
In many species, single-nucleotide polymor-
phism (SNP)–trait associations have been 
detected through genome-wide association 
studies (GWASs). In addition to the discov-
ery of trait-associated variants and their bio-
logical function, there is increasing interest 
in making predictions of complex trait phe-
notypes from genotype data for individuals 
in plant and animal breeding, experimental 
organisms and human populations. These 
predictions are based on selections of SNPs 
(or other genomic variants) and estimation 
of their effects in a discovery sample, fol-
lowed by validation in an independent sample 
with known phenotypes and ultimately 
application to samples with unknown  
phenotypes (FIG. 1).

The validation stage of SNP predic-
tion analysis will be the main focus of this 
Perspective. Incorrect conclusions at  
this stage may lead to predictors that will  
not work as well as inferred or in the worst 
case will have no prediction accuracy at all. 
We organize our Perspective into limitations 
and common pitfalls of prediction analysis. 
The limitations are partly inherent, given the  
nature of the trait or the data available. These 
are factors that users should be aware of 
but mostly cannot change. The limitations 
also reflect use of suboptimal methodology 
that could be improved on. The pitfalls are 
common mistakes in analysis that can lead 
to overestimation of the accuracy of a pre-
dictor or misinterpretation of results, and 

we give examples from the literature where 
these have occurred. We give our opinion on 
how best to avoid pitfalls in the derivation 
and application of SNP-based predictors 
for practical applications. There are many 
aspects of risk prediction that are outside the 
scope of this article. They include a thorough 
treatment of the statistical methods that can 
be used in the discovery phase1–7, the use 
of non-genetic sources of information to 
make predictions or diagnosis, a full discus-
sion about clinical utility of risk prediction 
in human medicine and a discussion about 
ethical considerations for applications in 
human populations8.

Limitations of prediction analyses
Limitation 1: prediction of phenotypes from 
genetic markers. Variation in complex traits 
is almost invariably due to a combination of 
genetic and environmental factors. A useful 
quantification of the importance of genetic 
factors is the heritability (h2): that is, the pro-
portion of phenotypic variation in a trait that 
is due to genetic factors9 (BOX 1). Assuming 
that the estimated h2 is a true reflection of the 
population parameter, then h2 is the upper 
limit of the phenotypic variance explained by 
a linear predictor (R2) based on DNA mark-
ers such as SNPs, and a genetic predictor can 
thus never fully account for all phenotypic 
variation. This upper limit is achievable 
only if all genetic variants that affect the trait 
are known and if their effects are estimated 

without error. In human disease genetics, 
in which ‘personalized medicine’ is actively 
being pursued, this limitation is not well 
understood in our opinion, and hence we 
have chosen to highlight it here, even though 
it has been pointed out before10,11.

Environmental risk factors can be added 
to the genetic predictor to make a better 
predictor of the phenotype. In practice, not 
all environmental factors are identified (and 
some factors that are classified as ‘environ-
ment’ may simply be stochastic events12). For 
example, combining SNPs and phenotypic 
predictors — such as body mass index and 
smoking — improved prediction of age-
related macular degeneration, which is an eye 
disease in humans in which age is a major 
risk factor13. In some circumstances, more 
accurate phenotyping, including the use of 
repeated measures, can lead to a more herit-
able trait. In general, expectations need to be 
adjusted accordingly for the application of 
phenotype or disease prediction in humans.

Unlike the deterministic genetic tests 
for fully penetrant Mendelian disorders, 
genetic predictions for complex traits will 
be probabilistic, and the value may only be 
incremental in clinical decision making. 
The value of genetic risk prediction may be 
at a group level rather than an individual 
level. For example, from a risk predictor for 
type 1 diabetes (T1D), which was created 
from risk variants known up to 2011, a risk 
group comprising the top ranked 18% of 
individuals would need to be monitored 
to capture 80% of future cases. However, 
because T1D is not common (it has a prev-
alence of 0.4%), the probability of disease 
for individuals in this risk group is still less 
than 2%14. Nonetheless, cost-effective pub-
lic health strategies could result from use 
of genetic predictors to identify high-risk 
strata in which disease prevention interven-
tions should be focused15,16. In agriculture, 
genetic risk prediction is mostly geared 
towards selection of breeding stock on  
the basis of estimates of additive genetic 
values (that is, estimated breeding values) in 
the parent generation; the aim is to elicit 
average changes in the phenotype of the 
offspring generation. That is, the impact of 
genetic prediction is naturally at the level  
of a group rather than an individual.
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Limitation 2: variance explainable by 
markers. The SNPs included in the 
genome-wide SNP chips used for identify-
ing SNPs associated with complex traits 
are typically not the causal variants for a 
phenotype — it is more likely that they may 
have an association with the trait because 
they are in linkage disequilibrium (LD) with 
one or more causal variants. As the SNPs 
on SNP chips are chosen because both of 
their alleles are common, they cannot be 
in complete LD with a causal variant with 
one rare allele. If the variation generated by 
the causal variants is completely explained 
by the genotyped SNPs, then the SNPs can 
potentially explain all of the genetic varia-
tion in the trait (that is, h2

