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Abstract

Genome-wide association studies (GWAS) are routinely conducted for both quantitative and binary (disease) traits. We
present two analytical tools for use in the experimental design of GWAS. Firstly, we present power calculations quantifying
power in a unified framework for a range of scenarios. In this context we consider the utility of quantitative scores (e.g.
endophenotypes) that may be available on cases only or both cases and controls. Secondly, we consider, the accuracy of
prediction of genetic risk from genome-wide SNPs and derive an expression for genomic prediction accuracy using a liability
threshold model for disease traits in a case-control design. The expected values based on our derived equations for both
power and prediction accuracy agree well with observed estimates from simulations.
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Introduction

In the last five years, GWAS have been published for both

quantitative traits (such as height [1], or blood markers [2]) and

disease [3]. In order to assess the relative potential for success of

these studies Yang et al. [4] provided an analytical method for

comparison of power. For example, this method has been used to

quantify that a sample of ,50,000 schizophrenia cases and 50,000

controls is needed to afford the same power as the largest

published GWAS of height (a total sample size of 180,000) [5].

Use of quantitative endophenotypes rather than binary traits

has been proposed as a strategy to increase power in neuropsy-

chiatric disorders [6]. Endophenotypes are measurable quantita-

tive scores that are assumed to be associated with a continuous

liability that underlies observed disease status, in which case the

quantitative score may be more informative and powerful

compared to binary responses. Of course, the true underlying

liability would be the most informative although it is not

observable. Recently, van der Sluis et al. [7] suggested a better

use of phenotypic information in GWAS of psychiatric disorders

measured in population cohorts. Rather than using binary

responses of affected/non-affected they considered the use of

continuous scores from diagnostic instruments. They showed that

binary responses based on clinical cut-off criteria decreased power

dramatically compared to the use of sum scores of item responses

from the diagnostic instrument. The authors recommended that

continuous quantitative responses such as sum scores of item

responses should be used in psychiatry disorder GWAS, where

possible. The study by van der Sluis et al. [7] compared scenarios

by simulation and was based on population samples. Here, we

provide an analytical method to calculate power in different

scenarios with both population and case control samples.

Another potential use of data collected in GWAS is the

prediction of genetic risk. Genomic-enabled prediction is a

potentially powerful tool to identify individuals at higher risk of

disease [3,8]. Undoubtedly, prediction accuracy plays a crucial

role in a successful clinical application for genetic risk prediction of

disease, and several studies have evaluated the predictive ability

[9,10,11]. Daetwyler et al. [12] derived a theoretical accuracy for

predicting genetic risk from genome-wide SNPs, based on least

squares methodology. Many studies have used their formula,

which works well for quantitative traits. However, in simulation

studies their formula for case-control traits underpredicted the true

accuracy (Table 4 of Daetwyler et al. [12]).

In this study, we address two issues relevant for the design case-

control GWAS, power and genomic prediction accuracy. First, we

derive analytically, in a unified framework, the power of GWAS

when using population or ascertained case-control samples with

binary as well as quantitative responses. Secondly, we derive

genomic prediction accuracy based on the 0,1 observed scale, and

transform it to the liability scale using a liability threshold model

for disease traits in population [13] and in case-control samples

[14]. The expected values based on our derived equations and the

average of observed estimates from simulation agree well.

Materials and Methods

Power
Given a specified critical value for significance, power of a given

association study design can be derived from the non-centrality

parameter (NCP, l) of a x2 test of association. Following methods
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of Yang et al. [4] we derive the NCP for five different

experimental designs:, i.e. quantitative responses in population

(QT_POP) (1), binary responses in population (BT_POP) (2),

binary responses in ascertained case-control samples (BT_CC) (3),

quantitative responses in ascertained case-control samples

(QT_CC) (4) and samples of both ascertained cases and controls

in which quantitative responses are available in the cases only

(QB_CC) (5). The derived NCP for BT_CC, QT_CC and

QB_CC are novel. Following Yang et al. [4],

1) NCP for quantitative responses in population samples, lQT POP

lQT POP~Nh2=(1{h2) ð1Þ

where N is the total number of sample, h2 is the proportion of

variance explained by a single genetic marker or set of markers, i.e.

multi locus association tests [15,16].

