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Why Study Networks?
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Components of biological systems, e.g. genes, proteins,
metabolites, interact with each other to carry out different
functions in the cell.

Examples of such interactions include signaling, regulation
and interactions between proteins.

We cannot understand the function and behavior of biological
systems by studying individual components (2 + 2 # 4!).
Networks provide an efficient representation of complex
reaction in the cells, as well as basis for

mathematical /statistical models for the study of these
systems.
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Central Dogma of Molecular Biology (Extended)
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Networks in Biology: Gene Regulatory Interactions

A GENE REGULATORY NETWORK
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Networks in Biology: Gene Regulatory Networks
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Networks in Biology: Protein-Protein Interactions
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Networks in Biology: Protein-Protein Interaction (PPI)
Networks
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Networks in Biology: Metabolic Reactions
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Networks in Biology: Metabolic Pathways
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But Do Networks Matter?

» They Do!

» Recent studies have linked changes in gene/protein networks
with many human diseases.

Systems Biology -

Gene Networks and microRNAs Implicated in

Aggressive Prostate Cancer

Liang Wang,' Hui Tang,” Venugopal Thayanithy,® Subbaya Subramanian,® Ann L. Oberg,”
Julie M. Cunningham,' James R. Cerhan,” Clifford J. Steer,* and Stephen N. Thibodeau"
'Departments of Laboratory Medicine and Pathology and “Health Sciences Research, Mayo Clinic, Roct i and

Departments of *Laboratory Medicine and Pathology, *Medicine, and Genetics, Cell Biology, and Development, University of
Minnesota, Minneapolis, Minnesota
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But Do Networks Matter?
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Estrogen-Regulated Gene Networks in Human
Breast Cancer Cells: Involvement of E2F1 in the
Regulation of Cell Proliferation
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Department of Molecular Biology and Genetics (W.L.K.), Cornell University, Ithaca, New York
14853-4203
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But Do Networks Matter?
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A Transcriptional Signature and Common
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Metabolism and Diverse Human Diseases
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But Do Networks Matter?

And, incorporating the knowledge of networks improves our ability
to find causes of complex diseases.

Molecular Systems Biology 3; Article number 140; doi:10.1038/msb4100180 mulecular
Citation: Molecular Systems Biology 3:140 systems

© 2007 EMBO and Nature Publishing Group ~ Al rights reserved 1744-4292/07 Iﬂgy
www.molecularsystemsbiology.com

REPORT

Network-based classification of breast cancer
metastasis

Han-Yu Chuang'*, Eunjung Lee®*®, Yu-Tsueng Liu*, Doheon Lee® and Trey Ideker’:>**

B\o\niormancs Program, University of California San Diego, La Jolla, CA, USA,? Department of Bioengineering, UnlversuyofCaI\forma San Diego, La Jolla, CA, USA,
of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea and * Cancer Genetics Program, Moores Cancer
Center, University of California San Diego, La Jolla, CA, USA
s These authors contributed equally to this work
ing author. De of Bi i University of California San Diego, La Jolla, CA 92093, USA. Tel.: + 1858 822 4558; Fax: -+ 1 858 534 5722;
E- ma||, trey@bioeng.ucsd.edu
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Why Do We Need Network Inference?

©AIli Shojaie

Despite progress, our knowledge of interactions in the genome
is limited.

The entire genome is a vast landscape, and experiments for
discovering networks are very expensive

From a statistical point of view, network estimation is related
to estimation of covariance matrices, which has many
independent applications in statistical inference and prediction
(more about this later)

Finally, and perhaps most importantly, gene and protein
networks are dynamic and changes in these networks have
been attributed to complex diseases.
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Networks: A Short Premier
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Networks: A Short Premier

» A network is a collection of nodes V' and edges E.
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Networks: A Short Premier

» A network is a collection of nodes V' and edges E.

» We assume there are p nodes in the network, and that the
nodes correspond to random variables X1, ... X,.

©AIli Shojaie SISG: Pathway & Networks

15



Networks: A Short Premier

» A network is a collection of nodes V' and edges E.

» We assume there are p nodes in the network, and that the
nodes correspond to random variables X1, ... X,.

» Edges in the network can be directed X — Y or undirected
X-Y.

G, G, G;
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Networks: A Short Premier

» A network is a collection of nodes V' and edges E.

» We assume there are p nodes in the network, and that the
nodes correspond to random variables X1, ... X,.

» Edges in the network can be directed X — Y or undirected
X-Y.

G, G, G;

> In all these example, the nodes are V' = {1,2,3}.
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Networks: A Short Premier

» A network is a collection of nodes V' and edges E.

» We assume there are p nodes in the network, and that the
nodes correspond to random variables X1, ... X,.

» Edges in the network can be directed X — Y or undirected
X-Y.

