1 −
[

Ncase∏
i=1

(
K̂

�̂obs + b̂obsgi

) Ncontrol∏
i=1

(
1 − K̂

1 − (�obs + b̂obsgi )

)]2/N

.

This equation shows that 1 − R2
C&S is the mean squared ra-

tio of the probability explained by random chance (i.e. the
numerators) over that explained by random chance plus
additional genetic factors (i.e. the denominators), which
are obviously on the observed probability scale. In a lin-
ear model with 0, 1 responses on the observed probability
scale, the numerators are analogous to the mean squared
errors in the full model, i.e. y = � + g + e, and the denomi-
nators are analogous to the mean squared errors in the null
model, i.e. y = � + e. Therefore, R2

C&S can be approximated
as,

R2
C&S

∼= 1 −

N∑
i

(yi − ŷ)2/N

N∑
i

(yi − ȳ)2/N

= 1 − �̂2
e

K̂ (1 − K̂ )
,

where �̂2
e is estimated residual variance on the observed

probability scale that is a proportion of the total variance
unexplained by the genetic factor. If liability is normally
distributed then the variance on the observed scale removed
by the genetic profile is approximately equal to z2h2

l and the
total variance on the observed scale is K(1 − K), so that
the residual on that scale is the difference between the two.
Therefore, an approximation of the expectation of R2

C&S can
be written as,

E
(
R2

C&S

) ∼= 1 − K (1 − K ) − z2h2
l

K (1 − K )
= z2h2

l

K (1 − K )
.

This expression shows why Cox and Snell’s R2 is ap-
proximately equal to R2 on the observed scale in a linear
model, although the difference increases with extremely
high heritability [Cox and Wermuth, 1992] (also see Table I).
Nagelkerke [1991] tried to correct Cox and Snell’s R2 by
scaling it by the maximum value it can ever attain, i.e.
R2

N = R2
C&S/R2

max where R2
max = 1 − K 2K · (1 − K )2(1−K ) from

(4). However, this adjustment is not appropriate if the aim
is to measure the goodness-of-fit of models on the scale of
liability.
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TABLE I. Brief description of R2 measures used in this study and their theoretical expectation

Brief description Notation and formula Expectation

R2 on the observed scale R2
o = 1 −

N∑
i

(yi −ŷ)2

N∑
i

(yi −ȳ)2
h2

l
z2

K (1−K )

Cox and Snell’s R2 on the observed scale R2
C&S = 1 −

{
Likelihoodnull
Likelihoodfull

}2/N
h2

l
z2

K (1−K )

Nagelkerke’s R2 on the observed scale R2
N = R2

C&S
1−(Likelihoodnull)2/N

R2
C&S

1−K 2K · (1−K )2(1−K )

R2 on the liability scale R2
l = R2

o
K̂ (1−K̂ )

z2 h2
l

R2 on the probit liability scale R2
probit = var(b̂probitgi )

var(b̂probitgi )+1
h2

l

R2 on the logit liability scale R2
logit = var(b̂logitgi )

var(b̂logitgi )+3.29
h2

l

R2 on the liability scale using AUC R2
AUC = 2Q2

(m2−m)2+Q2m(m−t)+m2(m2−t)
h2

l

R2 on the liability scale when using ascertained case-control studies R2
lcc

= R2
occ C

1+R2
occ � C

h2
l

y, observations that are 0 or 1 for unaffected and affected individuals; h2
l , heritability on the liability scale, in this context the proportion

of variance on the liability scale explained by the genetic profile; K, population prevalence; z, the height of a normal density curve at the
point according to K; g, the sum of all additive genetic factors in the estimated genetic predictor; b, regression coefficient from generalized
linear model; m, the mean liability for cases; m2, the mean liability for controls; t, the threshold on the normal distribution that truncates the
proportion of disease prevalence K; Q, the inverse of the cumulative density function of the normal distribution up to values of AUC; C and
�, correcting factors for ascertainment.

R2 ON THE LIABILITY SCALE
In order to derive R2 on the liability scale, we first obtain

the R2 on the observed scale using linear regression. In a
linear model with 0, 1 observation, the R2 on the observed
probability scale can be written as,

R2
o = 1 −

(
Likelihoodnull

Likelihoodfull

)2/N

= 1 −

N∑
i

(yi − ŷ)2

N∑
i

(yi − ȳ)2

= var(b̂obsgi )
K̂ (1 − K̂ )

, (7)

where var(b̂obsgi ) (or var(zgi )) is the variance due to the ex-
planatory variable (genetic variance) on the observed prob-
ability scale. Hence, R2

o measures a portion of the total
variance explained by the genetic factor on the observed
probability scale. This proportion can be transformed to
that on the liability scale using the Robertson transforma-
tion [Dempster and Lerner, 1950],

R2
l = R2

o
K̂ (1 − K̂ )

z2
= var(g)

var(l)
= var(g). (8)

This concept of R2 on the liability scale can be simply
extended to probit or logit models. In a probit model, the R2

on the probit liability scale can be directly obtained as the
variance explained by linear predictors as a proportion of
the total variance on the probit liability scale, that is,

R2
probit = var(b̂probitgi )

var(b̂probitgi ) + var(e)
, (9)

where the residual variance is defined as var(e) = 1 in the
probit model. Since the assumption of normality on the scale
of liability is assumed for both (8) and (9), their expectations
are identical. Equation (8) is based upon an analysis on the
0–1 scale followed by a transformation, whereas Equation
(9) is based upon a generalized linear model analysis.