M = h2, where h2
M 

is defined as the genetic variation captured 
by the SNPs or markers). Sometimes (see, 
for example, REF. 17), h2

M is referred to as 
the ‘narrow-sense heritability’; however, in 
our opinion, the term narrow-sense herit-
ability should be reserved as the definition 
of the total additive genetic variance: that 
is, h2 (REFS 9,18).

If a genetic variant is associated with fit-
ness, selection will drive one allele to low 
frequency19–21. This is the case even for traits 
without an obvious connection to fitness. 
The larger the effect of a SNP on fitness, the 
lower the frequencies of the causal alleles are 
expected to be22,23. For example, individual 
mutations that cause severe intellectual dis-
ability in humans are rare24,25. Therefore, in 
practice, the SNPs identified as associated 
in the discovery population are unlikely 
to explain all genetic variation (that is, 
h2

M < h2) as contributions to the variance 
by rare variants may not be tagged by the 
genotyped SNPs26–28. For example, for both 
height and schizophrenia, h2 ≈ 0.7–0.8 and 
h2

M ≈ 0.5 for height26 and h2
M ≈ 0.2–0.3 for 

schizophrenia29,30.
The difference between the variance 

explained by genome-wide-significant 
SNPs (hGWS) and heritability estimates from 
family studies (h2) has been called the ‘miss-
ing heritability’, and the difference between 
hGWS and h2

M has been described as the 
‘hidden heritability’. As such, the difference 

between h2
M is referred to as the ‘still miss-

ing heritability’: that is, hGWS < h2
M < h2. The 

still missing heritability may simply reflect 
genomic variants that are not well tagged by 
SNPs. In livestock populations, when miss-
ing heritability is defined in this way, little is  
missing, and up to 97% of the heritability 
is captured by common SNPs31,32, probably 
because the smaller effective population size 
leads to long-range LD, and hence even rare 
alleles can be predicted by a linear com-
bination of SNPs that are in LD with the 
causal variant. Even in dairy cattle, however, 
traits that could reasonably be assumed to 
be under strong natural selection, such as 
fertility, have greater missing heritability31. 
Moreover, when the SNPs are fitted together 
with a pedigree, as much as half of the 
genetic variance is explained by the pedigree 
and not by the SNPs33. The simplest expla-
nation is that in livestock as in humans, 
some causal variants are rare and in poor 
LD with the SNPs.

With the advances in whole-genome 
sequencing technologies, causative muta-
tions will be present in the data, and the 
proportion of variation that can be cap-
tured by the sequence data is expected to 
approach h2. In principle, known rare risk 
variants, if identified, can be included in 
the predictor in the same way as common 
variants; cumulatively, their contribution 
may be important. Their importance can be 
assessed by the proportion of variation that 
they explain. Both the ability to detect an 
association between a trait and a SNP and 
the value of including the SNP in a predictor 
depend on the proportion of variance the 
SNP explains. For example, a rare variant 
with a frequency of 1 in 1,000 in the popula-
tion and a relative risk for a disease of five 
will increase the risk of disease by fivefold 
for 1 in 1,000 people (so, from 1% to 5% for 
a disease with a prevalence of 1%), but such 
an increase in risk can also be achieved by 
the cumulative effect of multiple common 
variants with smaller effect size. The con-
tribution of rare variants can be included in 
a predictor by grouping them into defined 
classes of genes34,35 or by incorporating prior 
knowledge of functions36.

Limitation 3: errors in the estimated effects 
of the markers. The effects of SNPs on a trait 
must be estimated from a sample of finite 
size, and so the effects are estimated with 
some sampling error. If there were only a few 
loci that affected a trait, it would be possible 
to estimate their effects quite accurately, 
but most complex traits are controlled by 
a large number of largely unknown loci37. 