1) NCP for binary traits in population samples

lBT POP~N:h2
o=(1{h2

o) ð2Þ

where h2
o is the proportion of variance explained by a genetic

marker or set of markers on the observed scale, and h2
0&z2h2[13],

where z is the height of the normal curve truncating the

proportion K, where K is the proportion of the population that

are cases.

1) NCP for binary responses in ascertained case-control samples, lBT CC

lBT CC~N:h2
occ
=(1{h2

occ
) ð3Þ

where h2
occ

&z2h2P(1{P)=½K(1{K)�2h2=s2
gcc

, [14,17], with

P the proportion of cases in the case control sample and s2
gcc

the genetic variance in the case-control sample inflated

relative to the population sample as a result of the

ascertainment process [12], such cases are over-represented

compared to the population sample. When h2 and h2
occ

is

small, (3) can be approximated and simplified as

lBT CC&N:z2h2P(1{P)=½K(1{K)�2, which agrees with

the derivation based on the relative risk and multiplicative

model by Yang et al. [4].

2) NCP for quantitative responses in ascertained case-control samples,

lQT CC

lQT CC~N:h2
cc=(1{h2

cc) ð4Þ

where h2
cc&s2

lcc
h4=s2

gcc
, where s2

lcc
is the variance of disease

liability [18]. This equality is derived from quantitative

genetic theory [18] in the following way. Firstly,

s2
lcc

~1{i½(P{K)=(1{K)�½if(P{K)=(1{K)g{t� ð5Þ

where i is the mean liability in cases and t is the threshold on

the normal distribution which truncates the proportion of

disease prevalence K, and from Daetwyler et al. [12]

s2
gcc

~h2½1{h2i½(P{K)=(1{K)�½if(P{K)=(1{K)g{t��: ð6Þ

In a similar manner, the inflated variance due to non-genetic

effects is,

Table 1. Expected power for an association study from the derived equations and observed averaged power from simulation.

BT_POP BT_CCa QT_POP QT_CCa

h2 Exp Obs (SE) Exp Obs (SE) Exp Obs (SE) Exp Obs (SE)

N = 2000, K = 0.1

0.0001 0.058 0.053 (0.002) 0.072 0.072 (0.003) 0.073 0.075 (0.003) 0.082 0.083 (0.003)

0.0005 0.090 0.086 (0.003) 0.164 0.163 (0.004) 0.170 0.172 (0.004) 0.218 0.221 (0.004)

0.001 0.131 0.130 (0.003) 0.281 0.286(0.005) 0.293 0.294 (0.005) 0.386 0.386 (0.005)

N = 2000, K = 0.01

0.0001 0.052 0.057 (0.002) 0.092 0.092 (0.003) 0.073 0.075 (0.003) 0.105 0.102 (0.003)

0.0005 0.058 0.057 (0.002) 0.270 0.267(0.004) 0.170 0.169 (0.004) 0.333 0.329 (0.005)

0.001 0.067 0.066 (0.002) 0.478 0.474 (0.005) 0.293 0.295 (0.005) 0.579 0.574 (0.005)

N = 2000, K = 0.001

0.0001 0.050 0.042 (0.002) 0.117 0.117(0.003) 0.073 0.075 (0.003) 0.130 0.132 (0.003)

0.0005 0.051 0.052 (0.002) 0.392 0.387 (0.005) 0.170 0.176 (0.004) 0.451 0.451 (0.005)

