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An Overview of Network Reconstruction Methods

Two general classes of network reconstruction methods:

I Methods based on marginal measures of association:
I Co-expression networks (linear association)
I Methods based on mutual information (non-linear associations)

I Methods based on conditional measures of association:
I Methods assuming multivariate normality/linearity
I Generalizations to allow for nonlinear dependencies
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Co-Expression/Correlation Networks

I This is the simplest (and most-widely used!!) method for
estimating networks; it assumes that edges correspond to
large correlation magnitudes

I Let r(i , j) be correlation between Xi and Xj ; we claim an edge
between i and j if |r(i , j)| > τ .

I Correlation is a simple measure of linear association between
two random variables.

I Here, τ is a user-specified threshold, and is the tuning
parameter for this method.

I By construction, this is an undirected network (correlation is
symmetric).
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Limitations of Co-Expression Networks

I The estimation is highly dependent on the choice of τ .

I They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don’t interact with each other!

I Correlation is a measure of linear association, but many
biological relationships are nonlinear
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Limitations of Co-Expression Networks

I The estimation is highly dependent on the choice of τ .

I We can instead test H0 : rxy = 0
I A commonly used test is given by the Fisher transformation

Z =
1

2
ln

(
1 + r

1− r

)
= artanh(r) ∼H0 N

(
0,

1√
n − 3

)

I Reject H0 : rxy = 0 if |Z | is large
I Many tests for large p — adjust for multiple comparisons

I Alternatively, can use “weighted” co-expression networks
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Weighted Gene Co-expression Network Analysis1

I Measure concordance of gene expression
using Pearson correlation

I Continuously transform the Pearson
correlations into an (soft) adjacency
function → weighted network

I using the sigmoid adjacency function

Aij =
1

1 + e−α(rij−τ0)

I using the power adjacency function

Aij = |rij |β

I Perform downstream network analysis
(clustering, etc) on weighted networks

1Zhang and Horvath, A General Framework for Weighted Gene Co-Expression
Network Analysis, Stat App in Gen and Mol Bio, 2005
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Choice of Parameters

I By changing the tuning parameters, adjacency functions
behave similar to hard thresholding

I Power and sigmoid adjacency functions lead to similar results
if the parameters are chosen to achieve scale-free topology

I We focus on power adjacency function
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Choice of Parameters

I Using β ≈ 6 gives a scale free network
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Software

I Implemented in the R-package WGCNA
install.packages(’WGCNA’,lib=NULL,repos=’http://cran.us.r-project.org’)

I Main estimation function
adjacency(datExpr,

selectCols = NULL,

type = "unsigned",

power = if (type=="distance") 1 else 6,

corFnc = "cor", corOptions = "use = ’p’",

distFnc = "dist", distOptions = "method = ’euclidean’")

I To determine the power so that the network has scale-free
distribution, need to search for multiple powers
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Limitations of Co-Expression Networks

I Correlation is a measure of linear association, but many
biological relationships are nonlinear
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Limitations of Co-Expression Networks

I Correlation is a measure of linear association, but many
biological relationships are nonlinear

I We can use other measures of association, for instance,
Spearman correlation or Kendal’s τ .

I These methods define correlation between two variables, based
on the ranking of observations, and not their exact values

I They can better capture non-linear associations

I We can instead use mutual information; this has been used in
many algorithm, including ARACNE
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ARACNE: Algorithm for the Reconstruction of Accurate
Cellular NEtworks2

