
Pathway & Network Analysis of Omics Data:
Directed Graphical Models (Bayesian Networks)

Ali Shojaie
Department of Biostatistics

University of Washington
faculty.washington.edu/ashojaie

Summer Institute for Statistical Genetics – Australia, 2017

c©Ali Shojaie SISG: Pathway & Networks 1



Bayesian Networks

I Bayesian networks are a special class of graphical models
defined on directed acyclic graphs.

I Directed acyclic graphs (DAGs) are defined as graphs that:

i) only have directed edges, i.e. if Aij 6= 0, Aji = 0;
ii) there are no cycles in the network.

I Bayesian networks are widely used to model causal
relationships between variables.

I Note that correlation 6= causation!

I Therefore, we (usually) cannot estimate Bayesian networks
from (partial) correlations
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Why Bayesian Networks?

Many biological networks include directed edges:

I In gene regulatory networks, protein products of transcription
factors can alter the expression of target genes, but the target
genes (usually) don’t have a direct effect on the expression of
transcription factors
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Why Bayesian Networks?

Many biological networks include directed edges:

I In cell signaling networks, the signal from the cell’s
environment is transducted into the cell, and results in
(global) changes in gene expression, but gene expression may
not affect the environmental factors

c©Ali Shojaie SISG: Pathway & Networks 4



Why Bayesian Networks?

Many biological networks include directed edges:

I Biochemical reactions in metabolic networks, may not
reversible, and in that case, one metabolite may affect the
other, but the relationship is ont reciprocated
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Why Bayesian Networks?

However, biological networks may not be DAGs:

I Gene regulatory networks, signaling networks and metabolic
networks, may all contain feedback loops (positive/negative)

which make estimation even more difficult!
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What’s the Difference?

I Bayesian networks are widely used to model causal
relationships between variables.

I Undirected networks (e.g. GGM) provide information about
associations among variables; while this greatly helps in the
study of biological systems, in some cases, they are not
enough (e.g. drug development).

I The main difference is, of course, the edge directions; however,
it turns out that there are also some differences in terms of
structure/skeleton of the network (more on this later).

I We can estimate undirected networks from observational data,
i.e. steady-state gene expression data, but usually they are not
enough for estimation of directed networks.

I Finally, estimating directed networks is more difficult.
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Why is estimation more difficult?

I Estimation of Bayesian networks requires estimating both the
skeleton of the network (i.e. whether there is an edge between
i and j) and also the direction of the edges.

I While estimation of skeleton is possible, direction of edges
cannot be in general learned from observational data, no
matter how many samples we have (this is referred to as
observational equivalence). Consider this simple graph:

X1 X2

I Then, no matter what n is, we cannot distinguish between
X1 → X2 and X2 → X1, so basically what we see is:

X1 X2
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Outline

I Basics of Bayesian networks, including
I directed acyclic graphs (DAGs)
I conditional independence in DAGs, d-separation, etc
I probability distributions over DAGs
I structural equation models (SEM)

I Estimation of Bayesian networks from observational data
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Directed Graphs: Some Terminology

I nodes in directed networks represent random variables; we
denote the set of nodes by V

I edges are directed, and represent causal relationships among
variables; we denote the set of edges by E

I The parents of node j are {k : k → j}, we denote this by paj
or pa(j)

I The children of node j are {k : j → k}
I Two vertices connected by an edge are called adjacent
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Directed Graphs: Some Terminology

1 2

3

4

5 6

I pa(1) = ∅, pa(2) = 1, pa(3) = pa(4) = {2}, pa(5) = {3, 4}
I What are children of {1, . . . 5}?
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Directed Graphs: Some Terminology

I A path between two nodes i and j is a sequence of distinct
adjacent nodes:

I e.g. i ← k1 → k2 → k3 ← j
I In a DAG with p nodes, there cannot be a path longer than

p − 1 (why?)
I There can be multiple paths between two nodes

I i is an ancestor of j if there is a directed path of length ≥ 1
from i to j : i → · · · → j (or if i = j)

I If i is an ancestor of j , then j is said to be a descendant of i
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Directed Graphs: Some Terminology