0.001 0.053 0.052 (0.002) 0.664 0.657 (0.005) 0.293 0.296 (0.005) 0.738 0.733 (0.004)

h2: variance explained by the locus.
a: in case-control samples, 50% of the sample are cases, P = 0.5.
Exp: Expected power based on NCP derived from equation (1),(4).
Obs: Averaged power over 10000 replicates of simulation.
SE: Empirical standard error over 10000 replicates.
doi:10.1371/journal.pone.0071494.t001

3)

4)

2)

Power and Genomic Prediction Accuracy
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s2
ecc

~(1{h2)½1{(1{h2)i½(P{K)=

(1{K)�½if(P{K)=(1{K)g{t�� :
ð7Þ

The covariance between disease liability and genetic values in

an ascertained case-control sample is

cov(lcc,gcc)~cov(gcczecc,gcc)~s2
gcc

zcov(gcc,ecc)

where cov(gcc,ecc)~(s2
lcc

{s2
gcc

{s2
ecc

)=2.

Therefore, from (5), (6) and (7),

cov(lcc,gcc)~h2s2
lcc

The regression coefficient of lcc on gcc is

b(lcc:gcc)~cov(lcc,gcc)=s2
gcc

~h2s2
lcc
=s2

gcc

Finally, the proportion of variance attributable to the SNPs or

set of SNPs of a quantitative response in an ascertained case-

control sample can be obtained as the squared regression

coefficient multiplied by the genetic variance in the case-control

sample and scaled by the variance of disease liability in the case

control sample, i.e.

h2
cc&½b(lcc:gcc)�2s2

gcc
=s2

lcc
~s2

lcc
h4=s2

gcc
:

Figure 1. Power derived for QT_POP (dotted line), BT_POP
(solid line), BT_CC (dashed line) and QT_CC (dot-dashed line)
when using population prevalence K = 0.1 (a), K = 0.01 (b) or
K = 0.001 (c) assuming the same total sample size N = 2000 and
a critical significance threshold of 561028.
doi:10.1371/journal.pone.0071494.g001

Table 2. Prediction accuracy for a disease with population or
case-control samples when true proportion of variance
explained by the set of SNPs on the liability scale is 0.5, t = N/
M is 1 for different disease prevalences.

Prevalence Population Case-Control

Exp1 Est (se) Exp2 Exp3 Est (se)

0.001 0.075 0.063 (0.004) 0.628 0.766 0.767 (0.002)

0.01 0.186 0.183 (0.003) 0.594 0.689 0.690 (0.002)

0.1 0.382 0.377 (0.003) 0.533 0.568 0.570 (0.002)

0.2 0.444 0.438 (0.003) 0.511 0.526 0.529 (0.003)

0.5 0.491 0.487 (0.003) 0.491 0.491 0.487 (0.003)

Exp1: Expected value from equation (2) or equation (6) of Daetwyler et al.
(2008).
Exp2: Expected value from equation (9) of Daetwyler et al (2008).
Exp3: Expected value from equation (3).
Est: Average of estimates from 100 replicates.
se: Empirical standard error over 100 replicates.
Proportion of cases in case-control study is P = 0.5.
doi:10.1371/journal.pone.0071494.t002

Table 3. Prediction accuracy for a disease with population or
case-control samples when prevalence is 0.01, t = N/M is 1 for
diseases with different h2.

h2 Population Case-Control

Exp1 Est (se) Exp2 Exp3 Est (se)

0.1 0.084 0.087 (0.004) 0.371 0.392 0.395 (0.003)

0.5 0.186 0.183 (0.003) 0.594 0.689 0.690 (0.002)

0.9 0.246 0.243 (0.003) 0.653 0.787 0.787 (0.001)

