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Abstract
Sex-specific genetic effects have been proposed to be an important source of variation for human complex traits. Here we use
two distinct genome-wide methods to estimate the autosomal genetic correlation (rg) between men and women for human
height andbodymass index (BMI), using individual-level (n =∼44 000) and summary-level (n =∼133 000) data fromgenome-wide
association studies. Results are consistent and show that the between-sex genetic correlation is not significantly different from
unity for both traits. In contrast, we find evidence of genetic heterogeneity between sexes for waist–hip ratio (rg =∼0.7) and
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between populations for BMI (rg =∼0.9 between Europe and the USA) but not for height. The lack of evidence for substantial
genetic heterogeneity for body size is consistent with empirical findings across traits and species.

Introduction
There has been a long-standing question about the contribution
of autosomal sex-specific genetic effects to complex trait vari-
ation in humans (1,2). For many traits, including height, body
mass index (BMI), waist circumference, hip circumference and
waist-to-hip ratio, twin studies find systematically lower correla-
tions of opposite-sex twin pairs compared with same-sex dizyg-
otic twin pairs (3). For example, Schousboe et al. (4) concluded
from a large study of European twin pairs aged 20–40 years that
‘the sets of genes contributing to variation in BMI are not identi-
cal among men and women’, with an estimate of genetic correl-
ation between men and women <0.5 (averaged across cohorts
and age groups). However, genome-wide association studies
(GWAS) using very large sample sizes have not identified any
autosomal genetic variant that showed a significant sex-specific
effect on height or BMI (5). In addition, pedigree studies in other
species consistently report very large genetic correlations in body
size between males and females (6–10), suggesting that little
phenotypic variation is contributed by genotype–sex interac-
tions. In this study, we address the question about genotype-
by-sex and genotype-by-country interaction variation using a
powerful population design in which unrelated individuals
have genome-wide single nucleotide polymorphism (SNP) data
and a phenotypic measure on height and BMI. We estimate the
correlation in genome-wide additive effects that are captured
by SNP data with high precision.

Results
Using the bivariate genomic restricted maximum likelihood
(GREML) method (11) as implemented in the genetic complex
trait analysis (GCTA) software (12), we estimated the genetic cor-
relation between men and women for height and BMI in a com-
bined GWAS data set comprising 44 126 unrelated individuals of
European descent and ∼1.2 M SNPs (see Material and Methods
section). Since the bivariate GCTA-GREML method does not re-
quire traitsmeasured on the same set of individuals, we regarded
height (or BMI) in men as a distinct trait from that in women and
used genome-wide SNP data to estimate genetic correlation be-
tween the ‘two traits’ (e.g. men’s height versus women’s height).
The expected value of the genetic correlation (rg) should, per def-
inition, range from −1 or 1. In the analysis, we allowed the esti-
mate to go beyond this range so that the estimate was unbiased
(an estimate constrained between−1 and 1 is a biased estimated).
The estimate of rg was 1.02 for height with a standard error (SE) of
0.023, and 1.01 (SE = 0.064) for BMI (Table 1), both of which were

not significantly different from 1 (Wald’s test P = 0.48 for height
and P = 0.86 for BMI).

A recently proposed alternativemethod, called bivariate link-
age disequilibrium score (LDSC) regression analysis (13), is also
able to estimate genetic correlations between traits measured
on different samples. This method is built on the univariate
LDSC regression analysis (14), which was developed to distin-
guish the effects due to population stratification from polygenic
effects in GWAS. The LDSC regression method only requires
GWAS summary data so that it can be applied to data with very
large sample sizes. We used summary data from the sex-strati-
fied Genetic Investigation of ANthropometric Traits (GIANT)
meta-analyses (5) (up to 60 586 men and 73 137 women) for
height and BMI (see Material and Methods section). The estimate
of rg from the bivariate LDSC regression analysis using summary
datawas 0.957 (SE = 0.023) for height and 0.879 (SE = 0.035) for BMI
(Table 2). The estimate for BMI was significantly different from 1
(Wald’s test P = 5.9e-4), which was inconsistent with the result
frombivariateGREMLanalysis on individual-level data.We there-
fore investigated what could cause this apparent discrepancy.