An important concept in DAGs is that of colliders (aka “inverted
forks”):

I k is a collider on a path between i and j if it is a not an
end-point of the path, and the path is of the form

i . . .→ k ← . . . j

I k is an non-collider if it is not an end-point, and is not a
collider on a path:

I i . . .← k ← . . . j
I i . . .→ k → . . . j
I i . . .← k → . . . j

I Note: colliders and non-colliders are defined w.r.t. paths; a
collider in one path can be a non-collider in another!
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Factorization of Probability Distributions over DAGs

I First, note that for any set of random variables, not
necessarily on a DAG, we can write:

P(X1,X2,X3) = P(X1 | X2,X3)P(X2|X3)P(X3)

= P(X3 | X1,X2)P(X2|X1)P(X1)

= · · ·

I Now, consider this simple DAG

I Then, the probability distribution can be factorized as

P(X1,X2,X3) = P(X3 | X2)P(X2|X1)P(X1)
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Factorization of Probability Distributions over DAGs

I In general, for random variables on a DAG G = (V ,E ), and a
compatible probability distribution P (ie Markov relative to G )

P(V ) =
∏
j∈V

P(Xj | paj)

I Compare this with the general probability decomposition

P(V ) =
∏
j∈V

P(Xj | X1, . . . ,Xj−1)

I This means that for DAGs we have

P(Xj | X1, . . . ,Xj−1) = P(Xj | paj)

I In other words, the probability distribution of each variable
depends only on its parents

c©Ali Shojaie SISG: Pathway & Networks 17



Factorization of Probability Distributions over DAGs

I In general, for random variables on a DAG G = (V ,E ), and a
compatible probability distribution P (ie Markov relative to G )

P(V ) =
∏
j∈V

P(Xj | paj)

I Compare this with the general probability decomposition

P(V ) =
∏
j∈V

P(Xj | X1, . . . ,Xj−1)

I This means that for DAGs we have

P(Xj | X1, . . . ,Xj−1) = P(Xj | paj)

I In other words, the probability distribution of each variable
depends only on its parents

c©Ali Shojaie SISG: Pathway & Networks 17



Factorization of Probability Distributions over DAGs

I In general, for random variables on a DAG G = (V ,E ), and a
compatible probability distribution P (ie Markov relative to G )

P(V ) =
∏
j∈V

P(Xj | paj)

I Compare this with the general probability decomposition

P(V ) =
∏
j∈V

P(Xj | X1, . . . ,Xj−1)

I This means that for DAGs we have

P(Xj | X1, . . . ,Xj−1) = P(Xj | paj)

I In other words, the probability distribution of each variable
depends only on its parents

c©Ali Shojaie SISG: Pathway & Networks 17



Factorization of Probability Distributions over DAGs

I In general, for random variables on a DAG G = (V ,E ), and a
compatible probability distribution P (ie Markov relative to G )

P(V ) =
∏
j∈V

P(Xj | paj)

I Compare this with the general probability decomposition

P(V ) =
∏
j∈V

P(Xj | X1, . . . ,Xj−1)

I This means that for DAGs we have

P(Xj | X1, . . . ,Xj−1) = P(Xj | paj)

I In other words, the probability distribution of each variable
depends only on its parents

c©Ali Shojaie SISG: Pathway & Networks 17



Independence (unconditional)

I Two random variables are independent, X⊥⊥Y if knowledge of
X provides no information about Y .

I The following are equivalent characterizations of
independence, X⊥⊥Y :

I P(X = x ,Y = y) = P(X = x)P(Y = y)
I P(X = x |Y = y) = P(X = x) (is symmetric)

I These can be generalized for vectors.

I If X and Y are jointly Gaussian X⊥⊥Y iff Corr(X ,Y ) = 0.

I If X and Y are binary, X⊥⊥Y iff logOR(X ,Y ) = 0.
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I If X and Y are binary, X⊥⊥Y iff logOR(X ,Y ) = 0.
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Conditional Independence

I Two variables X and Y are conditionally independent given a
third variable Z (written X⊥⊥Y |Z ) if given Z the knowledge
of X provides no information about Y .