Exp1: Expected value from equation (2) or equation (6) of Daetwyler et al.
(2008).
Exp2: Expected value from equation (9) of Daetwyler et al (2008).
Exp3: Expected value from equation (3).
Est: Average of estimates from 100 replicates.
se: Empirical standard error over 100 replicates.
Proportion of cases in case-control study is P = 0.5.
doi:10.1371/journal.pone.0071494.t003
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1) NCP for quantitative responses for cases only in ascertained case-control

samples, lQB CC

When underlying continuous quantitative responses are avail-

able only for cases in the ascertained case-control sample, i.e. the

recorded values follow a mixture distribution of zero for controls

and truncated normal distribution for cases. An example may be a

GWAS of major depressive disorder in which cases are recorded

for a quantitative severity score, whereas controls have not been

scored. In this situations,

lQB CC~N:h2
mcc
=(1{h2

mcc
) ð8Þ

where h2
mcc

&½b(ycc:gcc)�2s2
gcc
=s2

ycc
, which is explained as follows.

The variance of the mixed zero and truncated normal values in

an ascertained case-control sample is,

s2
ycc

~P(1zit){P2i2

where i and t are the same as defined above. There is an

assumption here is that the quantitative trait is the phenotypic

liability.

The covariance between ycc and gcc in an ascertained case-

control sample is,

cov(ycc,gcc)~E(ycc
:gcc){E(ycc)E(gcc)~

PE(ycc
:gccjcase){PE(yccjcase)E(gcc)

where

E(ycc
:gccDcase)~cov(ycc,gccDcase)zE(yccDcase)E(gccDcase),

cov(ycc,gccDcase)~var(gccDcase)zcov(gcc,eccDcase),

and,

cov(gcc,eccDcase)~½var(lccDcase){var(gccDcase){var(eccDcase)�=2:

From the equations above, regression coefficient of ycc on gcc

can be derived analytically as,

b(ycc:gcc)~cov(ycc,gcc)=s2
gcc
:

Therefore, the proportion variance attributable to the variance

in the SNPs from mixed zero and quantitative response in an

ascertained case-control sample (h2
mcc

) can be expressed as above

under (8). The power for this mixed 0 and truncated normal

responses is very similar to that for BT_CC (results not shown).

Genomic prediction accuracy
Normal quantitative traits. For a quantitative trait, bj is the

random allelic substitution effect of the jth single nucleotide

polymorphism (SNP). Following Daetwyler et al. [12], prediction

error variance for the jth SNP effect is

var(b̂bj{bj)~s2
�

N:var(xij)
� �

ð9Þ

where b̂bj is the estimate of the true regression bj of the phenotype

on the jth SNP genotype, xij = 0, 1 or 2 for the ith individual, N is

the number of individual records and s2 is the residual variance.

Assuming a phenotypic variance of one, the genetic variance

(var(g)) explained by the set of M SNPs is h2. Following Daetwyler

et al. [12], the estimated genetic variance explained by the M

SNPs in the predictor (var(ĝg)) is a function of the h2, M, the

number of records (N) and the residual variance (s2) as

var(ĝg)~
XM
j~1

var(xijbj)z
XM
j~1

var(xij):s
2
�

N:var(xij)
� �

~h22z(M:s2)
�

N

The squared correlation coefficient between the true and

estimated genetic value is the ratio of the true genetic variance

over the estimated genetic variance [12] as

r2
g,ĝg~var(g)=var(ĝg)~

h2

h2z(M:s2)=N

where the residual variance would be approximated as s2 = 1

(phenotypic variance) as in Daetwyler et al. [12]. With t defined as

the ratio of the number of samples (N) over the number of SNPs

(M), the accuracy can also be written as [12]

r2
g,ĝg~

h2

h2z1=t
:

Disease traits in population sample. In binary disease

traits, with s2 approximated as s2 = K(1–K) (i.e. binomial

phenotypic variance for a disease with population prevalence of

K), the prediction error variance for the jth SNP effect can be

written as

var(b̂bj{bj)~s2
�

N:var(xij)
� �

~K(1{K)
�

N:var(xij)
� �

Table 4. Prediction accuracy for a disease with population or
case-control samples when true proportion of variance
explained by the set of SNPs on the liability scale is 0.5,
prevalence is 0.01 and t = N/M varies.