Figure 1 | Flowchart of SNP-based prediction analysis. There are three stages for the develop-
ment of a risk predictor: discovery, validation and application. At each stage, data are needed  
as an input, and a process is applied to the data and a result is generated. At the application  
stage, effect sizes estimated from combined discovery and validation samples can be used.  
SNP, single-nucleotide polymorphism.
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Therefore, the discovery stage of estimat-
ing the prediction equation may involve a 
genome-wide panel of millions of SNPs. The 
true effects of most SNPs are small, and so 
the accuracy with which these effects are 
estimated is low unless a large discovery 
sample is used. The correlation between 
a phenotype and a predictor that uses all 
SNPs simultaneously in a randomly mating 
population can be expressed as a function 
of effective population size (or the effec-
tive number of independent chromosome 
segments, which is a function of effective 
population size), heritability and the size of 
the discovery sample38–40 (see equation 1 in 
BOX 1). Specifically, SNP effects will be bet-
ter estimated when the sample size of the 
discovery cohort increases (see the figure in 
BOX 1); estimated or predicted effect sizes of 
rare variants will be difficult to verify even 
with large sample sizes.

Limitation 4: statistical methods in the dis-
covery sample. The least squares prediction 
or ‘profile scoring’29 method is commonly 
used for prediction of genetic risk. Although 
it is simple to apply, it does not have desir-
able statistical properties, and an arbitrary 
P value threshold is used for the selection 
of SNPs that go in the predictor. Moreover, 
estimating SNP effects one at a time is not 
an optimal approach1,41–46. This is because 
SNP effects are correlated, and account-
ing for LD in the profile scoring method 
requires SNP selection on arbitrary thresh-
olds. Methods that model the distribution  
of SNP effects42 and the correlation between 
SNPs in the presence of single as well 
as multiple causal variants will be more 
accurate1,41–45,47. In human applications, 
sometimes only genome-wide-significant 
SNPs are included in the predictor15,48–51, 
yet greater accuracy results from the use of 
less stringent thresholds1,39,42, and in animal 
and plant breeding, it is typical to use all 
available SNPs. Better SNP estimation meth-
ods exist and are used in plant and animal 
breeding1,2,39,46,52; such methods have been 
proposed for applications to human data1,45. 
They rely on prior assumptions about the 
distribution of SNP effects in the genome and 
use all data simultaneously. Such Bayesian 
methods have also been applied to other  
species53, and related methodologies derived 
in computer science have been applied to  
disease data in humans4,54. Ignorance cannot 
be bliss in this context, and it must be best 
to use all available genetic and phenotypic 
information simultaneously. It is outside the 
scope of this Perspective to discuss these 
methods in more detail.

Box 1 | Quantifying phenotypic variation explained by SNPs

Quantitative traits
The proportion of phenotypic variance (R2) explained by a predictor of a quantitative trait formed 
using estimated effects of all markers depends on the number (M) of independently measured 
genomic variants (for example, single-nucleotide polymorphisms (SNPs)) associated with the trait, 
the proportion of the total variance they explain (h2

M
) and the sample size in the discovery sample 

(N
d
)27,38,40. If all marker effects are assumed to come from the same normal distribution, then 

approximately

R2 = (1)
h2

M

1 + (1 – R2).
M

Nd h2
M

Equation 1 holds regardless of the genetic architecture of the trait, but we note that the predictor 
may be far from optimal. h2

M
 is usually less than the heritability estimated from family studies and is 

sometimes called the SNP heritability or chip heritability and is estimated, for example, using 
GCTA63. Equation 1 is taken from the supplement of REF. 40; when R2 is small, it can be ignored in the 
denominator, otherwise the quadratic in R2 can be solved. The graph shows that the sample size  
must be large in order to achieve a high R2. If the distribution of marker effects sizes is markedly 
non-normal, with some large effects and many very small or zero effects, and if knowledge of this 
distribution is used in estimating SNP effects, then higher R2 can be achieved65.

In this article, we use R2 as the statistic to report efficacy of a predictor or R, the correlation 
between phenotype and predictor or accuracy. The sign of the correlation is important for 
interpretation of the predictor. In livestock, genetic predictors have been used for decades (on the 
basis of pedigree data prior to the availability of genotypic data), and accuracy (R

G,Ĝ
) is traditionally 

used to evaluate utility. R
G,Ĝ

 is the correlation between true and estimated genetic value (the 
predictor, which is an estimate of the combined value of all genetic loci). Because

R2
G,G = (2)

R2

h2

the R
G,Ĝ

 statistic quantifies the efficacy of a genetic predictor relative to the best possible genetic 
predictor.