Unlike the GREML analysis where there were roughly the
same number ofmen andwomen in each cohort (Table 3), the bi-
variate LDSC regression analysis used summary data from a
meta-analysis where there were cohorts that only contributed
samples of one sex, e.g. all > 20 000 samples from the Women’s
Genome Health Study (WGHS) werewomen (see the Supplemen-
tary Material, Table S1 of Randall et al. (5)). Therefore, if there is
genetic heterogeneity between cohorts (populations), the esti-
mate of rg between sexes from the bivariate LDSC regression ana-
lysis will be biased downwards, and this may explain the
discrepancy between the estimates of rg from bivariate GREML
and LDSC regression. We therefore used the bivariate GREML
analysis to test whether there is genetic heterogeneity between
populations in the combined GWAS sample with individual-
level data (n = 44 126). We stratified the data (from both sexes)
into two groups, i.e. samples from the USA (ARIC, GENEVA-T2D,
HRS) and Europe (TwinGene, Lifelines and EGCUT), and then
used bivariate GCTA-GREML approach to estimate the genetic
correlation between USA and Europe for height and BMI. The es-
timates of between-population rg were 0.961 (SE = 0.030) for
height and 0.894 (SE = 0.058) for BMI (Table 4). These estimates
are remarkably consistent with the between-sex rg estimates of
0.957 for height and 0.879 for BMI (Table 2) frombivariate LDSC re-
gression using summary data. The results are consistentwith the
hypothesis that there is genetic heterogeneity between popula-
tions for BMI that confounds the estimate of rg between sexes
in the bivariate LDSC regression analysis. The European

Table 1. Estimates of genetic correlation between men and women from the bivariate GCTA-GREML analysis using individual-level data for five
anthropometric traits.

Trait Sample size (men versus women) h2
g (Men) h2

g (Women) rg
Est. SE Est. SE Est. SE P(rg = 1)

Height 19 095 versus 24 504 0.447 0.018 0.431 0.015 1.022 0.031 0.483
BMI 19 016 versus 24 350 0.236 0.019 0.226 0.015 1.011 0.064 0.859
WCadjBMI 13 158 versus 15 874 0.167 0.026 0.174 0.022 0.774 0.119 0.057
HIPadjBMI 13 119 versus 15 854 0.231 0.026 0.185 0.022 0.855 0.101 0.149
WHRadjBMI 13 115 versus 15 846 0.159 0.026 0.182 0.022 0.607 0.112 4.4 × 10−4

h2
g = proportion of phenotypic variance explained by all SNPs used in the analysis. P(rg = 1): Wald’s test P-value against rg = 1.
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samples (TwinGene, Lifelines and EGCUT) used in our bivariate
GREML analyses are from Sweden, the Netherland and Estonia,
which are not a perfect representative of the whole Europe,
whereas the US samples (ARIC, GENEVA-T2D, HRS) are of descent
of almost all Europeans (see the PCA plot in the Supplementary
Material, Fig. S19 of Yang et al. (15)). Therefore, the between-
population genetic heterogeneity for BMI could be due to genetic
difference (e.g. difference in causal variants or difference in link-
age disequilibrium between SNPs and causal variants) across
European populations. Of course, we could not rule out the pos-
sibility that there is a genotype-by-environment interaction for
BMI, where population (Europe or USA) is a proxy for environ-
mental difference.