t = N/M Population Case-Control

Exp1 Est (se) Exp2 Exp3 Est (se)

0.02 0.027 0.028 (0.003) 0.104 0.133 0.124 (0.004)

1 0.186 0.183 (0.003) 0.594 0.689 0.690 (0.002)

5 0.390 0.389 (0.004) 0.731 0.905 0.905 (0.001)

Exp1: Expected value from equation (2) or equation (6) of Daetwyler et al.
(2008).
Exp2: Expected value from equation (9) of Daetwyler et al (2008).
Exp3: Expected value from equation (3).
Est: Average of estimates from 100 replicates.
se: Empirical standard error over 100 replicates.
Proportion of cases in case-control study is P = 0.5.
doi:10.1371/journal.pone.0071494.t004

5)
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where b is allele substitution effect on the 0, 1 observed scale and b̂b
is the estimated b from regression of the 0,1 discrete phenotypes

on SNP coefficients. The estimated genetic variance on the

observed scale of the SNP predictor (var(ûu)) is a function of the

genetic variance on the observed scale (var(u) or s2
u), the number of

SNPs, the number of records and the residual variance as

var(ûu)~
XM
j~1

var(xijbj)z
XM
j~1

var(xij):s
2
�

N:var(xij)
� �

~s2
u2z½M:K(1{K)�=N:

The squared correlation coefficient between the true and

estimated genetic values is

r2
u,ûu~var(u)=var(ûu)~

s2
u

s2
u2z½M:K(1{K)�=N

~
h2

o

h2
oz1=t

:

Because genetic variance as a proportion of phenotypic variance

on the observed scale can be transformed from that on the liability

scale as h2
o%s2

u

�
K(1{K)~h2z2

�
K(1{K) [13], prediction

accuracy can be re-expressed as

r2
u,ûu&

h2z2

h2z2zK(1{K)=t
: ð10Þ

Equation (10) here is the same as equation (6) in Daetwyler et al.

[12].

Disease traits in ascertained case-control

study. Ascertainment in case-control samples often results in

over-representation of cases compared to the case prevalence in

the population. The variance of the explanatory variable is inflated

by a factor of f ~s2
gcc
=s2

g [12,17]. The term, s2
gcc

, is the inflated

genetic variance due to ascertainment in case-control sample [12].

Therefore, the inflated explanatory variable for the jth SNP can be

written as var(xij)
�~var(xij):fj . Then, the prediction error

variance for the jth SNP effect can be expressed as

var(b̂bj{bj)~s2
�

N:var(xij):fj

� �

where b is allele substitution effect on the 0, 1 observed scale and b̂b
is estimated b from regression of the 0,1 discrete phenotypes on

SNP coefficients in the case-control sample. The estimated genetic

variance on the observed scale in a case-control design can be

derived as

var(ûucc)~
XM
j~1

var(xijbj)z
XM
j~1

var(xij):s
2
�

N:var(xij):fj

� �

where var(xijbj) is the genetic variance on the observed scale due to

the jth SNP effect transformed to the liability scale [14,17]

var(xijbj)& z
P(1{P)

K(1{K)

� �2s2
gj

fj

. With a sufficient number of causal

SNPs (.,20), the residual variance is approximated as s2 = P(1–

P) (i.e. the binomial phenotypic variance in a case-control sample

where the proportion of cases is P), and the value for f is close to 1

(i.e. a small fraction of genetic variance has a negligible inflation).