Disease traits
For disease traits, Nagelkerke’s R2 (R2

N
) has been used in profile scoring analyses, following Purcell 

et al.29. R2
N
 is an R2 measure in binary (0–1) outcome data and is usually applied in case–control 

validation samples, in which the proportion of cases is much higher than in the population. 
Alternatively, the area under the receiver operator curve (AUC) is reported73–75: this is a statistic with 
a long tradition of use in determining the efficacy of clinical predictors. AUC has the desirable 
property of being independent of the proportion of cases in the validation sample; one definition of 
AUC is that a randomly selected case is ranked higher by the predictor than a randomly selected 
control. A new statistic reflecting variance explained on the liability scale (R2

l
), which can be related 

to other statistics, such as R2
N
 and AUC11, has been proposed76. Like any estimate on the liability 

scale, calculation of R2
l
 requires specification of disease prevalence in the population but allows 

direct comparison of the variance explained by the predictor to estimates of heritability from family 
data and estimates of SNP heritability from genome-wide SNP data.

h2
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Pitfalls of the analysis
Pitfall 1: validation and discovery sample 
overlap. If the correlation (R) between a 
phenotype and a single SNP in the popula-
tion is zero (that is, if the SNP is not associ-
ated with the trait), the expected value of 
the squared correlation (R2) estimated from 
a sample of size N is 1 / (N–1) or approxi-
mately 1 / N if N is large. Hence, a randomly 
chosen ‘candidate’ (but not truly associ-
ated) SNP explains 1 / N of variation in any 
sample. Usually, 1 / N is small enough not 
to worry about. However, a set of m uncor-
related SNPs that have nothing to do with 
a phenotype of interest would, when fitted 
together, explain m / N of variation (owing 
to summing of their effects). For example, 
when fitted together in a regression analysis 
in a discovery sample of Nd = 1,000, a set of 
100 independent SNPs would, on average, 
explain 10% (R2 = 0.10) of phenotypic vari-
ance in the discovery sample under the null 

hypothesis of no true association. (Note 
that the effective number of independent 
markers (M) from standard GWAS chips is 
estimated to be ~60,000 in European popu-
lations, a number that is based on analyses 
of LD29, genomic inflation factors55 and 
eigenvalues56 from principal components 
analysis. Predictions from theory also come 
to this number38.)

When the number of SNPs in the predic-
tor is large and the sample size is small, the 
discovery R2 can be very high by chance and 
can be a gross overestimation of the true 
variance explained by the predictor when 
applied in an independent sample. Also, 
the expected R2 in the validation sample is 
~1 / Nv, where Nv is the validation sample 
size, for a set of SNPs selected from a dis-
covery sample but with the effect sizes of the 
SNPs re-estimated in the validation sample. 
Therefore, to estimate the R2 of a predic-
tion in a new sample, a prediction equation 

is estimated in the discovery sample and is 
tested, without re-estimating the regression 
coefficients, in the validation sample (BOX 2). 
Applying the incorrect validation procedure 
results in over-estimation of the accuracy of 
the prediction (or over-fitting). An example 
of a situation in which over-fitting occurs is 
when testing the prediction in the discovery 
sample: that is, the same data are used to 
estimate the effect of SNPs on a phenotype 
and to make predictions57,58. We demonstrate 
the overlap pitfall with examples in dairy 
cattle, Drosophila melanogaster and human 
populations (FIG. 2a–c). For example, in a 
GWAS on ~150 sequenced inbred lines of 
D. melanogaster58 in which this was done, 
the authors concluded that 6–10 SNPs 
selected from >1 million SNPs together 
explained 51–72% of variation in the lines 
(depending on the trait analysed). However, 
a cross-validated Bayesian prediction analysis 
using all genetic markers on the same data 
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Box 2 | Quantifying prediction accuracy for pitfall 2

When discovery and validation samples are independent
When m single-nucleotide polymorphisms (SNPs) have been selected from 
a discovery sample, a simple linear predictor in the validation sample is

y = bi xiΣ
m

i = 1
(3)

where x
i
 = 0, 1 or 2 reference alleles of a SNP, and b̂

i
 is the estimated effect 

size from the discovery sample. In this article, we do not concern ourselves 
with how b̂

i
 is estimated; there are simple least square predictors and more 

complex Bayesian estimation methods that have been described 
elsewhere1,43,44. We also restrict ourselves to linear (additive) models. Given 
a multi-SNP predictor (ŷ), the validation step is to quantify how much of 
the variation in trait y is explained by the predictor ŷ. A regression of y on 
ŷ fits only a single covariate so that the R2 expected by chance is only 1 / N

v
, 

where N
v
 is the validation sample size. If the validation sample is drawn 

from the same population as the discovery sample, then a value of R2 >1 / N
v
 

is evidence for real predictive ability of the predictor. (Software tools 
output an adjusted R2 that corrects for the R2 expected by chance.) Hence 
the sample size in the validation stage does not have to be large to  
reject the null hypothesis of no association H

0
: ρ2 = 0, where ρ2 is the true 

value of R2 in the population. The standard error (SE) of R is approximately

Nv1 / (4)

if ρ is very small, and more generally

Nv . (5)(1 – ρ)2  /

In terms of R2, its SE is approximately

(6)2 / Nv

if ρ is small. A general and a more complicated exact equation was given by 
Wishart76. Using the exact equations, if ρ2 is 1% or 10%, then SE(R2) for 
N

v
 = 100 is 1.9% or 5.6% and for N

v
 = 500 it is 0.8% and 2.5%.