1. Identifies statistically significant gene-gene co-regulation
based on mutual information

2. It then eliminates indirect relationships in which two genes are
co-regulated through one or more intermediates

2ARACNE: An algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context, Margolin et al, BMC Bioinfo, 2006

c©Ali Shojaie SISG: Pathway & Networks 12



ARACNE: Algorithm for the Reconstruction of Accurate
Cellular NEtworks2

1. Identifies statistically significant gene-gene co-regulation
based on mutual information

2. It then eliminates indirect relationships in which two genes are
co-regulated through one or more intermediates

2ARACNE: An algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context, Margolin et al, BMC Bioinfo, 2006

c©Ali Shojaie SISG: Pathway & Networks 12



ARACNE: Algorithm for the Reconstruction of Accurate
Cellular NEtworks2

1. Identifies statistically significant gene-gene co-regulation
based on mutual information

2. It then eliminates indirect relationships in which two genes are
co-regulated through one or more intermediates

2ARACNE: An algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context, Margolin et al, BMC Bioinfo, 2006

c©Ali Shojaie SISG: Pathway & Networks 12



ARACNE
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Data Processing Inequality (DPI)

I (A,C ) ≤ min[I (A,B), I (B,C )]

where
I (gi , gj) = logP(gi , gj)/P(gi )P(gj)

I Look at every triplet and remove the weakest link

I Need to estimate marginal and joint (pairwise) probabilities
(using Gaussian Kernel)
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Algorithm Details

I Starts with a network where each triplet of genes is connected
by an edge.

I The algorithm then examines each gene triplet for which all
pairwise MIs are greater than a cut-off and removes the edge
with the smallest value based on DPI.

I Each triplet is analyzed irrespectively of whether its edges have
been selected for removal by prior DPI applications to different
triplets.

I The least of the three MIs can come from indirect interactions
only, and checking against the DPI may identify gene pairs
that are not independent but still do not interact.
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Rationale and Guarantees

I If MIs can be estimated with no errors, then ARACNE
reconstructs the underlying interaction network exactly,
provided this network is a tree and has only pairwise
interactions.

I The maximum MI spanning tree is a subnetwork of the
network built by ARACNE.
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Rationale and Guarantees
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Performance on Synthetic Data
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Application: B-lymphocytes Expression Data
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Application: B-lymphocytes Expression Data

I MYC (proto-oncogene) subnetwork (2063 genes)

I 29 of the 56 (51.8%) predicted first neighbors biochemically
validated as targets of the MYC transcription factor.

I New candidate targets were identified, 12 experimentally
validated.

I 11 proved to be true targets.

I The candidate targets that have not been validated are
possibly also correct.
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Software

I Implemented in the R-package minet:
source("http://bioconductor.org/biocLite.R")

biocLite("minet")

I Main estimation function aracne(mim, eps=0)

I mim: mutual information matrix
mim <- build.mim(syn.data, estimator="spearman")

I eps: threshold for setting an edge to zero, prior to searching
over triplets
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Limitations of Co-Expression Networks

I The estimation is highly dependent on the choice of τ

I They may not correctly detect the edges in biological
networks: two genes/proteins can have high correlations, even
if they don’t interact with each other!
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Partial Correlation

I Partial correlation measures the correlation between i and j
after the effect of the other variables are removed.

I In our example, this means that we would be taking into
account that the “information” was passed through mutual
friends, and not directly.

I This gives a more direct connection to biological networks; in
PPI networks: if protein A binds with B and C , but B and C
don’t bind, then the correlation between B and C will be
removed once conditioned on A.

I Mathematically, the partial correlation between Xi and Xj

given Xk is given by:

ρij ·k ≡ ρ(Xi ,Xj |Xk) =
ρij − ρikρjk√

1− ρ2ik
√

1− ρ2jk
.
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Partial Correlation

I Partial correlation is also symmetric

I Partial correlation is also a number between -1 and 1

I In partial correlation networks, we draw an edge between X
and Y , if the partial correlation between them is large

I Calculation of partial correlation is more difficult

I Again, we can determine this using testing, however, we need
a larger sample size

I New statistical methods have been proposed in the past
couple of years to make this possible...(active area of research)
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A simple example

Correlation =

 1 −.8 .7
−.8 1 −.8
.7 −.8 1

PartialCorr =

 1 .6 0
.6 1 .6
0 .6 1
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Partial Correlation
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A larger example

I A network with 10 nodes and 20 edges

I n = 100 observations

I Estimation using correlation & partial correlation (20 edges)
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Partial Correlation for Gaussian Random Variables

I It turns out, we can calculate the partial correlation between
Xi and Xj given all other variables, by calculating the inverse
of the empirical covariance matrix S .