Similarly, assuming that the liability has a logistic distri-
bution, R2 on the logit liability scale can be obtained with
the residual variance of var(e) = �2/3 = 3.29 as,

R2
logit = var(b̂logitgi )

var(b̂logitgi ) + var(e)
. (10)

McKelvey and Zavoina [1975] were the first to propose an
R2 measure expressed on an underlying latent scale using
a generalized linear model. Equation (9) implements this
for the probit link function and Equation (10) for the logit
link function, and this R2 is widely used. The derivation for
the liability threshold model has not been considered previ-
ously (Equation (8)). Although the threshold model and the
generalized linear model are equivalent, the formulae for
R2 in Equations (9) and (10) are different to that in Equation
(8). R2 values from Equations (9) and (10) are based on es-
timated linear predictors in logit or probit models, whereas
that from Equation (8) was based on a transformation from
R2 on the observed scale that was based on the likelihood.
Importantly, the transformation in Equation (8) can be mod-
ified to correct bias in ascertained case-control studies (see
next sections).
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R2 ON THE LIABILITY SCALE FROM AUC
AUC is a useful statistic of the precision of predicting

the genetic risk of disease [Janssens et al., 2006; Wray et al.,
2010]. Using estimated AUC, R2 on the liability scale can
be obtained [Wray et al., 2010]. Estimation in this approach
is independent of the relative proportion of cases and con-
trols even if there is ascertainment in the case-control study.
However, the estimation become less accurate for high her-
itabilities [Wray et al., 2010]. Given K and AUC, R2 can be
obtained as,

R2
AUC = 2Q2

(m2 − m)2 + Q2m(m − t) + m2(m2 − t)
, (11)

where Q = �−1(AUC), and m2 = −mK/(1 − K).

R2 ON THE LIABILITY SCALE FOR
ASCERTAINED CASE-CONTROL STUDIES

In genetic epidemiology studies, case-control designs are
widely used where cases are usually oversampled relative
to the prevalence in the population. In this situation, there
is no R2 measure that is estimated on the liability scale and
corrects for ascertainment. We consider the same liability
model (1) but when samples are ascertained in a case-control
study. According to (5), the genetic value on the observed
scale (ucc) for an individual in a case-control study is,

ucc = c + bcc gcc, (12)

where bcc = cov(ycc, gcc)/var(gcc) = z P(1−P)
K (1−K )

�2
g

�2
gcc

, where P is

the proportion of cases in the case-control sample. The de-
tails of this derivation are in Appendix A. From (12), the
variance explained by the genetic factor on the observed
scale is [Lee et al., 2011],

�2
ucc

= b2
cc�2

gcc
=

[
z

P(1 − P)
K (1 − K )

�2
g

�2
gcc

]2

�2
gcc

=
[

z
P(1 − P)
K (1 − K )

]2 �2
g

�2
gcc

�2
g . (13)

R2
o is a proportion of the total variance explained by the

genetic factor on the observed probability scale (7), and we
define R2

occ
as that proportion for an ascertained case-control

study. Therefore,

R2
occ

= �2
ucc

P(1 − P)
=

[
z

√
P(1 − P)

K (1 − K )

]2
�2

g

�2
gcc

�2
g . (14)

Finally, we express the proportion of the total variance
explained by the genetic factor on the liability scale (8), cor-
rected for ascertainment. This parameter R2

lcc
can be derived

from (14) as (Appendix A),

R2
lcc

= �2
g = R2

occ
C

1 + R2
occ

�C
, (15)

where C = K (1−K )
z2

K (1−K )
P(1−P) and � = m P−K

1−K (m P−K
1−K − t).

To summarize the theoretical sections, we have derived
an expression for the proportion of variation in liability
explained by the genetic profile in the population, using an
estimate of the proportion of variation explained by the pro-
file on the observed 0–1 scale in an ascertained case-control
sample. The expression (Equation (15)) uses the goodness-
of-fit R2 on the 0–1 scale and then transforms it to the liability
scale whilst adjusting for ascertainment.

SIMULATION STUDY
In a simulation study, genetic (g) and residual values (e)

were independently generated from random normal dis-
tributions with means of zero and variances of �2

g and �2
e ,

respectively. The value for �2
e was chosen such that the de-

sired proportion of variation in liability due to the genetic
profile was obtained. Liability for each individual was l =
g + e. Disease status for each individual was determined
by comparing l with the threshold of liability determined
by the population prevalence. In this study, a population
prevalence K = 0.5, 0.1, or 0.01 was used with 10,000 individ-
ual observations. Therefore, for the case-control designs, we
had samples of 5,000, 1,000, and 100 cases and 5,000, 9,000,
and 9,900 controls for K = 0.5, 0.1, and 0.01, respectively.
When testing ascertained samples, cases were oversampled
such that the number of cases and controls was approxi-
mately equal, i.e. P = 0.5. So for the ascertained case-control
designs, we had samples of 5,000 cases and 5,000 controls
for K = 0.1 or 0.01. In an alternative simulation, genetic and
residual values were independently generated from logis-
tic distributions with a means of zero and variances of �2

g

and �2
e = �2/3, respectively. The value for �2

g was chosen
such that the desired proportion of variation in liability due
to the genetic profile was obtained. Disease status for each
individual was decided given his or her liability and the
threshold determined by the population prevalence accord-
ing to the logistic distribution.

