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Yeast GAL Pathway
Ideker et al, 2001
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Issues of Interest

I Incorporate the network information

I Consider changes in the gene (protein, metabolite) expressions

I Consider changes in the network structure

I Test the “effect” of pre-specified subnetwork/pathway, sharing
common biological function, chromosomal location etc

I A general framework for inference in complex experiments
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Recap: Gene Set Enrichment Analysis

Subramanian et al. (2005) proposed gene set enrichment analysis
(GSEA); Efron & Tibshirani (2007) formalized the GSEA
approach, and proposed a more efficient test statistic

I Test the significance of a priori defined gene sets

I Preserve the correlation among genes in the gene set

I Based on a competitive null hypothesis, where activity of each
pathway is compared with other pathways, often using a
permutation test

I Competitive tests of enrichment assume that a small number
of genes have differential activity, and are very sensitive to the
choice of gene sets, they also problem with

I Self-contained tests address these issues, but may be less
efficient or sensitive to model assumptions (Goemen &
Buhlmann (2007), Ackermann & Strimmer (2009))
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Signaling Pathway Impact Analysis (SPIA)

I Combines classical overrepresentation analysis (ORA) with
measure of perturbation of a given pathway

I A permutation procedure is used to assess the significance of
the observed pathway perturbation (difficult to extend to
comparison of > 2 conditions)

I Currently not applicable to all pathways (more later)

I Models each pathway separately (i.e., ignores connections
between pathways)

I Implemented in the Bioconductor package SPIA
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The SPIA Methodology

SPIA combines two types of evidence

(i) the over-representation of DE genes in a given pathway

I measured by the p-value for the given number of DE genes

PNDE = P(X ≥ NDE | H0)
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The SPIA Methodology

SPIA combines two types of evidence

(ii) the abnormal perturbation of the pathway

I the perturbation for each gene in the pathway is defined as

PF (gi ) = ∆E (gi ) +

p∑
j=1

βij
PF (gj)

NDS(gj)

I PF (gi ) is the perturbation factor of gene i (not known)
I βij measures the effect of gene j on i ; currently, βij = 1 if j → i
I ∆E (gi ) is the fold change in expression of gene i
I NDS(gj) is the number of genes downstream of gene j
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The SPIA Methodology

I The accumulated activity of each gene is defined as

ACC (gi ) = B · (I − B)−1∆E

I B is the normalized matrix of β’s: Bij = βij/NDS(gj)
I ∆E is the vector of fold changes
I Requires B to be invertible — would not work otherwise

I The total accumulated pathway perturbation is given by

tA =
∑
i

ACC (gi )

I The p-value for pathway perturbation is given by

PPERT = P(TA ≥ tA | H0),

which is calculated by permutation
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The SPIA Methodology
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The SPIA Methodology

SPIA combines two types of evidence
I The final p-value for each pathway is calculated based on the

p-values from parts (i) and (ii):
I PG (k) = ck − ck ln(ck)
I ck = PNDE (k)PPERT (k)
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An Example in R: Data on Colorectal Cancer

data(colorectalcancer)

#pathway analysis using SPIA

#use nB=2000 or higher for more accurate results

#uses older version of KEGG signaling pathways graphs

res <- spia(de=DE_Colorectal, all=ALL_Colorectal, organism="hsa", beta=NULL,

nB=2000, plots=FALSE, verbose=TRUE, combine="fisher")

#now combine pNDE and pPERT using the normal inversion method without

#running spia function again

res$pG=combfunc(res$pNDE,res$pPERT,combine="norminv")

res$pGFdr=p.adjust(res$pG,"fdr")

res$pGFWER=p.adjust(res$pG,"bonferroni")

plotP(res,threshold=0.05)

#highlight the colorectal cancer pathway in green

points(I(-log(pPERT))~I(-log(pNDE)),data=res[res$ID=="05210",],col="green",

pch=19,cex=1.5)
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The SPIA Methodology
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Network-Based Gene Set Analysis (NetGSA)

I Combines the ideas of gene set analysis methods, and
network-based single gene analysis

I Generalizes SPIA, to allow for more complex experiments &
incorporate interactions among pathways

I Assesses the overall behavior of arbitrary subnetworks
(pathways): changes in gene expression & network structure

I Uses latent variables to model the interaction between genes
defined by the network

I Uses mixed linear models for inference in complex data

I Computationally challenging for large networks (OK up to
3-4K nodes)
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Problem Setup