I In other words, the (i , j) entry in Σ−1 gives the partial
correlation between Xi and Xj given all other variables X\i ,j .

I Now suppose the variables are connected by a graph G , then
if X ∼ N(0,Σ), the nonzero entries in the inverse covariance
matrix correspond to the edges of G : (i , j) ∈ E iff Σ−1ij 6= 0
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Partial Correlation for Gaussian Random Variables
17.2 Markov Graphs and Their Properties 627

X

X

X X

Y

Y

Y
Y

Z

Z

Z

Z

W

W

W

(a) (b)

(c) (d)

FIGURE 17.2. Examples of undirected graphical models or Markov networks.
Each node or vertex represents a random variable, and the lack of an edge between
two nodes indicates conditional independence. For example, in graph (a), X and
Z are conditionally independent, given Y . In graph (b), Z is independent of each
of X, Y , and W .

A longer list of useful references is given in the Bibliographic Notes on
page 645.

17.2 Markov Graphs and Their Properties

In this section we discuss the basic properties of graphs as models for the
joint distribution of a set of random variables. We defer discussion of (a)
parametrization and estimation of the edge parameters from data, and (b)
estimation of the topology of a graph, to later sections.

Figure 17.2 shows four examples of undirected graphs. A graph G consists
of a pair (V,E), where V is a set of vertices and E the set of edges (defined
by pairs of vertices). Two vertices X and Y are called adjacent if there
is a edge joining them; this is denoted by X ∼ Y . A path X1,X2, . . . ,Xn

is a set of vertices that are joined, that is Xi−1 ∼ Xi for i = 2, . . . , n. A
complete graph is a graph with every pair of vertices joined by an edge.
A subgraph U ∈ V is a subset of vertices together with their edges. For
example, (X,Y,Z) in Figure 17.2(a) form a path but not a complete graph.

Suppose that we have a graph G whose vertex set V represents a set of
random variables having joint distribution P . In a Markov graph G, the
absence of an edge implies that the corresponding random variables are
conditionally independent given the variables at the other vertices. This is
expressed with the following notation:

 − x 0
x − x
0 x −



− x x 0
x − x 0
x x − 0
0 0 0 −



− x 0 x
x − x 0
0 x − x
x 0 x −



− 0 0 x
0 − x 0
0 x − x
x 0 x −
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Estimation
Therefore, to estimate the edges in the graph G ,

I First, calculate the empirical covariance matrix of the
observations S = 1/(n − 1)X TX (remember X is n × p).

I Then, find the inverse of S . Non-zero values of this matrix
determine where there are edges in the network.

I This seems pretty simple, however, in practice this may not
work that well, even if the sample size is very large!!
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Difficulties in HD

I A number of problems arise in high dimensional settings,
especially when p � n.

I First, S is not invertible if p > n!

I Even if p < n, but n is not very large, we may still get poor
estimates, and more false positives and false negatives.
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Estimation in High Dimensions – Method 1

I Idea: estimating partial conditions is equivalent to regressing
each variable Xj on all others!

X1 ∼ β2X2 + β3X3 + · · ·+ βpXp

I Problem: but when p > n we the usual regression is not
defined!

I Solution: use penalized regression...
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Digression: A (Very Short) Intro to Penalized Estimation

I Consider a linear regression of an outcome y on a set of
variables X1, . . . ,Xp

y =

p∑
j=1

Xjβj + εj

I The ‘classical’ method for estimating the coefficients βj is the
least squares (LS) method, which minimizes

minimizeβ1,...,βp‖y −
∑
j

Xjβj‖2 =
n∑

i=1

(
yi −

∑
j

Xj ,iβj

)2
I Unfortunately, LS does not work when p > n – we cannot

obtain sensible estimates of βjs as LS results in overfitting

I In penalized regression, a penalty is added to the LS objective
to prevent overfitting and control the model complexity

minimizeβ1,...,βp‖y −
∑
j

Xjβj‖2 + Penalty(β1, . . . , βp)
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A Useful Penalty: The Lasso

I In Lasso the penalty is sum of absolute values of coefficients

minimizeβ1,...,βp‖y −
∑
j

Xjβj‖2 + λ
∑
j

|βj |

where λ is a nonnegative tuning parameter that controls the
amount of penalty and hence the model complexity.