For analyses of the simulated data, we used a linear, logit,
or probit model where disease status was used as 0, 1 ob-
servations (y), and genetic values on the liability scale were
used as explanatory variables [Cox and Wermuth, 1992).
Using those models, we obtained several kinds of R2 mea-
sures (Table I). First, we obtained R2

o from a linear regres-
sion using (7). Second, we used Cox and Snell’s method
[Cox and Snell, 1989]. Third, we used Nagelkerke’s scale
method [Nagelkerke, 1991]. Fourth, we transformed R2

o to
R2

l on the liability scale using (8). Fifth and sixth, we used
the variance explained by linear predictors proportional to
the total variance on the probit (9) and logit scale (10), re-
spectively. Seventh, we obtained R2

AUC from AUC estimated
from a probit model (a linear or logit model gave the same
results) using (11). These methods and notations are briefly
described in Table I, and pseudo-R codes for them are shown
in the Appendix B. In testing ascertained case-control sam-
ples, all the same methods were applied except that R2

occ
was

transformed to R2
lcc

using (15).

RESULTS

ESTIMATED R2 MEASURES USING SEVERAL
METHODS WITH SIMULATED DATA

In Figure 1, R2 values on the observed scale (R2
C&S and

R2
N) and liability scale (R2

probit,R
2
logit, R2

l , and R2
AUC) are
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Fig. 1. Estimated coefficients of determination using simulated data. The true proportion of variance explained by the genetic profile
was simulated as 0.1, 0.5, and 0.9 under a normal distribution. Various combinations of population prevalence (K) and the proportion of
cases in the case-control study (P) were simulated. The first two figures are from simulations without ascertainment (i.e. K = P) and the
last two figures are from simulations with ascertainment (i.e. K < P). Several R2 measures were used and compared, i.e. Cox and Snell’s
R2 on the observed scale (C&S), Nagelkerke’s R2 on the observed scale (N), R2 on the liability scale transformed from linear model (l for
population samples and lcc for ascertained case-control samples), R2 on the probit liability scale (probit), R2 on the logit liability scale
(logit), and R2 on the liability scale using AUC (AUC). The three horizontal lines represent the true values. The colored lines are for
heritability of 0.1 (blue), 0.3 (green), and 0.9 (red). Closed symbols represent the average of the estimated R2 from each method.

presented when using population prevalence K = 0.5 and
0.1 without ascertainment, or K = 0.1 and 0.01 with ascer-
tainment under a normal distribution. The results for R2

o are
not presented because the values for R2

o and R2
C&S are very

similar unless heritability is very high, as expected from
Equation (6). In Supplementary Material Tables SI–SIV, we
report the results from seven kinds of R2 measures for K
= 0.5, 0.1, and 0.01 without ascertainment, and for K = 0.1
and 0.01 with ascertainment, both under a normal or logistic
distribution of liability.

Under a normal distribution without ascertainment (i.e.
K = P in Fig. 1), the values for R2

N were higher than R2
C&S;

however, they were still much lower than the true values
on the scale of liability. However, the values for R2

l on the
liability scale were unbiased and close to the true values
(Fig. 1). For R2

probit on the probit liability scale, the values
were very similar to R2

l and close to the true values. For
R2

logit on the logit liability scale, the values were similar to
the true values with slight bias. The values for R2

AUC were
close to the true values with low heritabilities; however,
they were overestimated with high heritabilities (Fig. 1).

Under a normal distribution with ascertainment (i.e., K
< P in Fig. 1), only R2

lcc
values gave unbiased and correct

values that were transformed from R2
occ

using (15) (Fig. 1).
We note that R2

AUC values with ascertained samples were
very similar to those without ascertained samples, showing
that R2

AUC is not affected by ascertainment, because AUC,
on which it is based, is known not to be affected by ascer-
tainment. It was shown that ascertained samples resulted
in biased estimation for the values for R2

probit and R2
logit that

gave correct values when using unascertained population
samples. We show in the Appendix C that a weighted probit
model produces unbiased estimates for the normal distri-
bution, although the weighted scheme does not fully use all
information.

Under a logistic distribution without ascertainment
(Table SIII in Supplementary Material), R2 values on the
observed scale (R2

C&S and R2
N) did not agree with the true

values, as expected. The values for R2
l and R2

AUC were dif-
ferent from the true values. This was due to the fact that
the transformation based on a normal distribution is not
valid for a logistic distribution. The values for R2

probit were
slightly biased because the normality assumption in the pro-
bit model is violated when the actual distribution is logistic.
Only R2

logit values were unbiased and close to the true values
(Fig. 1). Using a logistic distribution, we also tested and
estimated R2 values for ascertained case-control studies
(Table SIV in Supplementary Material). In this situation, no
method gave correct estimates. Again, a weighting scheme
in a logistic model can be used to produce unbiased esti-
mates for the logistic distribution (Appendix C).

COMPARING OBSERVED AND EXPECTED
VALUES

The expected value for each R2 can be obtained as de-
scribed in Table I that gives approximate relationships be-
tween the R2 values. Table II shows the ratio of the observed
estimated value over its expectation under a normal distri-
bution of liability. Without ascertainment (K = P), the ra-
tios for R2

l and R2
probit were close to one, indicating that the

observations and expectations agreed very well. The ob-
servations and expectations for R2

C&S, R2
N, and R2

AUC agreed
approximately unless the true heritability was high. The
ratio for R2

logit deviated from one, probably because the lia-
bility had a normal distribution, not a logistic distribution
(Table II).