When discovery and validation samples are the same
In Supplementary information S1 (box), we derive an approximation of R2 
(verified by simulation) when there is no correlation in the population 
between SNPs and phenotypes but when m ‘associated’ SNPs are identified 
from the same sample (of size N) in which they are validated as a predictor. 
The relationship between R2 and N, which is dependent on m and assumes 

M = 100,000 independent genomic variants associated with the phenotype, 
is plotted in the figure, in which m SNPs (m = 10, 100 or 1,000) are selected 
after association analysis of M = 100,000 uncorrelated SNPs in a sample of 
unrelated individuals and applied as a predictor back into the same sample 
when there is no correlation between SNPs and phenotypes. In 
genome-wide association studies, M is large, so overestimation of R2 occurs 
even for big sample sizes.

When validation sample overlaps with the discovery sample
If some of the samples in the validation cohort are also in the discovery set, 
then this can create spurious results. For the samples that overlap, the 
expected R2 between predictor and outcome is the same as in the entire 
discovery sample, because those samples are just a random sample from  
the discovery cohort. If the proportion of samples in the discovery set that 
are also in the validation cohort is q, then the expected squared correlation 
between predictor and outcome in the entire validation cohort is 
approximately q*R2 + (1 − q) / N

v
, with R2 the (spurious) accuracy derived in 

Supplementary information S1 (box; see previous section). The important 
result is that if samples overlap, it is not the proportion of those samples in 
the discovery cohort that matters, but it is the proportion of the validation 
samples that is also in the discovery cohort that determines false accuracy.
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found that only 6% of phenotypic variation 
could be explained by the predictor53.

A less obvious mistake is to select the most  
significantly associated SNPs in the entire 
sample and to use these to estimate SNP 
effects and to test their prediction accu-
racy in the discovery and validation sets59. 

In this case, the variance explained by the 
SNPs when applied in the validation sample 
is inflated. It creates bias and misleading 
results because the initial selection step of 
the SNPs is based on there being a chance 
correlation between these SNPs and the 
entire sample so also between the SNPs and 
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Figure 2 | The overlap pitfall: non-independ-
ence of discovery and validation samples.  
a | The impact of leaving the validation cohort 
in the discovery set, either at both single-
nucleotide polymorphism (SNP) selection (that 
is, genome-wide association studies (GWASs)) 
and SNP effect estimation stages or only at the 
effect size estimation stage. Data shown are 
from 2,732 bulls with ~500,000 SNPs pheno-
typed for average milk yield of their daughters’ 
milk production. The bulls were split into a dis-
covery sample (bulls born during or before 
2003), N

d
 = 2,458, and a validation sample (bulls 

born after 2003) of N
v
 = 274. Further methods 

are included in Supplementary information S3 
(box). b | An example illustrating bias when 
selecting the top SNPs. We downloaded geno-
type data of the Drosophila Genetic Reference 
Panel and simulated phenotypes under the null 
hypothesis: that is,  random association 
between each of the >1 million SNPs and phe-
notype. We repeated the GWAS analysis 
reported in REF. 58, selecting the top 10 inde-
pendently associated SNPs, and predicted the 
phenotypes of the lines using these 10 SNPs. 
Because in the simulated data there are only 
random associations between a SNP and a phe-
notype, any prediction power is false and thus 
a result of over-fitting. By chance, the top SNPs 
(in terms of test statistic) explain 57% (R2 = 0.57) 
of the phenotypic variance between the inbred 
lines, from a linear regression of phenotype on 
predictor. Both phenotype and predictor have 
been standardized to normal distribution Z 
scores (with mean of 0 and standard deviation 
of 1). Further methods are included in the sup-
plementary data. c | High R2 can be achieved by 
chance, particularly when sample size is small. 
We simulated GWAS data on the basis of real 
human genotype data under the null hypoth-
esis of no association representing the pheno-
type of human height. We used data from 
11,586 unrelated European Americans geno-
typed on 563,212 SNPs79–81. We randomly sam-
pled N individuals and selected top SNPs for 
height at P < 10−5 (red bar) and P < 10−4 (blue 
bar) to predict the phenotype in the same data. 
We also carried out association analysis for real 
height phenotype in 10,000 individuals and 
selected top SNPs at P < 10−5 (purple bar)  
and P < 10−4 (green bar) to predict height  
phenotype in the same sample. The graph 
shows the mean prediction R2 over 100 simula-
tion replicates. The error bar represents the 
standard error of the mean. The number on top 
of each column is the mean number of selected 
SNPs over 100 simulation replicates.