I Conditional independence X⊥⊥Y | Z means:

i) P(X = x ,Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z)
ii) P(X = x |Y = y ,Z = z) = P(X = x |Z = z) (is symmetric)

I We also have,

P(X = x ,Y = y ,Z = z) =
P(X = x ,Z = z)P(Y = y ,Z = z)

P(Z = z)
.

I These can also be generalized for vectors.
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Conditional Independence

I If X & Y are jointly Gaussian, X⊥⊥Y |Z iff Corr(X ,Y |Z ) = 0.
I This is the coefficient in linear regression of (say) Y on X ,Z .

I If X & Y are binary, X⊥⊥Y |Z iff logOR(X ,Y |Z ) = 0
I This is the coefficient in logistic regression of (say) Y on X ,Z .
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The Toy Example, Revisited

I Recall that P(X1,X2,X3) = P(X3|X2)P(X2|X1)P(X1)

I This implies that X3⊥⊥X1|X2 (by (i))

I However, this is not always the case on DAGs!

I How to read conditional independences from the DAG?

I We can do this using a concept called d-separation?
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An example from genetics

Consider an example from population genetics:

M F

S D

I Genetic information for Mother, Father, Daughter and Son in
form of dominant/recessive genotype (A/a) for a single gene

I Then each individual can have one of three states: AA, aa, Aa
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An example from genetics

Consider an example from population genetics:

M F

S D

I Now, it is natural to assume that given the parents’ genetic
information, the genotypes of Son and Daughter are
independent ⇒ S⊥⊥D | {M,F}
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An example from genetics

Consider an example from population genetics:

M F

S D

I Also, one can assume independence among genotypes of M
and F ⇒ M⊥⊥F

I However, if we know that e.g. Son has Aa, and Mother has
aa, then Father should have Aa or AA ⇒ M⊥�⊥F |S
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d-separation

A path π is said to be d-separated (or blocked) by a set of nodes
Z , iff

1. π includes a chain i → m→ j or a fork i ← m→ j such that
the middle note is in Z , or

2. π contains a collider (or inverted fork) i → m← j such that
neither the middle node m nor its descendants are NOT in Z .

How is this used?

I If i and j are d-separated given Z , then Xi⊥⊥Xj |Z for any
probability distribution P factorizing according to G

I If i and j are d-separated given ∅, then Xi⊥⊥Xj for any
probability distribution P factorizing according to G
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Genetics example, revisited

Consider an example from population genetics:

M F

S D

I {M,F} block all paths from S to D ⇒ D⊥⊥S | {M,F}
I Is M⊥⊥F?

I Is M⊥⊥F | {S ,D}, | S , | D?
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Moral Graphs

I Reading conditional independence relations from DAGs can be
difficult

I An alternative approach is to use a modified version of the
network, called the moral graph of DAG

I To get the moral graph G̃ of G
I join (“marry”) common parents of each node
I remove all the directions

I Then, Xi⊥⊥Xj |Z iff Z separates i and j in G̃
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Genetics example, revisited (again)

M F

S D

The moral graph allows us to answer the following questions:

I Is S⊥⊥D | {M,F}
I Is M⊥⊥F | {S ,D}, | S , | D?

But it does not answer questions like:

I Is M⊥⊥F?

I Is M⊥⊥F | S or | D?
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A More Complex Example

What nodes are conditionally independent given all other nodes?

1 2

3

4

5 6
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Structural Equation Models

I A popular way to represent causal relationships on DAGs is via
structural equation models

Xj = fj(paj , γj), j = 1, . . . , p

I fj can be in general any function relating j to its parents
I γj ’s represent the independent component of jth variable (i.e.

the part that doesn’t depend on paj

I For Gaussian random variables, fi is linear

Xj =
∑
j ′∈paj

ρjj ′Xj ′ + γj , j = 1, . . . , p

I here, ρjj′ denotes the magnitude of effect of j ′ on j , or their
partial correlation
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A Toy Example

Assuming normality we can write:

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

For non-Gaussian variables, equations involve non-linear functions.
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Estimation of DAGs in Biological Settings

I Estimation of DAGs is (in general) computationally very hard
(in fact, it’s NP-hard): there are ∼ 2p

2
DAGs with p nodes!

I Three different types of biological data can be used for
estimation of directed graphs:

i) observational data: steady-state data, or data comparing
normal & cancer cells

ii) time-course data: time-course gene expression data
iii) perturbation data: data from knockouts experiments

I We will only cover (i), but note that (ii) and (iii) provide more
informative data.
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Estimation of DAGs from Observational Data

Broadly, two (three?) groups of algorithms for estimation of DAGs:

I constraint-based methods
I often based on tests for CI & provide theoretical guarantees
I Ex: PC algorithm, Grow-Shrink

I score & search methods
I assign a “score” to each estimated graph (e.g. based on

likelihood, Bayes factor, AIC etc)
I do a (greedy) search to find the best scoring graph
I Ex: Hill Climbing, Tabu Search, etc

I “hybrid” methods
I Usually first find the Markov blanket (e.g. the moral graph)
I Then perform a search in a restricted space
I Max-Min Hill Climbing algorithm
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Constraint-Based Methods

Idea: for each node pair j , j ′, is there a set S s.t. Xj⊥⊥Xj ′ | S?

I S can have 0 to p − 2 members!

I For each pair of variables (all p(p− 1)/2 of them), we need to
look at all possible subsets of remaining variables!!

I usually stop at some k � p
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Constraint-Based Methods

Idea: for each node pair j , j ′, is there a set S s.t. Xj⊥⊥Xj ′ | S?

Need a conditional independence test (to test if X⊥⊥Y | S)

I For Gaussian data, we can use partial correlation

I For Binary data, we can use logOR

I In general, we can use conditional mutual information

Some notes:

I Conditional independence is symmetric ⇒ undirected graph!!

I These methods find the structure/skeleton of the DAG (we’ll
talk about direction later)
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PC Algorithm (Spirtes et al, 1993)

I One of the first algorithms for learning structure of DAGs
I Efficient implementations that allow for learning DAG

structures with p up to ∼ 1000
I R-package pcalg (Kalisch & Buhlmann, 2007)

I Algorithm starts with a complete graph (i.e. fully connected)

I Then for each pair of nodes j , j ′ it looks for a separating set,
S such that Xj⊥⊥Xj ′ | S

I If a set is found, then remove the edge, otherwise, j—j ′
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PC Algorithm (Spirtes et al, 1993)

Start with a complete undirected graph, and set i = 0
Repeat

I For each j ∈ V

I For each j ′ ∈ ne(j)
I Determine if ∃S ⊂ ne(j)\{j ′} with |S | = i

I Test for CI: is Xj⊥⊥Xj′ | S?
I If such an S exists, then set Sjj′ = S , remove j − j ′ edge

I i = i + 1

Until |ne(j)| < i for all j
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Example

1

2

3

4

5

i = 0 S1,2 = ∅
S1,4 = ∅

i = 1 S3,4 = {2}
i = 2 S1,5 = {3, 4}

S2,5 = {3, 4}
i = 3 STOP (|nej | < 3 ∀ j)
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Analysis of Protein Flow Cytometry using pcalg

> dat <- read.table(’sachs.data’)

> p <- ncol(dat)

> n <- nrow(dat)

## define independence test (partial correlations)

> indepTest <- gaussCItest

## define sufficient statistics

> suffStat <- list(C=cor(dat), n=n)

## estimate CPDAG

> pc.fit <- pc(suffStat, indepTest, p, alpha=0.1, verbose=FALSE)

> plot(pc.fit, main=’PC Algorithm’)

I Need to determine the type of CI test (indepTest), and
sufficient statistics (suffStat)

I Also need to choose α (alpha), the probability of false
positive for selecting edges.