When using ascertained case-control studies (K < P),
the patterns for the ratio of observed and expected value
for R2 were similar to those without ascertainment except
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TABLE II. The ratio of estimated R2 over its expectation
using several methods under a normal distribution of
liability

Observed scale Liability scale

True h2a R2
C&S R2

N R2
l R2

probit R2
logit R2

AUC

K = P = 0.5
0.1 1.02 1.02 1.02 1.02 0.83 0.85

(0.06) (0.06) (0.06) (0.06) (0.05) (0.06)
0.5 1.01 1.01 1.00 1.00 0.94 1.00

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
0.9 1.06 1.06 1.00 1.00 1.00 1.42

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
K = P = 0.1
0.1 1.00 1.01 1.00 1.01 1.12 0.94

(0.10) (0.10) (0.11) (0.10) (0.11) (0.10)
0.5 1.04 1.03 1.00 1.00 1.03 1.02

(0.04) (0.03) (0.04) (0.03) (0.03) (0.04)
0.9 1.17 1.18 1.00 1.00 1.00 1.26

(0.03) (0.01) (0.03) (0.01) (0.01) (0.02)
K = 0.1, P = 0.5
0.1 1.00 1.00 1.00 1.43 1.19 0.94

(0.06) (0.06) (0.06) (0.09) (0.08) (0.06)
0.5 1.00 1.01 1.01 1.22 1.18 1.03

(0.02) (0.02) (0.01) (0.02) (0.02) (0.02)
0.9 1.03 1.03 1.01 1.03 1.04 1.25

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)
K = 0.01, P = 0.5
0.1 1.00 1.00 1.00 2.49 2.15 0.99

(0.05) (0.05) (0.04) (0.12) (0.11) (0.06)
0.5 0.98 0.98 1.00 1.55 1.55 1.02

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
0.9 0.96 0.96 1.00 1.07 1.08 1.11

(0.00) (0.00) (0.00) (0.00) (0.00) (0.02)

aThe true proportion of variance explained by the genetic profile.
The expectation was obtained as described in Table I.
Standard deviation over 30 replicates is in the bracket.

R2
probit. The observations and expectations for R2

lcc
agreed

well (Table II). With low and moderate heritability, the ob-
served and expected values for R2

C&S, R2
N, and R2

AUC agreed
(Table II). However, the ratio of observed and expected val-
ues for R2

probit and R2
logit substantially deviated from one. This

was due to the fact that R2
probit and R2

logit were not corrected
for ascertainment bias. We report complete results for the
ratio of observed and expected values in Supplementary
Material Tables SV–SVI.

DISCUSSION

It is reasonable to assume that there is underlying liability
for complex disease (Falconer and Mackay, 1996], and recent
empirical findings from genome-wide association studies
are consistent with highly polygenic models for common
disease [Antoniou and Easton, 2003; Pharoah et al., 2002;
Purcell et al., 2009; The International Multiple Sclerosis Ge-
netics Consortium, 2010; Witte and Hoffmann, 2011]. If this
assumption is valid, it is desirable to have coefficients of de-

termination on the same scale as liability because then the
goodness-of-fit can be compared across studies and traits.
We showed that pseudo-R2 statistics based on the likeli-
hood function (e.g. R2

C&S) are on the observed probability
scale. This is the reason why such R2 are inappropriate to
measure the goodness-of-fit of models, i.e. it never reaches
unity even when there is a perfect model fit. Nagelkerke
R2 is adjusted for the maximum value so that it may reach
unity; however, the adjustment is inappropriate to measure
the goodness-of-fit of models on the liability scale. We de-
rived and showed the relationship between the observed
probability scale and the underlying liability scale. R2 is
a proportion of variance explained by explanatory genetic
factors, and can be transformable between the observed and
the liability scale. Given the simulation results, the R2 values
on the liability scale were much more appropriate in mea-
suring the goodness-of-fit of models and interpreting model
parameters. The concept of R2 as a proportion of total vari-
ance explained by explanatory factors on the liability scale
was suggested previously [McKelvey and Zavoina, 1975].
We explicitly show the relationship between R2 on the ob-
served and liability scale, and justified that R2 on the liabil-
ity scale is globally valid and comparable. Moreover, when
samples were ascertained, an unbiased estimate of R2 on the
liability scale could be obtained, corrected for ascertainment
bias using a modified version of the transformation.

The transformation of R2 values on the liability scale de-
pends on the distribution of underlying liability. The as-
sumption of a normal distribution in obtaining R2

l , R2
lcc

,
R2

probit, and R2
AUC was violated when the true liability had a

logistic distribution (Fig. 1). If liability is the sum of many
multiple independent random genetic and environmental
factors, then the central limit theorem predicts that its dis-
tribution will tend to normality [Falconer and Mackay, 1996;
Gibson, 2009; Valentin, 1999; Wray et al., 2010]. For this rea-
son, the assumption of a normal distribution for liability to
common disease seems reasonable.

In practice, with real data, genetic values on the lia-
bility scale are not observed (gi) but estimated (ĝi ). For
example, ĝi can be created from validated genome-wide
significant Single Nucleotide Polymorphism (SNPs) or
else from a large number of SNPs with effect sizes es-
timated in an independent discovery sample in a “pro-
file scoring” approach [Chen et al., 2011; Meigs et al.,
2008; Morrison et al., 2007; Purcell et al., 2009; The In-
ternational Multiple Sclerosis Genetics Consortium, 2010;
Wacholder et al., 2010; Wray et al., 2007]. In these examples,
effect sizes are estimated in a fixed effects framework, and
the resulting predictor will be estimated with error (εi ), such
that ĝi = gi + εi . The effect of such errors on the R2 values
investigated in this study is that the “heritability” of the
predictor is lower than if it were estimated without error,
and so the R2 values will be lower. However, all calcula-
tions and simulations results are still valid if the variation
in liability explained by ĝ is substituted for the heritability
of liability. If the predictor is estimated from random effects
models and unbiased in the sense that the regression of gi
on ĝi is unity [Goddard et al., 2009] then the R2 values will
be unbiased and will reflect the proportion of variance of
liability explained by gi .