any subsample. A prediction equation based 
on these SNPs will appear to work in the val-
idation sample but not in a genuinely inde-
pendent sample. Cross-validation analysis 
after the initial set of SNPs has been selected 
from the entire sample does not mitigate 
this bias. The pitfall of SNP selection from 
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discovery and validation samples occurred 
in a recent study that reported a genetic pre-
dictor of autism60. SNPs that were putatively 
associated with autism in multiple biologi-
cal pathways were selected on the basis of P 
values from GWASs in the entire data set. 
Model selection was subsequently applied 
using cross-validation to narrow down the 
number of SNPs. The authors did follow up 
with an independent validation sample, and 
the prediction accuracy was reduced.

A variation of this pitfall is when a pro-
portion of individuals in the validation sam-
ple is also in the discovery sample; the bias is 
then proportional to the fraction of the vali-
dation samples that was also in the discovery 
set (BOX 2). In practice, it might be difficult 
to ascertain whether any of the validation 
individuals were also in the discovery set, in 
particular if there are only summary statis-
tics available (that is, estimates and standard 
error of SNP effect and allele frequencies), 
particularly from public databases. We use 
cattle data46 to demonstrate the inflation  
in variance explained by a SNP predictor 
when the validation sample is included in 
discovery steps (FIG. 2c).

The remedy to this pitfall is to use exter-
nal validation. In some cases, independent 

data sets are not available, and then internal 
cross-validation is the only option. In cross-
validation, it is important to avoid the pitfall 
of updating the predictor on the basis of 
results derived from the validation sample, 
hence losing the independence of discovery 
and validation samples that the strategy has 
set out to achieve61. Overlap in samples can 
be checked as a part of quality control of the 
prediction pipeline, by estimating pairwise 
relatedness using SNP data, but this requires 
access to full genotype data from both dis-
covery and validation samples. There are 
many software tools that can do this,  
including PLINK62 and GCTA63.

Pitfall 2: the validation sample. If the vali-
dation sample is more closely related to the 
discovery population than to the target 
population, then the prediction accuracy 
will be overestimated. In humans, a  
polygenic prediction analysis of height in 5,117 
individuals from the Framingham Heart 
Study (FHS; original and offspring cohorts 
only) reported a prediction R2 of 0.25 using 
tenfold cross-validation when including 
all individuals in the analysis64. However, 
because FHS includes many related indi-
viduals, the authors repeated the analysis 

on the basis of pedigree information by 
restricting the tenfold cross-validation 
samples to individuals with no known close 
relatives (that is, parent–offspring, sibling or 
half sibling) in the data set. In this restricted 
analysis, the prediction R2 decreased to 
0.15. We caution that cryptic relatedness 
can still inflate prediction accuracy, even 
when known close relatives are excluded. 
To demonstrate this, we conducted a poly-
genic prediction analysis of height using 
7,434 individuals from the FHS SHARe 
data65 (BOX 3). Our results demonstrate that 
cryptic relatedness, beyond the close rela-
tives inferred from pedigrees, can inflate 
prediction accuracy relative to the predic-
tion accuracy that could be achieved in an 
independent validation sample.

The remedy of the pitfall described here 
is to use conventionally unrelated individuals  
(in discovery and validation stages). 
Relatedness can be estimated from SNP 
data62,63, and so close relatives can be 
excluded on the basis of observed  
data. More generally, the validation  
population should be representative of  
the population in which the predictor will 
be ultimately applied. In populations with 
small effective population size, such as  
some breeds of livestock, all individuals  
are related. This does not invalidate the pre-
diction, but it does mean that the same  
prediction accuracy cannot be expected 
when the prediction equation is applied 
to another population that is less closely 
related to the discovery population66.

Sometimes, the validation population dif-
fers from the application (target) population 
in that it is much more genetically diverse. 
For example, the validation (and possibly 
discovery) population might include a 
diverse set of lines of animals or plants.  
A prediction equation may work well in  
this population but less well in an application 
population that is less diverse, such as in 
commercial strains of a crop66.

Pitfall 3: population stratification simi-
larity. Another way in which prediction 
accuracy can be inflated is if the discovery 
and validation samples contain similar pat-
terns of population stratification and if the 
eventual target population is not similarly 
stratified. For example, this could occur 
if discovery and validation samples were 
independently sampled from a stratified 
population, such as European Americans67. 
The question of whether this inflation 
should be viewed as a pitfall depends on the 
ultimate goal of the analysis. If the goal is to 
conduct prediction in European Americans, 

Glossary

Ancestry principal components
Principal components derived from the genome 
relationship matrix that account for the genetic 
substructure of the data. In case–control  
studies, these principal components can reflect 
genotyping artefacts, such as plate, batch  
and genotyping centre, that could be confounded  
with case–control status.