Therefore, the genetic variance in a case-control sample is

var(ucc)& z
P(1{P)

K(1{K)

� �2

s2
g

and, the estimated genetic variance in a case-control sample is

approximately

var(ûucc)& z
P(1{P)

K(1{K)

� �2

s2
g z½M:P(1{P)=N�

The squared correlation coefficient between the true and

estimated genetic values is

r2
u,ûu~var(ucc)=var(ûucc)&

h2z2

h2z2z½K(1{K)�2=½t:P(1{P)�
ð11Þ

Equation (11) differs from equation (9) of Daetwyler et al. [12],

i.e.

h2z2

h2z2z½K(1{K)�2:s2
gcc
=½t:P(1{P):s2

g�
:

For binary traits, area under the receiver-operator characteristic

curve (AUC) is a useful statistic for the genomic prediction

accuracy [19,20]. A relationship between the correlation coeffi-

cient and AUC has been shown in previous studies [11,20].

Simulation Study

Power
In order to check the analytically derived equations of NCP for

BT_POP, BT_CC, QT_POP and QT_CC, we carried out a

simulation study. Individual genetic values (g) were simulated from

an additive multilocus model of M = 100 independent SNPs with

equal allele effects and allele frequency of 0.5. Residual values (e)

were independently generated from a random normal distribution

with a mean of zero and variance of s2
e . The value of s2

e was set

relative to s2
g so that the desired proportion of variance explained

by the markers, h2 was obtained. We simulated h2 of 0.01, 0.05 and

0.1 so that each SNP explained 0.0001, 0.0005 and 0.001 of the

phenotypic variance (Table 1). Liability phenotypes for each

individual were simulated as y = g + e. Affected individuals were

those with liability phenotype that exceeded a threshold

determined by population prevalence. The numbers of cases and

controls in the sample was 2000. The values for population

prevalence were varied as K = 0.1, 0.01 or 0.001. The proportion

of cases was P = K in simulations of population sample and P = 0.5

in simulations of case-control sample where cases were over-

sampled by a factor (1–K)/K. In population or case-control sample,

we used both binary (BT_POP or BT_CC) and quantitative

responses (QT_POP or QT_CC). We conducted 100 replicates for

each simulation scenario, therefore 10000 association tests were

carried out. Power was calculated as the proportion of the 10000

Power and Genomic Prediction Accuracy
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association tests in which the association p-value less than 0.05 and

was compared to power calculated from the NCP using a function

in R package, i.e. power = 1– pchisq (T, 1, ncp = NCP) where T

is the normal distribution threshold corresponding to the

significance level 0.05.

Genomic prediction accuracy
Simulations were carried out to verify the validity of equations

(10) and (11). In a simulation study, individual genetic values (g)

were simulated from an additive multilocus model with equal allele

effects (allele frequency of ,0.5) and residual values (e) indepen-

dently generated from a random normal distribution with a mean

of zero and variance of s2
e . The value of s2

e was set relative to s2
g so

that the desired proportion of variance explained by the markers,

h2 was obtained. Liability phenotypes for each individual were

simulated as y = g + e. Affected individuals were those with

liability phenotype that exceeded a threshold determined by

population prevalence. Population prevalences of K = 0.001, 0.01,

0.1, 0.2 and 0.5 were used with N = 2000 and M = 2000. To vary

t = N/M, N = 2000 and M = 400 were used for t = 5, and N = 100

and M = 5000 were used for t = 0.02. Following Daetwyler et al.

[12], allele substitution effects (b̂b) were estimated using a regression

analysis for each simulated SNP. As a validation set, a second

sample of individuals was generated based on the same genetic

parameters as in the original population. Empirical prediction

accuracy can be obtained by correlating the true genetic values (g)

and estimated genetic values ĝg~
X

1ƒjƒM

xij b̂bj in the validation set.

Results

Power
The power of association tests observed in simulation and

expected from theory agreed well under a range of scenarios

(Table 1). Whether using lower or higher values of disease

prevalence K, there was an excellent agreement between the

observed and expected power with a small empirical standard

error. When using a higher variance explained by each locus (h2),

although the empirical standard error increased slightly, the

observed value also agreed well with the expected value (Exp and

Obs in Table 1).