I When λ = 0, we get least squares.
I When λ is very large, we get β̂j = 0 for all j .

I The reason that lassi is useful is that for intermediate values
of λ some coefficients would be exactly zero!

I Lasso selects a subset of variables!!
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Lasso As λ Varies
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Lasso In Practice

I Perform lasso for a very fine grid of λ values.

I Use held-out data (e.g. cross-validation) to select the optimal
value of λ – that is, the best level of model complexity.

I Perform the lasso on the full data set, using that value of λ.

I The idea of lasso is more general and can be used in many
other problems

Loss(β;X ) + λ
∑
j

|βj |
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Example in R

xtr <- matrix(rnorm(100*100),ncol=100)

beta <- c(rep(1,10),rep(0,90))

ytr <- xtr%*%beta + rnorm(100)

library(glmnet)

cv.out <- cv.glmnet(xtr,ytr,alpha=1,nfolds=5)

print(cv.out$cvm)

plot(cv.out)

cat("CV Errors", cv.out$cvm,fill=TRUE)

cat("Lambda with smallest CV Error",

cv.out$lambda[which.min(cv.out$cvm)],fill=TRUE)

cat("Coefficients", as.numeric(coef(cv.out)),fill=TRUE)

cat("Number of Zero Coefficients",sum(abs(coef(cv.out))<1e-8),

fill=TRUE)
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R Output
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Back to Estimating CIGs in High Dimensions – Method 1

I The idea in the first method, called neighborhood selection, is
to estimate the graph by fitting a penalized regression of each
variable on all other variables.

I In other words, for j = 1, . . . , p, we solve

‖Xj −
∑
k 6=j

Xkβk‖2 + λ
∑
k 6=j

|βk |

I The final estimate of the graph is obtained by getting all of
the edges found from these individual regression problems.
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Estimating CIGs in High Dimensions – Method 2

I In the second approach, called graphical lasso, we directly
estimate the inverse covariance matrix by maximizing the `1
penalized log likelihood

I The log likelihood function of (zero-mean) Gaussian random
variables can be written as

logdet(Θ)− tr(SΘ),

where Θ is the p× p inverse covariance (aka precision) matrix.

I Here, logdet is the logarithm of determinant of matrix; tr is
the trace of the matrix, or sum of its diagonal values; and λ is
the tuning parameter.

I Can estimate Θ by maximizing the penalized log-likelihood:

logdet(Θ)− tr(SΘ)− λ‖Θ‖1,
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Comparing the Two Approaches

I It turns out that the neighborhood selection approach is an
approximation to the graphical lasso problem:

I Consider regression of Xj on Xk , j 6= k
I Then the regression coefficient for neighborhood selection is

related to the j , k element of Θ:

βk = −Θjk

Θjj

I A main difficulty with the neighborhood selection approach is
that the resulting graph is not necessarily symmetric.

I To deal with this, we can take the union or intersection of
edges from regressing Xk on Xk and Xj on Xk ; however, this
is an ad hoc solution.

I On the other hand, neighborhood selection is computationally
more efficient, and may gives better estimates.
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A Real Example

I Flow cytometry allows us to obtain measurements of proteins
in individual cells, and hence facilitates obtaining datasets
with large sample sizes.

I Sachs et al (2003) conducted an experiment and gathered
data on p = 11 proteins measured on n = 7466 cells

17.3 Undirected Graphical Models for Continuous Variables 637

λjk = ∞ will force θ̂jk to be zero, this algorithm subsumes Algorithm 17.1.
By casting the sparse inverse-covariance problem as a series of regressions,
one can also quickly compute and examine the solution paths as a function
of the penalty parameter λ. More details can be found in Friedman et al.
(2008b).
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FIGURE 17.5. Four different graphical-lasso solutions for the flow-cytometry
data.