We suggest that R2 values on the liability scale should
be used to measure the goodness-of-fit of models in which
genetic profiles are used. They are consistent with the un-
derlying scale, independent of population parameters such
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as K and P, globally comparable between analytical models
and methods and can be compared to heritability. Partic-
ularly, R2

l and R2
probit values are easily interpretable in re-

lation to true heritability on the underlying liability scale
when using population samples. When using ascertained
case-control studies, R2

lcc
values, adjusted for ascertainment

bias, is a useful measure with desirable properties.

ACKNOWLEDGMENTS

We acknowledge funding from the Australian National
Health and Medical Research Council (grants 613672,
613601, and 1011506) the Australian Research Council
(grants DP0770096, DP1093502, and FT0991360).

REFERENCES

Antoniou AC, Easton DF. 2003. Polygenic inheritance of breast can-
cer: implications for design of association studies. Genet Epidemiol
25(3):190–202.

Baneshi MR, Warner P, Anderson N, Edwards J, Cooke TG, Bartlett
JMS. 2010. Tamoxifen resistance in early breast cancer: statistical
modelling of tissue markers to improve risk prediction. Br J Cancer
102(10):1503–1510.

Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich
HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F,
Schuilenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS.
2009. Genome-wide association study and meta-analysis find that
over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707.

Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant
SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopou-
los T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT,
Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR,
Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O,
Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A,
Zelenika D, Franchimont D, Hugot J-P, de Vos M, Vermeire S, Louis
E, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T,
Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead
S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D,
Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ. 2008.
Genome-wide association defines more than 30 distinct suscepti-
bility loci for Crohn’s disease. Nat Genet 40(8):955–962.

Chen H, Poon A, Yeung C, Helms C, Pons J, Bowcock AM, Kwok P-Y,
Liao W. 2011. A genetic risk score combining ten psoriasis risk loci
improves disease prediction. PLoS One 6(4):e19454.

Cox DR, Snell EJ. 1989. The analysis of binary data. London: Chapman
and Hall.

Cox DR, Wermuth N. 1992. A comment on the coefficient of determina-
tion for binary responses. Am Stat 46:1–4.

Cubiella FJ, Nunez CL, Gonzalez VE, Garcia GMJ, Alves PMT,
Martinez SI, Fernandez SJ. 2010. Risk factors associated with the de-
velopment of ischemic colitis. World J Gastroenterol 16:4564–4569.

Daetwyler HD, Villanueva B, Woolliams JA. 2008. Accuracy of predict-
ing the genetic risk of disease using a genome-wide approach. PLoS
One 3(10):e3395.

de Cid R, Riveira-Munoz E, Zeeuwen PLJM, Robarge J, Liao W,
Dannhauser EN, Giardina E, Stuart PE, Nair R, Helms C, Es-
caramis G, Ballana E, Martin-Ezquerra G, Heijer Md, Kamsteeg M,
Joosten I, Eichler EE, Lazaro C, Pujol RM, Armengol L, Abecasis G,
Elder JT, Novelli G, Armour JAL, Kwok P-Y, Bowcock A, Schalk-
wijk J, Estivill X. 2009. Deletion of the late cornified envelope LCE3B
and LCE3C genes as a susceptibility factor for psoriasis. Nat Genet
41(2):211–215.

DeMaris A. 2002. Explained variance in logistic regression. Sociol Meth-
ods Res 31(1):27–74.

Demirkan A, Penninx BWJH, Hek K, Wray NR, Amin N, Aulchenko
YS, van Dyck R, de Geus EJC, Hofman A, Uitterlinden AG,
Hottenga JJ, Nolen WA, Oostra BA, Sullivan PF, Willemsen G, Zit-
man FG, Tiemeier H, Janssens ACJW, Boomsma DI, van Duijn CM,
Middeldorp CM. 2011. Genetic risk profiles for depression and anx-
iety in adult and elderly cohorts. Mol Psychiatry 16:773–783.

Dempster ER, Lerner IM. 1950. Heritability of threshold characters. Ge-
netics 35:212–236.

Efron B. 1978. Regression and ANOVA with zero-one data: measures of
residual variation. J Am Stat Assoc 73:113–121.

Evans DM, Visscher PM, Wray NR. 2009. Harnessing the informa-
tion contained within genome-wide association studies to im-
prove individual prediction of complex disease risk. Hum Mol
Genet. 18:3525–3531.

Falconer DS, Mackay TFC. 1996. Introduction to quantitative genetics.
Harlow, Essex, UK: Longman.

Gail MH. 2008. Discriminatory accuracy from single-nucleotide poly-
morphisms in models to predict breast cancer risk. J Natl Cancer
Inst 100(14):1037–1041.

Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi
S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H,
Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S,
Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R,
Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Alle-
gri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C,
Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto
F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP.
2011. Genome-wide association study identifies susceptibility loci
for IgA nephropathy. Nat Genet 43:321–327.

Gibson G. 2009. Decanalization and the origin of complex disease. Nat
Rev Genet 10(2):134–140.

Goddard ME, Wray NR, Verbyla K, Visscher PM. 2009. Estimating effects
and making predictions from genome-wide marker data. Statist Sci
24:517–529.

Janssens ACJW, Aulchenko YS, Elefante S, Borsboom GJJM, Steyerberg
EW, van Duijn CM. 2006. Predictive testing for complex diseases
using multiple genes: fact or fiction? Genet Med 8(7):395–400. DOI:
10.1097/01.gim.0000229689.18263.f4.