I More edges for larger α (not adjusted for multiple comparisons)
I The algorithm works faster when α is small
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Analysis of Protein Flow Cytometry using pcalg

PC Algorithm

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

Q: Where did the directions come from? And why are only some of
the edges directed?

c©Ali Shojaie SISG: Pathway & Networks 40



Markov Equivalence

Consider the following 4 graphs

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

● ● ●1 2 3

Which graphs satisfy X1⊥⊥X3 | X2?
Two graphs that imply the same CI relationships via d-separation
are called Markov equivalent
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Representation of Markov Equivalence

I Markov equivalent graphs correspond to the same probability
distribution and cannot be distinguished from each other
based on observational data!

I Therefore, the direction of edges that correspond to Markov
equivalent graphs cannot be determined

I These edges are shown as undirected in the graph

I The resulting graph is a CPDAG (completed partially directed
acyclic graph), and is the best we can do!
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CPDAGs
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Finding Partial Directions in DAGs

I Partial directions in DAGs can be learned from unmarried
colliders:

I For each unmarried collider i—k—j
I If k /∈ Sij , orient i—k—j as i → k ← j

I In addition to the above rule
I Orient remaining unmarried triplets i → k—j as i → k → j
I If i → k → j and i—j then orient as i → j
I If i—m—j and i → k ← j are unmarried colliders and m—k,

then orient as m→ k
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Example

1

2

3

4

5

1

2

3

4

5

i = 0 S1,2 = ∅
S1,4 = ∅

i = 1 S3,4 = {2}
i = 2 S1,5 = {3, 4}

S2,5 = {3, 4}
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The bnlearn package

I There are a number of R-packages for learning the structure
of DAGs, including pclag, bnlearn, deal

I bnlearn implements a number of estimation methods:
I constraint-based:

I Grow-Shrink (GS);
I Incremental Association Markov Blanket (IAMB);
I Fast Incremental Association (Fast-IAMB);
I Interleaved Incremental Association (Inter-IAMB);

I score-and-search:
I Hill Climbing (HC);
I Tabu Search (Tabu);

I hybrid algorithms:
I Max-Min Hill Climbing (MMHC);
I General 2-Phase Restricted Maximization (RSMAX2);
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Analysis of Protein Flow Cytometry using bnlearn

> dag1 <- gs(dat, alpha=0.01) #GS method

> dag2 <- hc(dat2) #Hill-Climbing search

>

> par(mfrow= c(1,2))

> plot(dag1)

> plot(dag2)

>

> compare(dag1, dag2) #compare the two DAGs

I For GS need to choose α (alpha), the false positive
probability for selecting edges

I gs (and other structure-based methods) find a PCDAG
I hc gives a directed graph (with highest score)

I Multiple criteria implemented for choosing the “best” graph
I To “search” the space either a new edge is added, or a current

edge is removed, or reversed (if no cycles)

c©Ali Shojaie SISG: Pathway & Networks 48



Analysis of Protein Flow Cytometry using bnlearn

> dag1

Bayesian network learned via Constraint-based methods

model:

[partially directed graph]

nodes: 11

arcs: 26

undirected arcs: 3

directed arcs: 23

average markov blanket size: 6.00

average neighbourhood size: 4.73

average branching factor: 2.09

learning algorithm: Grow-Shrink

conditional independence test: Pearson’s Linear Correlation

alpha threshold: 0.01

tests used in the learning procedure: 2029

optimized: TRUE
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Analysis of Protein Flow Cytometry using bnlearn

> dag2

Bayesian network learned via Score-based methods

model:

[PKC][pjnk|PKC][P44|pjnk][pakts|P44:PKC:pjnk][praf|P44:pakts:PKC][PIP3|pakts]

[plcg|praf:PIP3:P44:pakts:pjnk][pmek|praf:plcg:PIP3:P44:pakts:pjnk]

[PIP2|plcg:PIP3:PKC][PKA|praf:pmek:plcg:P44:pakts:pjnk]

[P38|pmek:plcg:pakts:PKA:PKC:pjnk]

nodes: 11

arcs: 35

undirected arcs: 0

directed arcs: 35

average markov blanket size: 8.00

average neighbourhood size: 6.36

average branching factor: 3.18

learning algorithm: Hill-Climbing

score:

Bayesian Information Criterion (Gaussian)

penalization coefficient: 4.459057

tests used in the learning procedure: 505

optimized: TRUE
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Analysis of Protein Flow Cytometry using bnlearn

Grow−Shrink

praf

pmek

plcg

PIP2

PIP3 P44

pakts

PKA

PKC

P38

pjnk

Hill Climbing

praf

pmek

plcg

PIP2

PIP3 P44

pakts

PKA

PKC

P38

pjnk

The two graphs are quite different

> compare(dag1,dag3)

$tp

[1] 9

$fp

[1] 26

$fn

[1] 17
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Comparison of Results for Protein Flow Cytometry Data

PC Algorithm

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

Grow−Shrink

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

Hill Climbing

praf

pmek

plcg
PIP2

PIP3

P44

pakts

PKA

PKC
P38

pjnk

I The estimated graphs are quite different!

I Constrained-based methods seem to have more similarities (at
least in terms of structure)

I The estimate from HC has more edges; we can change the
criterion, but cannot directly control the sparsity
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Penalized Likelihood Estimation of DAGs

I Recall that causal relationships (and probability distributions)
in DAGs can be represented with structural equation models

Xi = fi (pai , γi ), i = 1, · · · , p

I And, for Gaussian random variables,

Xi =
∑
j∈pai

ρjiXj + γi , i = 1, · · · , p
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Penalized Likelihood Estimation of DAGs

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

Thus, X = Λγ where

Λ =

 1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1


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Penalized Likelihood Estimation of DAGs

I It turns out that Λ = (I − A)−1, where A is the weighted
adjacency matrix of the DAG1

I Thus, for Gaussian random variables, if we know the ordering
of the variables (which is a BIG assumption!)

after some math...

we can estimate the adjacency matrix of DAGs, by minimizing
the log-likelihood as a function of A:

Â = arg min
A∈A

{
tr
[
(I − A)T(I − A)S

]}

1Shojaie & Michailidis (2010)
c©Ali Shojaie SISG: Pathway & Networks 55



Penalized Likelihood Estimation of DAGs

I In high dimensions, we can solve a penalized version of this
problem, e.g. by adding a lasso penalty λ

∑
i<j |Aij |

I Also, can solve the problem as (p − 1) lasso regression, where
each variable is regressed on prior variables in the ordering:

Âk,1:k−1 = arg min
θ∈Rk−1

{
n−1‖X1:k−1θ − X,k‖22 + λ

k−1∑
j=1

|θj |wj

}

I As in glasso, λ is a tuning parameter that controls the
amount of sparsity; λ = 2√

n
Zα/(2p2) controls a false positive

probability at level α
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Computational Complexity

I Compared to pcalg, this method runs much faster: ∼ np2

operations vs ∼ pq (q is the max degree)

I Can be easily implemented in R as p − 1 regressions using
glmnet. A more general version is available in the spacejam

package, which also includes estimation for non-Gaussian data

● ●
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C
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m
e

● pcalg
lasso
Alasso
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00
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Simulation Studies

I Settings:
p = 50, 100, 200
n = 100

I Performance Criteria

1. Matthew’s Correlation Coefficient (MCC): ranges between −1
(worst fit) and 1 (best fit)

2. Structural Hamming Distance (SHD): sum of false positive
and false negatives

3. True positive and false positive rates

I Tuning parameter for both PC-Algorithm and penalized
likelihood method based on false positive error α
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Gaussian Observations
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What if we don’t know the causal ordering?

pcalg
lasso
Alasso,γγ == 1
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Regulatory Network of E-Coli

I Regulatory network of E-coli with p = 49 genes (7 TFs)

I Want to identify regulatory interactions among TFs and
regulated genes
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Summary

I Estimation of DAGs from observational data is both
conceptually and computationally difficult

I Constraint-based and search-based algorithms become slow in
high dimensions

I Also, may not be able to distinguish DAGs from observational
data (Markov equivalence)

I Efficient penalized likelihood methods can estimate DAGs if
the ordering is known

I Efficient implementations in R available for most methods

I Different methods need different tuning parameters...
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