Figure 17.1 shows the result of applying the graphical lasso to the flow-
cytometry dataset. Here the lasso penalty parameter λ was set at 14. In
practice it is informative to examine the different sets of graphs that are
obtained as λ is varied. Figure 17.5 shows four different solutions. The
graph becomes more sparse as the penalty parameter is increased.
Finally note that the values at some of the nodes in a graphical model can

be unobserved; that is, missing or hidden. If only some values are missing
at a node, the EM algorithm can be used to impute the missing values
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An Example in R

I Download the empirical covariance matrix from
http://www-stat.stanford.edu/~tibs/ElemStatLearn/

I Install the R-package glasso

library(glasso)

##Read the covariance matrix

sachs <- as.matrix(read.table("sachscov.txt"))

dim(sachs)

##glasso

est.1 <- glasso(s=sachs, rho=5, approx=FALSE, penalize.diagonal=FALSE)

##neighborhood selection

est.2 <- glasso(s=sachs, rho=5, approx=TRUE, penalize.diagonal=FALSE)
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Choice of tuning parameter

I Choosing the right λ is very difficult.

I As λ gets larger, we get sparser graphs. However, there is no
systematic way of choosing the right λ.

I A number of methods have been proposed, based on the idea
of trying to control the false positives (ongoing research).

I One option for choosing λ controls the probability of falsely
connecting disconnected components at level α (Banerjee et
al, 2008). When variables are standardized, this gives:

λ(α) =
tn−2(α/2p2)√

n − 2 + tn−2(α/2p2)
,

where tn−2(α) is the (100− α)% quantile of t-distribution
with n − 2 d.f.

c©Ali Shojaie SISG: Pathway & Networks 46



Choice of tuning parameter

I Choosing the right λ is very difficult.

I As λ gets larger, we get sparser graphs. However, there is no
systematic way of choosing the right λ.

I A number of methods have been proposed, based on the idea
of trying to control the false positives (ongoing research).

I One option for choosing λ controls the probability of falsely
connecting disconnected components at level α (Banerjee et
al, 2008). When variables are standardized, this gives:

λ(α) =
tn−2(α/2p2)√

n − 2 + tn−2(α/2p2)
,

where tn−2(α) is the (100− α)% quantile of t-distribution
with n − 2 d.f.

c©Ali Shojaie SISG: Pathway & Networks 46



Choice of tuning parameter

I Choosing the right λ is very difficult.

I As λ gets larger, we get sparser graphs. However, there is no
systematic way of choosing the right λ.

I A number of methods have been proposed, based on the idea
of trying to control the false positives (ongoing research).

I One option for choosing λ controls the probability of falsely
connecting disconnected components at level α (Banerjee et
al, 2008). When variables are standardized, this gives:

λ(α) =
tn−2(α/2p2)√

n − 2 + tn−2(α/2p2)
,

where tn−2(α) is the (100− α)% quantile of t-distribution
with n − 2 d.f.

c©Ali Shojaie SISG: Pathway & Networks 46



Choice of tuning parameter

I Choosing the right λ is very difficult.

I As λ gets larger, we get sparser graphs. However, there is no
systematic way of choosing the right λ.

I A number of methods have been proposed, based on the idea
of trying to control the false positives (ongoing research).

I One option for choosing λ controls the probability of falsely
connecting disconnected components at level α (Banerjee et
al, 2008). When variables are standardized, this gives:

λ(α) =
tn−2(α/2p2)√

n − 2 + tn−2(α/2p2)
,

where tn−2(α) is the (100− α)% quantile of t-distribution
with n − 2 d.f.

c©Ali Shojaie SISG: Pathway & Networks 46



Choice of tuning parameter

I Choosing the right λ is very difficult.

I As λ gets larger, we get sparser graphs. However, there is no
systematic way of choosing the right λ.