Janssens ACJW, Ioannidis JPA, Bedrosian S, Boffetta P, Dolan SM, Dowl-
ing N, Fortier I, Freedman AN, Grimshaw JM, Gulcher J, Gwinn M,
Hlatky MA, Janes H, Kraft P, Melillo S, O’Donnell CJ, Pencina MJ,
Ransohoff D, Schully SD, Seminara D, Winn DM, Wright CF, van
Duijn CM, Little J, Khoury MJ. 2011. Strengthening the reporting
of genetic risk prediction studies (GRIPS): explanation and elabora-
tion. Eur J Hum Genet 19: doi:10.1038/ejhg.2011.27.

Kochi Y, Okada Y, Suzuki A, Ikari K, Terao C, Takahashi A, Ya-
mazaki K, Hosono N, Myouzen K, Tsunoda T, Kamatani N, Fu-
ruichi T, Ikegawa S, Ohmura K, Mimori T, Matsuda F, Iwamoto T,
Momohara S, Yamanaka H, Yamada R, Kubo M, Nakamura Y, Ya-
mamoto K. 2010. A regulatory variant in CCR6 is associated with
rheumatoid arthritis susceptibility. Nat Genet 42(6):515–519.

Kraft P, Wacholder S, Cornelis MC, Hu FB, Hayes RB, Thomas G, Hoover
R, Hunter DJ, Chanock S. 2009. Beyond odds ratios [mdash] com-
municating disease risk based on genetic profiles. Nat Rev Genet
10(4):264–269.

Labruna G, Pasanisi F, Nardelli C, Caso R, Vitale DF, Contaldo F,
Sacchetti L. 2011. High leptin/adiponectin ratio and serum triglyc-
erides are associated with an “at-risk” phenotype in young severely
obese patients. Obesity. 19:1492–1496.

Lee SH, Wray NR, Goddard ME, Visscher PM. 2011. Estimating missing
heritability for disease from genome-wide association studies. Am
J Hum Genet 88:294–305.

Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T,
Berglund G, Altshuler D, Nilsson P, Groop L. 2008. Clinical risk
factors, DNA variants, and the development of type 2 diabetes.
New Engl J Med 359(21):2220–2232.

Genet. Epidemiol.



222 Lee et al.

McFadden D. 1974. The measurement of urban travel demand. J Public
Econ 3:303–328.

McKelvey RD, Zavoina W. 1975. A statistical model for the analysis of
ordinal level dependent variables. J Math Sociol 4:103–120.

Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J,
Manning AK, Florez JC, Wilson PWF, D’Agostino RB, Cupples
LA. 2008. Genotype score in addition to common risk factors
for prediction of type 2 diabetes. New Engl J Med 359(21):2208–
2219.

Menard S. 2000. Coefficients of determination for multiple logistic re-
gression analysis. Am Stat 54(1):17–24.

Morrison AC, Bare LA, Chambless LE, Ellis SG, Malloy M, Kane JP,
Pankow JS, Devlin JJ, Willerson JT, Boerwinkle E. 2007. Prediction of
coronary heart disease risk using a genetic risk score: the atheroscle-
rosis risk in communities study. Am J Epidemiol 166(1):28–35.

Nagelkerke NJD. 1991. A note on a general definition of the coefficient
of determination. Biometrika 78(3):691–692.

Painter JN, Anderson CA, Nyholt DR, Macgregor S, Lin J, Lee SH,
Lambert A, Zhao ZZ, Roseman F, Guo Q, Gordon SD, Wallace L,
Henders AK, Visscher PM, Kraft P, Martin NG, Morris AP, Treloar
SA, Kennedy SH, Missmer SA, Montgomery GW, Zondervan KT.
2011. Genome-wide association study identifies a locus at 7p15.2
associated with endometriosis. Nat Genet 43:51–54.

Peel NM, McClure RJ, Hendrikz JK. 2006. Health-protective behaviours
and risk of fall-related hip fractures: a population-based case-control
study. Age Ageing 35(5):491–497.

Peel NM, McClure RJ, Hendrikz JK. 2007. Psychosocial factors associ-
ated with fall-related hip fractures. Age Ageing 36(2):145–151.

Pharoah PDP, Antoniou A, Bobrow M, Zimmern RL, Easton DF,
Ponder BAJ. 2002. Polygenic susceptibility to breast cancer and im-
plications for prevention. Nat Genet 31:33–36.

Pharoah PDP, Antoniou AC, Easton DF, Ponder BAJ. 2008. Polygenes,
risk prediction, and targeted prevention of breast cancer. New Engl
J Med 358(26):2796–2803.

Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan
PF, Sklar P. 2009. Common polygenic variation contributes to risk
of schizophrenia and bipolar disorder. Nature 460(7256):748–52.

Richards AL, Jones L, Moskvina V, Kirov G, Gejman PV, Levinson DF,
Sanders AR, Purcell S, Visscher PM, Craddock N, Owen MJ, Hol-
mans P, O’Donovan MC. 2011. Schizophrenia susceptibility alleles
are enriched for alleles that affect gene expression in adult human
brain. Mol Psychiatry doi: 10.1038/mp.2011.11.

Sarafidis PA, Lasaridis AN, Nilsson PM, Pikilidou MI, Stafilas PC,
Kanaki A, Kazakos K, Yovos J, Bakris GL. 2007. Validity and re-
producibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley’s
indices in patients with hypertension and type II diabetes. J Hum
Hypertens 21(9):709–716.

Shea JL, Loredo-Osti JC, Sun G. 2010. Association of RBP4 gene variants
and serum HDL cholesterol levels in the Newfoundland population.
Obesity 18(7):1393–1397.