We noticed that the estimates of proportion of variance ex-
plainedbyall SNPs (h2

g ) fromtheLDSCregressionanalysis (Table 2)
were much smaller than those from bivariate GREML analysis for
both height and BMI (Table 1). The discrepancy could be partly at-
tributed to the error of approximating the LDSC in the sample
used for analysis by the estimate from the 1000 Genome Project
(1KGP) data because the regression slope (from which h2

g is esti-
mated in the LDSC regression analysis) is inversely proportional
to the variance of the estimated LDSCs, which consists of the
true variation of LDSCs and the variation of estimation errors.
This was demonstrated by the analysis of applying the LDSC re-
gression analysis in the same data that were used in the GREML
analysis (see Material and Methods section), where the estimates
of h2

g from LDSC regression (Supplementary Material, Table S1)
were consistently smaller than those fromGREML (Table 1). How-
ever, the estimates of rg are generally consistent between the two
methods with the standard errors from LDSC regression being
about twice larger than those from GREML (Table 1 and Supple-
mentary Material, Table S1). Another explanation of the discrep-
ancy between estimate of h2

g from GREML using individual-level
data (Table 1) and that from LDSC regression using summary

data (Table 2) is that the summary statistics available in the public
domain had been corrected by the genomic control (GC) approach
(16), i.e. reported SE equals to original SE multiplied by

ffiffiffiffiffiffiffiffi

λGC
p

in
each cohort and further in the whole meta-analysis sample,
where λGC is the genomic inflation factor (median of χ2 statistics
divided by 0.455). The LDSC regression analysis was based on z-
statistics that are shrunk by GC correction, resulting in an under-
estimated h2

g . This is demonstrated by the decrease in the esti-
mate of h2

g from LDSC regression as a result of GC correction in
the combined GWAS sample with individual-level data (Supple-
mentaryMaterial, Table S1). Fortunately, GC correction did not af-
fect the estimateof rg because the genetic variance and the genetic
covariance were scaled by the same factor, which cancels out
when calculating rg (Supplementary Material, Table S1). We can-
not rule out the possibility that the deflated estimates of h2

g from
LDSC regression using meta-analysis summary data were partly
due to technical factors [e.g. difference in design, genotyping plat-
formand/or quality control (QC) criteria] that led to artifactual dis-
crepancies in SNP calls. In addition, summary data from meta-
analysis based on a large number of cohorts may suffer from
more experimental noise, such that the implicit h2

g is lower than
that froman equivalent samplewith individual-level data. In add-
ition, we used an IMPUTE-INFO threshold of 0.3 for SNP inclusion
in the analysis of the combined GWAS data. We demonstrated by
additional analysis that the GREML estimates using an IMPUTE-
INFO threshold of 0.6 (Supplementary Material, Table S2) were
highly consistent with those using 0.3 (Table 1).

We further estimated the between-sex genetic correlation for
BMI-adjusted waist circumference (WCadjBMI), hip circumfer-
ence (HIPadjBMI) andwaist–hip ratio (WHRadjBMI) using individ-
ual-level data in the combined GWAS sample (bivariate GREML
analysis, n = up to 29 091) and using summary-level data from
the sex-specific GIANT meta-analysis (bivariate LDSC regression
analysis, n = up to 82 057) (seeMaterial andMethods section). The
waist circumference, hip circumference and waist–hip ratio
(WHR) phenotypes were adjusted for BMI to capture body fat dis-
tribution independent of overall adiposity (5). Although the
standard errors of the estimates were relatively large, the results
from both analyses suggested that there was a significant
between-sex genetic heterogeneity for WHRadjBMI, rg = 0.607
(SE = 0.112) from GREML analysis and rg = 0.770 (SE = 0.108) from
LDSC regression, consistent withWHR being a sexually dimorph-
ic trait under differential selection formen versuswomen (17,18).
Our results also seem to suggest that there is between-sex
genetic heterogeneity for WCadjBMI but not for HIPadjBMI
(Tables 1 and 2). These estimates are consistent with the GWAS
results reported in the Randall et al. study that out of 9 traits ana-
lysed, only WHRadjBMI and WCadjBMI had significant sex-
specific effects (detected at 7 loci) (5).

Table 2. Estimates of genetic correlation between men and women from the LDSC regression analysis using summary data for five
anthropometric traits.