I A number of methods have been proposed, based on the idea
of trying to control the false positives (ongoing research).

I One option for choosing λ controls the probability of falsely
connecting disconnected components at level α (Banerjee et
al, 2008). When variables are standardized, this gives:

λ(α) =
tn−2(α/2p2)√

n − 2 + tn−2(α/2p2)
,

where tn−2(α) is the (100− α)% quantile of t-distribution
with n − 2 d.f.

c©Ali Shojaie SISG: Pathway & Networks 46



Some Comments

I The penalized estimation methods discussed above allow
estimation of graphical models in the p � n settings, e.g.
when p is in 1000’s and n is in 100’s.

I However, both of these methods, and most other methods for
estimation of conditional independence networks, work when
the network is sparse.

I Sparsity means that there are not many edges in the network,
and the network is far from fully connected.

I Good news is that biological networks are believed to be
“sparse”. However, all of these concepts are theoretical and it
is difficult to assess how things work on real networks.
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Computation

I As we saw previously, the neighborhood selection problem is
an approximation to the graphical lasso problem.

I It turns out that this relationship can be used for solving the
graphical lasso problem efficiently.

I Idea: solve the problem by iterating over p regression
problems, one for each column of the precision matrix.

I This results in a very efficient algorithm for solving this
problem, and in practice, we can solve problems with p in
1000’s and n in 100’s in a few minutes.

I The algorithm, as well as the approximation for the
neighborhood selection problem, is implemented in the
R-package glasso.

I In practice, better to use the empirical correlation matrix
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Exercise

I Estimate the graph from the previous example with different
values of tuning parameter (Note: this is denoted by rho in
the code).

I Try the estimation with and without setting
penalize.diagonal=FALSE. What do you see?

I Try the estimation with the empirical correlation matrix
instead (you may find the function cov2cor() useful). What
do you see?
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Marginal vs Conditional Associations

I Partial correlations provide a better representation of edges in
biological networks.

I Computationally, estimating the conditional independence
graph is almost as costly as estimating the co-expression
network (especially using neighborhood selection).

I Estimation and inference using marginal associations can be
done with much smaller samples

I The most important difference, however, is the idea of
conditioning! Partial correlation works if we condition on the
right set of variables. Marginal associations on the other
hand, is independent of conditioning.
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Non-linear associations

I Recall that correlation is a measure of linear dependence, this
is also true about partial correlation.

I However, many real-world associations are non-linear

I Therefore, (partial) correlation may miss non-linear
associations among variables

I Mutual information-based methods (ARACNE etc) try to
address this issue

I calculating conditional mutual information is computationally
expensive

I ARACNE’s solution for removing indirect associations is ad-hoc
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Linearity and Normality

I Need methods for estimation of graphical models with
non-linear associations

I Interestingly, assuming linear associations is closely related to
multivariate normality (MVN):

I MVN ⇒ linear relationships
I linear dependencies (+ extra mild assumptions) ⇒ MVN3

I Both of these are strong assumptions and may not hold in
real-world applications!

3Khatri & Rao (1976) & Fisk (1970)
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Conditional Independence Graphs

I In case of Gaussian variables, Θjk = 0 implies that Xj and Xk

are conditionally independent.
I Conditional dependence is a general notion that defines the

class of conditional independent graphs (CIG). In CIG,
I X⊥⊥Y | Z iff

P(X = x ,Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z)
I If X and Y are neighbors (X − Y ), they are conditionally

dependent
I X is conditionally independent of all other nodes, given

neighbors(X): Z /∈ neighbors(X), then X⊥⊥Z | neighbors(X)
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Nonparanormal (Gaussian Copula) Models

I Suppose X � N(0,Σ), but there exists monotone functions
fj , j = 1, . . . p such that [f1(X1), . . . fp(Xp)] ∼ N(0,Σ)

I We say that X has a nonparanormal distribution
X ∼ NPNp(f ,Σ).

I f and Σ are parameters of the distribution, and need to be
estimated from data.