G, G, G;

> In all these example, the nodes are V' = {1,2,3}.
» The edges are:

EL = {1-2,2-3}

E, = {1—-3,3->2}

Es = {1-2,1-3}
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Networks: A Short Premier
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Networks: A Short Premier

» A convenient way to represent the edges of the network is to
use an adjacency matrix A
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Networks: A Short Premier

» A convenient way to represent the edges of the network is to
use an adjacency matrix A

» A matrix is a rectangular array of data (similar to a table)
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Networks: A Short Premier

» A convenient way to represent the edges of the network is to
use an adjacency matrix A

» A matrix is a rectangular array of data (similar to a table)

» Values in each entry are shown by indeces of row and column

X .
A= | . . . | Here, xisin row 1 and column 2
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Networks: A Short Premier

» A convenient way to represent the edges of the network is to
use an adjacency matrix A

v

A matrix is a rectangular array of data (similar to a table)

v

Values in each entry are shown by indeces of row and column

X
A= | . . . | Here, xisin row 1 and column 2

v

Adjacency matrix is a square matrix, which has a 1 if there is
an edge from a node in one row to a node in another column,
and 0 otherwise
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Networks: A Short Premier

©AIli Shojaie

A convenient way to represent the edges of the network is to
use an adjacency matrix A

A matrix is a rectangular array of data (similar to a table)

Values in each entry are shown by indeces of row and column

X .
A= | . . . | Here, xisin row 1 and column 2

Adjacency matrix is a square matrix, which has a 1 if there is
an edge from a node in one row to a node in another column,
and 0 otherwise

For undirected edges, we add a 1 in both directions
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Networks: A Short Premier
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Networks: A Short Premier
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What Do Edges in Biological Networks Mean?

» In gene regulatory networks, an edge from gene i to gene j
often means that / affects the expression of j; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.
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What Do Edges in Biological Networks Mean?

» In gene regulatory networks, an edge from gene i to gene j
often means that / affects the expression of j; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.

» In protein-protein interaction networks, an edge between
proteins i and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.
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What Do Edges in Biological Networks Mean?

» In gene regulatory networks, an edge from gene i to gene j
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often means that / affects the expression of j; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.

In protein-protein interaction networks, an edge between
proteins i and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.

In metabolic networks, an edge between compound 7/ and j
often means that the two compounds are involved in the same
reaction, meaning that they are generated at relative rates.
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What Do Edges in Biological Networks Mean?
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In gene regulatory networks, an edge from gene i to gene j
often means that / affects the expression of j; i.e. as i's
expression changes, we expect that expression of j to
increase/decrease.

In protein-protein interaction networks, an edge between
proteins i and j often means that the two proteins bind
together and form a protein complex. Therefore, we expect
that these proteins are generated at similar rates.

In metabolic networks, an edge between compound 7/ and j

often means that the two compounds are involved in the same
reaction, meaning that they are generated at relative rates.

Thus, edges represent some type of association among genes,
proteins or metabolites, defined generally to include linear or
nonlinear associations; more later....
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Statistical Models for Biological Networks
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Statistical Models for Biological Networks

» We use the framework of graphical models
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Statistical Models for Biological Networks

» We use the framework of graphical models

» In this setting, nodes correspond to “random variables”
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Statistical Models for Biological Networks

» We use the framework of graphical models

» In this setting, nodes correspond to “random variables”
» In other words, each node of the network represents one of
the variables in the study
» In gene regulatory networks, nodes = genes
» In PPI networks, nodes = proteins
» In metabolic networks, nodes = metabolites
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Statistical Models for Biological Networks

» We use the framework of graphical models

» In this setting, nodes correspond to “random variables”
» In other words, each node of the network represents one of
the variables in the study
» In gene regulatory networks, nodes = genes
» In PPI networks, nodes = proteins
» In metabolic networks, nodes = metabolites
» In practice, we observe n measurements of each of the
variables (genes/proteins/ metabolites) for say different
individuals, and want to determine which variables are
connected, or use their connection for statistical analysis
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An Overview of Methods for Network Inference

Two general classes of network inference methods :
» Methods based on marginal measures of association:

» Co-expression Networks (uses linear measures of association)
» Methods based on mutual information (can accommodate
non-linear associations)

» Methods based on conditional measures of association:

» Methods assuming (multivariate) normality (glasso, etc)
» Generalizations to allow for nonlinear dependencies
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Our Plan

In the remainder of this module, we will cover the following topics
» Methods for reconstructing undirected networks
» Marginal association (co-expression) nets (WGCNA, ARACNE)
» Conditional independence graphs (CIGs)

Network analysis (and more on WGCNA)

Methods for reconstructing directed networks

» Bayesian Networks (basic concepts, reconstruction algorithm)
» Reconstructing directed networks from time-course data and
perturbation screens (time permitting)

v

v

v

Network-based pathway enrichment analysis

v

Network-based omics data integration
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