Study TIHC. 2010. The Major genetic determinants of HIV-1 control af-
fect HLA class I peptide presentation. Science 330(6010):1551–1557.

Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman
PJ. 2000. Elevated levels of FMR1 mRNA in carrier males: a new
mechanism of involvement in the Fragile-X syndrome. Am J Hum
Genet 66(1):6–15.

The International Multiple Sclerosis Genetics Consortium. 2010. Evi-
dence for polygenic susceptibility to multiple sclerosis—the shape
of things to come. Am J Hum Genet 86(4):621–625.

Vaidya VS, Ozer JS, Dieterle F, Collings FB, Ramirez V, Troth S, Mu-
niappa N, Thudium D, Gerhold D, Holder DJ, Bobadilla NA,
Marrer E, Perentes E, Cordier A, Vonderscher J, Maurer G, Goer-
ing PL, Sistare FD, Bonventre JV. 2010. Kidney injury molecule-1
outperforms traditional biomarkers of kidney injury in preclinical
biomarker qualification studies. Nat Biotech 28(5):478–485.

Valentin J. 1999. Risk estimation for multifactorial diseases. Oxford, UK:
ICRP by Elsevier Science Ltd.

Veall MR, Zimmermann KF. 1996. Pseudo-R2 measures for some com-

mon limited dependent variable models. J Econ Surveys 10(3):241–
259.

Wacholder S, Hartge P, Prentice R, Garcia-Closas M, Feigelson HS, Diver
WR, Thun MJ, Cox DG, Hankinson SE, Kraft P, Rosner B, Berg CD,
Brinton LA, Lissowska J, Sherman ME, Chlebowski R, Kooperberg
C, Jackson RD, Buckman DW, Hui P, Pfeiffer R, Jacobs KB, Thomas
GD, Hoover RN, Gail MH, Chanock SJ, Hunter DJ. 2010. Perfor-
mance of common genetic variants in breast-cancer risk models.
New Engl J Med 362(11):986–993.

Witte JS, Hoffmann TJ. 2011. Polygenic modeling of genome-wide asso-
ciation studies: an application to prostate and breast cancer. OMICS
J Integr Biol 15(6):393–398.

Wray NR, Goddard ME, Visscher PM. 2007. Prediction of individual ge-
netic risk to disease from genome-wide association studies. Genome
Res 17:1520–1528.

Wray NR, Yang J, Goddard ME, Visscher PM. 2010. The genetic inter-
pretation of area under the ROC curve in genomic profiling. PLoS
Genet 6(2):e1000864.

APPENDIX A

TRANSFORMATION CORRECTED FOR
ASCERTAINMENT

In ascertained case-control studies, the mean and vari-
ance for case-controls disease status (ycc), disease liability
(lcc), and genetic liability (gcc) following quantitative genetic
theory [Falconer and Mackay, 1996] are,

E(ycc) = P, which is the proportion of cases in the sample,
var(ycc) = P(1 – P), which is the phenotypic variance on

the observed scale in the case-control sample,

E(lcc) = Pm + (1 − P)m2 = Pm − (1 − P)m[K/(1 − K )]

= m[(P − K )/(1 − K )].

var(lcc) = E(l2
cc) − E(lcc)2 = P(1 + mt) + (1 − P)(1 + m2t)

− m2[(P − K )/(1 − K )]2

= 1 + Pmt − (1 − P)tmK/(1 − K )

− m2[(P − K )/(1 − K )]2

= 1 − m[(P − K )/(1 − K )]{m[(P − K )/(1 − K )] − t}
= 1 − �,

where m is the mean liability for cases, m2 = −m[K/(1 − K )]
is the mean liability for controls, t is the threshold on
the normal distribution truncating the proportion of dis-
ease prevalence K, and � = m[(P − K )/(1 − K )]{m[(P − K )/
(1 − K )] − t}.

The mean of genetic liability depends on the mean liabil-
ity phenotype of the cases and the heritability of liability,

E(gcc) = h2
l E(lcc) = h2

l [Pm + (1 − P)m2]

= h2
l m[(P − K )/(1 − K )].

The variance for genetic liability can be derived as
[Daetwyler et al., 2008],

var (gcc) = E
(

g2
cc

)
− E(gcc)2 = h2

l

(
1 − h2

l �
)
.
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For Equation (12) in main text, the regression of pheno-
type on the observed risk scale on genetic liability in the
case-control study is,

bcc = cov(ycc, gcc)/var(gcc)

= [E(ycc · gcc) − E(ycc)E(gcc)]/var(gcc)

= [P · h2
l m − P · h2

l m{(P − K )/(1 − K )}]/var (gcc)

=
[

P · h2
l m

(
1 − (P − K )

(1 − K )

)]
1

�2
gcc

= z
P(1 − P)
K (1 − K )

�2
g

�2
gcc

.

(
Note m = z

K

)
.

The term P(1−P)
K (1−K )

�2
g

�2
gcc

quantifies the change of the regression

coefficient in a regression of phenotype on the observed
risk scale on genetic factors on the scale of liability due
to ascertainment in a case-control study. In the absence of
ascertainment (P = K), this term is 1.

From Equation (14), R2
lcc

can be derived as,

R2
lcc

= �2
g = R2

occ

K (1 − K )
z2

K (1 − K )
P(1 − P)

�2
gcc

�2
g

= R2
occ

K (1 − K )
z2

K (1 − K )
P(1 − P)

h2
l

(
1 − h2

l �
)

�2
g

.