I For continuous distributions, the nonparanormal family is
equivalent to the Gaussian copula family

I To estimate the nonparanomal network:

i) transform the data: [f1(X1), . . . fp(Xp)]
ii) estimate the network of the transformed data (e.g. calculate

the empirical covariance matrix of the transformed data, and
apply glasso or neighborhood selection)
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A Related Procedure

I Liu et al (2012) and Xue & Zou (2012) proposed a closely
related idea using rank-based correlation

I Let r ij be the rank of x ij among x1j , . . . , x
n
j and r̄j = (n + 1)/2

be the average rank
I Calculate Spearman’s ρ or Kendall’s τ

ρ̂jk =

∑n
i=1 (r ij − r̄j)(r ik − r̄k)√∑n

i=1 (r ij − r̄j)2
∑n

i=1 (r ik − r̄k)2

τ̂jk =
2

n(n − 1)

∑
1≤i<i ′≤n

sgn
(

(x ij − x i
′

j )(x ik − x i
′

k )
)

I If X ∼ NPNp(f ,Σ), then Σjk = 2 sin(ρjkπ/6) = sin(τjkπ/2)

I Therefore, we can estimate Σ−1 by plugging in rank-based
correlations into graphical lasso (R-package huge)
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A Real Data Example

• Protein cytometry data for cell signaling data (Sachs et al,
2005)

• Transform the data using Gaussian copula (Liu et al, 2009),
giving marginal normality

• Pairwise relationships seem non-linear

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●●

●

● ●●

●●
●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●●

●

● ●

●●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●
●

● ●

●

●

●

●

●
●

●

●

● ●●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

PJNK

P3
8

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

● ●

●

●●●

●●
●

●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●
●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

● ●

●

●●

●

● ●

●●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
● ●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3
−1

0
1

2
3

PKC

P3
8

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●
● ●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
● ●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●●

●

● ●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●●
●●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

PKC

PJ
NK

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●● ●

●

●

●
●

●

● ●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●
● ●

●
●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●
● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●

●

●

●

●
●

●

●

●
● ●

●●

●

●

●

●
●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−2
−1

0
1

2
3

PKC

Pa
rti

al
 re

s.

(a)	   (d)	  (b)	   (c)	  
• Shapiro-Wilk test rejects multivariate normality:

p < 2× 10−16
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A Real Data Example

• Protein cytometry data for cell signaling data (Sachs et al,
2005)

• Transform the data using Gaussian copula (Liu et al, 2009),
giving marginal normality

• Pairwise relationships seem non-linear
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• Shapiro-Wilk test rejects multivariate normality:
p < 2× 10−16
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Graphical Models for Discrete Random Variables

I In many cases, biological data are not Gaussian: SNPs,
RNAseq, etc

I Need to estimate CIG for other distributions: binomial,
poisson, etc

I Unfortunately, for these distribution, the problem does not
have a closed-form!

I A special case, which is computationally more tractable, is the
class of pairwise MRFs
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Pairwise Markov Random Fields

I The idea of pairwise MRFs is to “assume” that only two-way
interactions among variables exist

I The pairwise MRF associated with the graph G over the
random vector X is the family of probability distributions P(X )
that can be written as

P(X ) ∝ exp
∑

(j,k)∈E
φjk(xj , xk)

I For each edge (j , k) ∈ E , φjk is called the edge potential
function

I For discrete random variables, any MRF can be transformed
to an MRF with pairwise interactions by introducing
additional variables (Wainwright & Jordan, 2008)
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Graphical Models for Binary Random Variables

I Suppose X1, . . . ,Xp are binary random variables,
corresponding ot e.g. SNPs, or DNA methylation

I A special case of discrete graphical models is the Ising model
for binary random variables

Pθ(x) =
1

Z (θ)
exp
{ ∑

(j ,k)∈E

θjkxjxk

}

I A pairwise MRF for binary data, with φjk(xj , xk) = θjkxjxk
I x i ∈ {−1,+1}p
I The partition function Z (θ) ensures that distribution sums to 1
I (j , k) ∈ E iff θjk 6= 0!