Trait Sample size (men versus women) h2
g (Men) h2

g (Women) rg
Est. SE Est. Est. Est. SE P(rg = 1)

Height 60 505 versus 73 073 0.274 0.018 0.261 0.018 0.957 0.023 0.063
BMI 58 599 versus 67 935 0.167 0.012 0.186 0.010 0.879 0.035 5.9 × 10−4

WCadjBMI 38 361 versus 42 727 0.143 0.014 0.110 0.013 0.780 0.071 1.9 × 10−3

HIPadjBMI 32 920 versus 40 712 0.162 0.018 0.136 0.015 1.000 0.083 0.999
WHRadjBMI 34 594 versus 47 463 0.102 0.016 0.093 0.017 0.770 0.108 0.033

h2
g = proportion of phenotypic variance explained by all SNPs used in the analysis. HIPadjBMI, BMI-adjusted hip circumference; WCadjBMI, BMI-adjusted waist

circumference; WHRadjBMI, BMI-adjusted waist–hip ratio. The samples size shown in this table is the median of the per-SNP sample sizes reported in the summary

data. P(rg = 1): Wald’s test P-value against rg = 1.

Table 3. Sample size and genotyping platform of each GWAS cohort
with individual-level data.

Cohort Men Women Genotyping array

ARIC 3567 4040 Affymetrix 6.0
GENEVA-T2D 2055 3190 Affymetrix 6.0
HRS 3531 4948 Illumina OmniExpress
TwinGene 3299 3197 Illumina Omni2.5
Lifelines 4230 5959 Illumina OmniExpress
EGCUT 2641 3469 Illumina Cyto SNP12 v2

More information about QC criteria of the genotype data can be found in the

Supplementary Material, Figure S4 of Yang et al. (15).
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Discussion
The search for genetic variants with sex-specific effects and
thereby sex-genotype interaction variation is often motivated
by large differences in average phenotypes (as in height) or bio-
logical processes that are known to differ between the sexes
(e.g. hormonal effects). However, mean differences do not
imply that sex-by-genotype interactions exist. For example, a re-
cent study (19) reported a mean difference in genetic profile for
height across Europeannations, consistentwith the observed dif-
ference inmean height phenotype. This finding does not conflict
with the result from a previous study (20) that there is no
evidence for a difference in heritability between European
populations or result from our study (Table 4) that the between-
population genetic correlation for height is not significantly dif-
ferent from unity. One caveat of our study is that we estimate
the genetic correlation from effects captured by common SNPs.
It is possible that rare variants of large effects individually have
a different effect in men and women. Nevertheless, it is difficult
to see how the missing part of genetic (co)variance would cumu-
latively lead to a much lower overall genome-wide correlation,
since common SNPs imputed to the 1KGP reference capture the
majority of genetic variation for height and BMI (15).

In conclusion, we provide precise estimates of the genetic cor-
relation between men and women for height and BMI using very
large samples of unrelated individuals. The results are consistent
with the hypothesis that there is no between-sex genetic hetero-
geneity for both height and BMI and that there is some between-
population genetic heterogeneity for BMI, suggesting that obesity
in men and women is influenced by the same set of autosomal
genes in the same population, and the effect of these genes
may vary across populations. The analyses performed in this
study in principle can be applied to detect genome-wide hetero-
geneity between sexes, populations or environments for other
complex traits and diseases in humans and even in other species.
Results from these kinds of analyses provide important informa-
tion and a baseline for investigators seeking to identify individual
genetic variants or genes with sex-, population- and/or environ-
ment-specific effects for complex traits.

Material and Methods
Bivariate GCTA-GREML analysis

We used individual-level data from seven GWAS cohorts, i.e. ARIC,
NHS, HPFS, TwinGene, HRS, EGCUT and Lifelines. Informed con-
sent was obtained from all subjects. QCs of the genotype data
and imputation have been detailed elsewhere (15). In brief, we per-
formed QCs of the genotype data in each cohort following the cri-
teria as listed in the SupplementaryMaterial, Table S4 of Yang et al.
(15), and imputed the genotype data to the 1KGP reference panels
(21) using IMPUTE2 (22). After imputation, we further excluded
SNPs with Hardy–Weinberg equilibrium (HWE) test P < 1e-6,
minor allele count < 3 or IMPUTE-INFO (the metric outputted
from IMPUTE2 software as ameasure of imputationaccuracy) < 0.3.