Conventionally unrelated
Individuals that are not closely related: for example,  
more distantly related than third cousins.

Cross-validated
Cross-validation involves testing the validity of a 
prediction in the absence of an independent external 
validation sample. This is done by dividing the  
sample into k independent subsets (balanced with 
respect to case–control status in disease data).  
Each of the k subsets is used in turn as a validation 
sample for a predictor derived from the remaining  
k – 1 subsets.

Cryptic relatedness
When a sample is thought to comprise unrelated 
individuals on the basis of recorded pedigree  
relationships but in fact includes close relatives:  
for example, second cousin or closer.

Effective population size
The number of individuals in an idealized population  
with random mating and no selection that would  
lead to the same rate of inbreeding as observed in  
the real population.

Estimated breeding values
Estimates of the additive genetic value for a particular  
trait that an individual will pass on to descendants.

Heritability
The proportion of phenotypic variance attributable to 
additive genetic variation.

Independent sample
In the context of risk prediction, this is a sample from the 
same population but excluding individuals that are closely 
related. It is necessary for the individuals in different 
samples from the same population to share common 
ancestors, and indeed this distant sharing underpins the 
efficacy of a risk predictor.

Independent SNPs
Uncorrelated single-nucleotide polymorphisms (SNPs)  
in linkage equilibrium.

Linkage disequilibrium
(LD). The nonrandom association of alleles at different loci.

Polygenic prediction analysis
Any analysis method that predicts genetic risk or 
breeding values on the basis of the combined 
contribution of many loci.

Profile scoring
A polygenic prediction method for prediction of genetic 
value or risk for each individual (a ‘profile’) in a validation 
sample generated from the sum of the alleles they carry 
weighted by the association effect size estimated in a 
discovery sample.
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it is entirely appropriate to leverage ancestry 
information to the fullest extent possible, 
and this inflation is not a pitfall (because 
discovery, validation and target samples are 
similarly stratified). However, if the goal is 
to assess the prediction accuracy that could 
be achieved using less structured applica-
tion populations, then this inflation is a 
pitfall. As an example, we show that popula-
tion stratification was inflating prediction 
accuracy in the FHS analysis (see BOX 3 for 
details). A more serious problem is when 
there is confounding between ancestry and 
disease status in both discovery and valida-
tion case–control samples, because such 
spurious association can lead to a predictor 
of ancestry rather than to one of disease. It 
was recently suggested that the aforemen-
tioned predictor of autism60 suffers from 
this pitfall68.

A practical remedy to problems associ-
ated with population stratification is to fit 

ancestry principal components in the analysis 
of discovery samples. We note that differen-
tial bias between cases and controls69  
can also lead to spurious prediction R2 if 
discovery and validation samples exhibit 
the same differential bias as could occur 
when using tenfold cross-validation. A 
remedy for differential bias is to carry out 
stringent quality control and/or to validate 
predictors in a completely independent 
sample in lieu of tenfold cross-validation. 
One quality-control step that can be done  
is to use the genotyped SNPs that are in  
the predictor and to quantify the estimated 
relatedness between the application sample 
and the discovery and validation  
samples: for example, in a principal  
component analysis (PCA)70 or related 
methods71. If the application sample is an 
outlier on the PCA, then the prediction 
accuracy in the target may be less than 
expected from the validation procedure.

Pitfall 4: expectation of equality of R2 
and h2

M. Sometimes called the SNP or 
chip heritability, an unbiased estimate of 
the variance explained by markers h2

M is 
achieved by correlating phenotypic similar-
ity between pairs of individuals with their 
SNP-based genotypic similarity26,63,69. In 
human populations, the SNP heritability 
is broadly between one-third and one-half 
of total heritability for traits studied to 
date28,37,72. A prediction of phenotype based 
on the same set of SNPs would achieve 
R2 = h2

M only if the individual SNP effects 
were estimated without error27. For exam-
ple, when a multiple-SNP predictor that 
used the ‘profile scoring’ method was used 
for height65, it achieved an R2 of 0.1–0.15 in 
out-of-sample predictions. However, Yang 
et al.26 estimated that all of the SNPs together 
would explain 40–50% of phenotypic vari-
ance if their effects were estimated without 
error. These results are consistent when the 