Since

R2
lcc

= h2
l = �2

g ,

and

C = K (1 − K )
z2

K (1 − K )
P(1 − P)

,

R2
lcc

= R2
occ

C(1 − h2
l �) = R2

occ
C

1 + R2
occ

�C
.

APPENDIX B

PSEUDO-R CODE FOR THE METHODS
DESCRIBED IN THE PAPER

nt = total number of the sample
ncase = number of cases
ncont = number of controls
thd = the threshold on the normal distribution

which truncates the proportion of disease
prevalence

K = population prevalence
P = proportion of cases in the case-control

samples
thd = -qnorm(K,0,1)
zv = dnorm(thd) #z (normal density)
mv = zv/K #mean liability for case

mv2 = -mv*K/(1-K) #mean liability for controls
library(Design) #to call lrm
library(pROC) #to get AUC values
# R2 on the observed scale using a liner model
lmv = lm(y∼g) # linear model
R2 = var(lmv$fitted.values)/(ncase/nt*ncont/nt)
# Cox & Snell R2
logf = logLik(glm(y∼g,family = binomial(logit)))
logn = logLik(glm(y∼1,family = binomial(logit)))
R2 = 1-exp((logn-logf)*(2/nt))
# Nagelkerke R2
lrmv2 = lrm(y∼g) # a logistic model to get

Nagelkerke’s R2
R2 = lrmv2$stats[10]
# R2 on the probit liability scale using

a probit model
pmv = glm(y∼g,family = binomial(probit)) #

probit model
R2 = var(pmv$linear.predictors)/(var(pmv$linear.

predictors)+1)
# R2 on the logistic liability scale
lrmv = glm(y∼g,family = binomial(logit)) #

logistic model
R2 = var(lrmv$linear.predictors)/(var(lrmv$

linear.predictors)+pi^2/3)
# R2 on the liability scale using AUC
aucv = auc(y,pmv$linear.predictors)
qv = qnorm(aucv[1]) #Q in equation (11)
R2 = 2*qv^2/((mv2-mv)^2+qv^2*mv*(mv-thd)+

mv2*(mv2-thd))
# R2 on the liability scale using the

transformation
lmv = lm(y∼g) #linear model
R2O = var(lmv$fitted.values)/(ncase/nt*ncont/nt)

#R2 on the observed scale
theta = mv*(P-K)/(1-K)*(mv*(P-K)/(1-K)-thd) #� in
equation (15)
cv = K*(1-K)/zv^2*K*(1-K)/(P*(1-P)) #C in

equation (15)
R2 = R2O*cv/(1+R2O*theta*cv)

APPENDIX C

WEIGHTED GLM ESTIMATES IN MEASURING
R2 FOR GENETIC PROFILE ANALYSIS USING
ASCERTAINED CASE-CONTROL SAMPLES

When ascertained case-control samples are used, esti-
mates from a probit model are biased because the normality
assumption is violated (3). A weighted probit model can be
used to obtain unbiased estimations, weighting cases for the
proportion of ascertainment, i.e. (1 − P)K/[P(1 − K)]. Even
after obtaining unbiased b̂probit, theR2

probit from Equation (9)
is still biased because there are still oversampled cases in the
estimation. We used a proportion of cases, i.e. (1 − P)K/[P(1
− K)], such that the number of cases and controls matched
the population incidence, and estimated R2

probit using Equa-
tion (9). The pseudo-R code for these processes is in the
following.

# Weighted R2 from a weighted probit model
wv = (1-P)K/[P(1-K)] #weighting factor
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wt = y+1
wt[wt = = 2] = wv #weighting array
pmv = glm(y∼g,weights = wt, family = binomial

(probit)) #weighted probit model
vr = runif(nt,0,1) #uniform random values
vsel = pmv$linear.predictors[y = = control

| vr<wv] #select controls and a proportion
(wv) of cases

R2 = var(vsel)/(var(vsel)+1)

In contrast to a probit model, estimates from a logistic
model are not affected by sample ascertainment because the
estimate is a function of odds ratios (Equation (2)). There-
fore, we could obtain unbiased b̂logit from a standard logistic
regression. However, R2

logit from Equation (10) is biased be-
cause of oversampled cases in the estimation. We used the
same strategy as above to use a proportion of cases, i.e. (1
− P)K/[P(1 − K)], and estimated R2

logit using Equation (10).
The pseudo-R code for obtaining weighted R2

logit is in the
following.

# Weighted R2 from a logistic model
lrmv = glm(y∼g,family = binomial(logit))

# logistic model

vr = runif(nt,0,1) #uniform random values
vsel = lrmv$linear.predictors[y = = control

| vr<wv] #select controls and a proportion
(wv) of cases

R2 = var(vsel)/(var(vsel)+pi^2/3)

Weighted R2 was estimated and compared to the trans-
formation method (Tables SVII and SVIII in Supplementary
Material). For simulations using a normal distribution of
liability, weighted R2 from a weighted probit model was
estimated (Table SVII in Supplementary Material). For sim-
ulations using a logistic distribution, weighted R2 from a
standard logistic model was obtained (Table SVIII in Sup-
plementary Material).

Table SVII in Supplementary Material shows that
weighted R2 from the weighted probit estimates was much
better than that from the unweighted probit estimates when
using simulations of a normal distribution of liability. The
performance of the weighted probit estimates was similar
to that of transformation method (R2

lcc
) (Table I main text),

although the standard deviations for the weighted R2 were
larger. When using simulations of a logistic distribution of
liability, the weighted R2 from a logistic model gave unbi-
ased estimates, which were close to the true values (Table
SVIII in Supplementary Material).
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