In Figure 1, values for the power based on NCP derived from

equations (1),(4) were plotted against variance explained by SNPs

(i.e., h2). Generally, the power increases when the variance

explained by SNPs increases, and when the ascertained case-

control design is used. For BT_POP, the power decreases as K

decreases, reflecting the smaller number of cases in a given

population sample. For QT_POP, the power is, of course,

constant across a–c in Figure 1. When using an ascertained

sample (BT_CC or QT_CC), the power increases as the value for

K decreases, which reflects the greater over-sampling of cases with

lower K for the same sample size and hence the difference in mean

liability between cases and controls increases. There is a moderate

difference between BT_CC and QT_CC when using population

prevalence K = 0.1 (a in Figure 1). The difference between BT_CC

and QT_CC becomes smaller with lower values for K (b and c in

Figure 1).

Genomic prediction accuracy
The expected accuracies predicted from equation (11) agreed

well with the observed average of estimates from simulation for all

simulation scenarios for both population and ascertained case-

control samples. In Table 2, disease prevalence K varies, in Table 3

proportion of variance explained by SNPs h2 varies and in Table 4,

values for t = N/M vary. For comparison, we list also the predicted

accuracies for case-control samples provided in Daetwyler et al.

[12]. As shown in their Table 4, their formula underestimates

prediction accuracy particularly when disease prevalences are low

(Table 2) and h2 are high (Table 3). We also tested the prediction

accuracy with allele effects sampled from a normal or an

exponential distribution. The results from these alternative

distributions of allele effects were not much different from the

main results (results not shown). This agrees with Daetwyler et al.

[12] in that the derived prediction accuracy is robust to

distributional assumption for allele effects.

Discussion

Firstly, we provide analytical derivations in a unified framework

to quantify the power of GWAS when using population or

ascertained case-control samples with binary responses or quan-

titative responses. The derived equations were validated in a

simulation study, showing that expected values from the equations

and observed values from simulations agreed well. Secondly,

following Daetwyler et al. [12], we derive an expression genomic

prediction accuracy based on the 0,1 observed scale, and

transformed it to that on the liability scale using a liability

threshold model for disease traits in population [13] and in case-

control samples [14]. Compared with Daetwyler et al. [12], our

derivation agrees for population samples, but is more accurate for

case-control samples.

The Genetic Power Calculator [21] is commonly used for

calculation of power is genetic association studies. The calculator is

based on theoretical derivation [22,23] of a single locus model with

required parameters of allele frequency and its effect size (e.g.

relative risk or odds ratio in binary responses). However, our

derivations and application did not require those parameters (see

equation (3), (4) and (8) and Appendix S1 and S2 for application)

because our derivations are based on variance explained by a

locus, and many combinations of allele frequency and effect size

can generate the same variance explained. Our framework easily

accommodates power of association of multiple loci because we

use a single parameter for the total variance that is generated by

any number of loci. Applications of multiple loci association

GWAS have been published recently [24,25]. In practice, the

power to detect causal variants may not exactly agree with our

analytical derivations because of unknown parameters such as

linkage disequilibrium among variants and distribution of effect

size that alter the effective number of tests. We recommend that

such unknown parameters should be carefully considered in

applying power calculation.

Recently, Dudbridge [11] proposed a comprehensive study

about power and predictive accuracy of polygenic scores. Our

equation (11) and Dudbridge’s equation (13) [11] are analogous to

each other. However, Dudbridge used his equation (13) with a

heuristic justification from simulations. We analytically derived

equation (11) based on a liability threshold model and gave a

reasonable explanation why fj is approximated as 1.

Lastly, van der Sluis et al. [7] quantified by simulation the

power lost in genetic association analyses of population samples

measured for quantitative endophenotypes but analysed with a

dichotomous case-control score. Our analytical derivations for

such scenarios allow easy generalization of their results to the

design of new studies.
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