Box 3 | Using the Framingham Heart Study to demonstrate pitfalls of validation

Nature Reviews | Genetics

9   As   6   but including 10 ancestry principal components

8   As   5   but including 10 ancestry principal components

7   As   4   but including 10 ancestry principal components

6   As   3 : relatives with relationship >0.05 estimated from genotypes removed

5   As   3 : relatives with relationship >0.2 estimated from genotypes removed

4   As   3 : relatives with relationship >0.4 estimated from genotypes removed

3   FHS SHARe data, comparable to   2   but a non-Bayesian method

2   As   1 : all known close relatives (that is parent–offspring, full siblings 
and half siblings) removed

1   All FHS data as reported in REF. 60 Bayesian method

Prediction R2

00.050.100.150.200.25

The Framingham Heart Study (FHS) is a large cohort study of individuals and 
their family members measured for a wide range of traits (particularly related 
to cardiovascular disease) and with genome-wide genotypes. A polygenic 
prediction analysis of height64 showed that including known related 
individuals in the analysis inflated R2 (from 0.15 to 0.25). To investigate 
whether genetic relatedness can still inflate prediction accuracy even when 
known close relatives are excluded, we conducted a polygenic prediction 
analysis of height using 7,434 individuals from the FHS SHARe data65. We 
obtained a prediction R2 of 0.13 using tenfold cross-validation when 
restricting to individuals with no known close relatives in the data set on the 
basis of known pedigree information. (We fit markers individually, whereas in 
the original study64, markers were simultaneously fitted by a Bayesian random 
effects model; thus, it was expected that a slightly higher R2 of 0.15 was 
reported.) We repeated the analysis, restricting it to individuals with pairwise 
relatedness estimated from the single-nucleotide polymorphisms (SNPs) of 
less than 0.40, 0.20 or 0.05 and obtained prediction R2 of 0.08, 0.06 and 0.06, 
respectively, demonstrating the importance of using the genotype data to 
identify relatives rather than accepting recorded family relationships.

We investigated whether population stratification was inflating 
prediction accuracy in our FHS analysis, as the prediction R2 of 0.06 was 
much higher than would be expected from theory38 or from empirical 
data on much larger sample sizes65. When repeating the analysis using a 
height phenotype that was adjusted for 10 eigenvectors70 of the SNP 
derived relationship matrix, once again restricting to individuals with 
pairwise relatedness less than 0.40, 0.20 or 0.05, we obtained prediction 
R2 of 0.06, 0.01 and 0.00, respectively, which were smaller values than the 
prediction R2 obtained using unadjusted height. The bulk of the reduction 
came from correcting for the top eigenvector, representing northwest 
European versus southeast European ancestry67, which is strongly 
correlated to height (R2

 
= 0.05 in FHS data, which is consistent with other 

studies77,78). Thus, consistent with theory, polygenic prediction analyses 
of a few thousand unrelated individuals that do not benefit from 
population stratification will attain a low prediction R2 (<0.01). The results 
of these analyses are summarized in the graph. For further details, see 
Supplementary information S2 (table).
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error associated with the estimate of each 
SNP effect is appreciated.

With ever-larger sample sizes, the size 
of the error terms in the SNP effect esti-
mates will be reduced, and the two statistics 
will converge to the same value. However, 
simulations for human populations suggest 
that the improvement in trait prediction as 
sample size increases depends on the genetic 
architecture of the trait, in particular how 
many variants there are with tiny effect sizes 
and that for most common complex genetic 
diseases the improvement will be slow and 
modest even when common SNPs account 
for a large proportion of heritability of the 
traits17. Hence, for applications in human 
populations to achieve meaningful and accu-
rate predictions, big data are key, and sample 
sizes of hundreds of thousands needed. Such 
data sets are starting to become achievable.

Conclusions
We have highlighted what we believe are 
limitations to genetic risk prediction as 
well as the most important pitfalls to befall 
researchers, and we have discussed how 
these can be avoided. Most problems occur 
in the validation stage, when data are not 
fully independent from those in the dis-
covery phase, but care is also needed to 
ensure that the discovery and validation 
samples are representative of the popula-
tion in which the predictor will be applied. 
Genomic prediction is already having a 
major impact on livestock selection pro-
grammes39 and has great potential for 
applications in plant breeding, preventive 
medicine strategies and clinical decision 
making. However, there are fundamental 
limitations to the predictive ability of a 
genetic predictor (see limitations 1 and 2), 
and so it is important that expectations are 
realistic and that the accuracy of genetic 
predictors is fairly evaluated. As sample 
sizes increase, predictors of genetic risk will 
have a greater clinical utility, particularly in 
terms of identification of population strata at 
increased risk of disease, as opposed to accu-
rate predictive diagnosis for individuals.
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