We used an IMPUTE-INFO threshold of 0.3 because a recent study
(15) suggests that the proportion of variance explained by imputed
variants decreases substantially when filtering variants with an
IMPUTE-INFO threshold of >0.3. We included only in the analysis
the variants with MAF≥ 0.01 and those in common with HapMap
Project Phase 3 reference panels (HM3) because the HM3 SNPs
were optimized to capture common genetic variation (23). We
used the GCTA (12,24) to estimate the genetic relatedness between
all possible pairs of samples fromSNP data (∼1.2 MHapMap3 SNPs
passed QCs), removed one of each pair of individuals with esti-
mated genetic relatedness > 0.05 and retained 44 126 unrelated in-
dividuals (19 323men and 24 803women). All the individuals are of
European descent as demonstrated by the principal component
analysis in the Supplementary Material, Figure S19 of Yang et al.
(15). We adjusted the phenotypes for age using linear regression
and standardized the residuals to z-score in each gender group of
eachcohort to removedifferences in themeanorvariance between
gender groups orcohorts.We thenused the bivariateGCTA-GREML
approach (11,12) to estimate the genetic correlation between men
and women for height and BMI. We also performed the bivariate
GREML analysis for WCadjBMI, HIPadjBMI and WHRadjBMI,
where WC, HIP and WHR phenotypes were adjusted by BMI in
each sex group of each cohort by linear regression to capture
body fat distribution independent of overall adiposity (5). The sam-
ple sizes for the analyses of WC, HIP and WHR were smaller than
those for height and BMI (Table 1) because theWC and HIP pheno-
types in theHRS andGENEVA-T2D cohortswere not available tous.

Bivariate LDSC regression analysis

We accessed the summary data from GWAS meta-analyses for
height, BMI, WCadjBMI, HIPadjBMI and WHRadjBMI (n = up to
133 723). These analyses were stratified by sex, and the summary
data are available in the public domain (see the URLs section).We
used the bivariate LDSC regression method (13), which is able to
estimate genetic correlation between two traits using GWAS
summary data. The method is implemented in LDSC software
(see the URLs section). The LDSC data (provided in accompany
with the LDSC regression software tool) were estimated from
the 1KGP data with a window size of ±1 Mb. For consistency, we
included in the bivariate LDSC analysis the SNPs in common
with those used in the bivariate GCTA-GREML analysis. We fur-
ther removed SNPs with reported sample size < 10 000 and
those that did not exist in the LDSC file provided by LDSC soft-
ware. We retained ∼0.95 M SNPs for LDSC regression analysis.
In addition, for method comparison, we also performed the
bivariate LDSC regression analysis in the combined GWAS data
(n = 44 126), with or without GC correction of the summary statis-
tics, for height, BMI, WCadjBMI, HIPadjBMI and WHRadjBMI.

URLs
GIANT summary data: https://www.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_data_files;

Table 4. Bivariate GCTA-GREML estimates of genetic correlation between samples from the USA and Europe for height and BMI.

Trait Sample size (men versus women) h2
g (USA) h2

g (Europe) rg
Est. SE Est. Est. Est. SE P(rg = 1)

Height 21 006 versus 22 593 0.419 0.017 0.475 0.015 0.961 0.030 0.195
BMI 20 904 versus 22 462 0.240 0.017 0.248 0.016 0.894 0.058 0.068

h2
g = proportion of phenotypic variance explained by all SNPs used in the analysis. P(rg = 1): Wald’s test P-value against rg = 1.
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GCTA software: http://cnsgenomics.com/software/gcta/index.
html;

LDSC software: https://github.com/bulik/ldsc

Supplementary Material
Supplementary Material is available at HMG online.
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