c©Ali Shojaie SISG: Pathway & Networks 59



Graphical Models for Binary Random Variables

I Suppose X1, . . . ,Xp are binary random variables,
corresponding ot e.g. SNPs, or DNA methylation

I A special case of discrete graphical models is the Ising model
for binary random variables

Pθ(x) =
1

Z (θ)
exp
{ ∑

(j ,k)∈E

θjkxjxk

}

I A pairwise MRF for binary data, with φjk(xj , xk) = θjkxjxk
I x i ∈ {−1,+1}p
I The partition function Z (θ) ensures that distribution sums to 1
I (j , k) ∈ E iff θjk 6= 0!

c©Ali Shojaie SISG: Pathway & Networks 59



Graphical Models for Binary Random Variables

I Suppose X1, . . . ,Xp are binary random variables,
corresponding ot e.g. SNPs, or DNA methylation

I A special case of discrete graphical models is the Ising model
for binary random variables

Pθ(x) =
1

Z (θ)
exp
{ ∑

(j ,k)∈E

θjkxjxk

}

I A pairwise MRF for binary data, with φjk(xj , xk) = θjkxjxk
I x i ∈ {−1,+1}p
I The partition function Z (θ) ensures that distribution sums to 1
I (j , k) ∈ E iff θjk 6= 0!

c©Ali Shojaie SISG: Pathway & Networks 59



Graphical Models for Binary Random Variables

I Suppose X1, . . . ,Xp are binary random variables,
corresponding ot e.g. SNPs, or DNA methylation

I A special case of discrete graphical models is the Ising model
for binary random variables

Pθ(x) =
1

Z (θ)
exp
{ ∑

(j ,k)∈E

θjkxjxk

}

I A pairwise MRF for binary data, with φjk(xj , xk) = θjkxjxk
I x i ∈ {−1,+1}p
I The partition function Z (θ) ensures that distribution sums to 1
I (j , k) ∈ E iff θjk 6= 0!

c©Ali Shojaie SISG: Pathway & Networks 59



Graphical Models for Binary Random Variables

I We can consider a neighborhood selection4 approach with an
`1 penalty to find the neighborhood of each node
N(j) = {k ∈ V : (j , k) ∈ E}

I For j = 1, . . . , p, need to solve (after some algebra)

minθ

n−1
n∑

i=1

f (θ; x i )−
∑
k∈−j

θjkx
i
j x

i
k + λ‖θ‖1


I f (θ; x) = log

{
exp

(∑
k∈−j θjkxk

)
+ exp

(
−∑k∈−j θjkxk

)}
I This is equivalent to solving p penalized logistic regression

problems, which is pretty straightforward (R-package glmnet)

4Ravikumar et al (2010)
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Other Non-Gaussian Distributions

I Similar to the Ising model, graphical models can be learned
for other members of the exponential family

I Poisson graphical models (for e.g. RNAseq), Multinomial
graphical models, etc

I All of these can be learned using a neighborhood selection
approach, using the glmnet package5

I We can even learn networks with multiple types of nodes (gene
expression, SNPs, and CNVs)6

5Yang et al (2012)
6Yang et al (2014), Chen et al (2015)
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More Flexible Graphical Models

I As an alternative to parametric graphical models (Gaussian,
Ising, Poisson, etc), we can estimate graphical models assume
non-parametrically, i.e. without making specific assumptions
about the form of the distributions

I A commonly used approach is to assume that interactions are
captured by conditional means, and estimate those means
non-parametrically. Two examples are

I SpaCE JAM: models the conditional means using sparse
additive models using a group lasso penalty (R-package
spacejam)

I GraFo: uses instead random forests to model the conditional
means
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Summary

I Estimation of graphical models is an important but
challenging problem.

I The appropriate method depends on the design of experiment,
available data and sample size.

I Choosing the tuning parameter is also difficult.

I It is often difficult to validate the estimates; however, in case
of biological networks, we can compare our findings with
known interactions from literature.
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