I Gene (protein/metabolite) expression data for K experimental
conditions and Jk time points

I Network information (partially) available in the form of a
directed weighted graph G = (V ,E ), with vertex set V
corresponding to the genes/proteins/metabolites and edge set
E capturing their associations

I Networks with directed j → k and/or undirected j ↔ k edges

I Edges capture effects of nodes on their neighbors; the weight
associated with each edge corresponds to partial correlations

I Represent the network by its adjacency matrix A: Ajk 6= 0 iff
k → j and for undirected edges, Ajk = Akj

I Pathways defined a priori based on common biological
functions, etc
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The Latent Variable Model: Main Idea

X1 = γ1

X2 = ρ12X1 + γ2 = ρ12γ1 + γ2

X3 = ρ23X2 + γ3 = ρ23ρ12γ1 + ρ23γ2 + γ3

Thus X = Λγ where

Λ =

 1 0 0
ρ12 1 0

ρ12ρ23 ρ23 1



c©Ali Shojaie SISG: Pathway & Networks 15



The Latent Variable Model

I Let Y be the ith sample in the expression data

I Let Y = X + ε, with X the signal and ε ∼ N(0, σ2
ε) the noise

I The influence matrix Λ measures the propagated effect of
genes on each other through the network, and can be
calculated based on the adjacency matrix A

I Using X = Λγ, we get

Y = Λγ + ε, ⇒ Y ∼ Np(Λµ, σ2
γΛΛ′ + σ2

ε Ip)

where γ ∼ Np(µ, σ2
γ Ip) are latent variables
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Mixed Linear Model Representation

Rearranging the expression matrix into np-vector Y, we can write

Y = Ψβ + Πγ + ε

where β and γ are fixed and random effect parameters and

ε ∼ Nnp(0,R(θε)), γ ∼ Nnp(0, σ2
γInp)

• Can accommodate e.g. temporal Correlation through R

In general, the design matrices, Ψ and Π depend on the
experimental settings (similar to ANOVA), and are functions of Λ
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Inference using MLM

I For any contrast vector ` (a linear combination of fixed
effects), can test:

H0 : `β = 0 vs. H1 : `β 6= 0

using the test statistic

T =
`β̂√
`Ĉ`′

with C = (Ψ′W−1Ψ)
−1

I Under the null, T has approximately t-distribution with
degrees of freedom that needs to be estimated.

I ` should de-couple the effects in each pathway from others
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Comparison in Simulated Data

Subnetwork Mean Network Influence
1 µ1 = µ2 = 1 ρ1 = ρ2 = 0.2
2 µ1 = 1, µ2 = 2 ρ1 = ρ2 = 0.2
3 µ1 = µ2 = 1 ρ1 = 0.2, ρ2 = 0.7
4 µ1 = 1, µ2 = 2 ρ1 = 0.2, ρ2 = 0.7
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Yeast Galactose Utilization Pathway

Ideker et al (2001) data on yeast Galactose Utilization Pathway

I Gene expression data for 2 experimental conditions: (gal+)
and (gal–)

I Gene-gene and protein-gene interactions as well as association
weights found from previous studies

I Q: which pathways respond to the change in growth medium?
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Analysis of Yeast GAL Data

I Data:
I gene expression data for 343 genes
I 419 interactions found from previous studies and integration

with protein expression (association among genes also
available)

I Results:
I GSEA finds Galactose Utilization Pathway significant
I NetGSA finds several other pathways with biologically

meaningful functions related to survival of yeast cells in gal–
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Environmental Stress Response in Yeast

Gene expression data on Yeast Environmental Stress Response
(ESR) (Gasch et al., 2000)

I 3 combinations of experimental factor, heat shock and
osmotic changes (sorbitol), over 3 time points

I Temporal correlation

I Network correlation
I Q: Which pathways indicate response to environmental stress

I in different experimental conditions
I over time
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Yeast ESR Data
Gasch et al (2000)

I Gene Expression Data

Experiment Obs. Time (after 33C)
Mild heat shock (29C to 33C), no sorbitol 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C & 33C 5, 15, 30 min
Mild Heat Shock, 1M sorbitol at 29C 5, 15, 30 min

I Network Data
I Use YeastNet (Lee et al., 2007) for gene-gene interactions (102,000

interactions among 5,900 yeast genes)
I Use independent experiments of Gasch et al. to estimate weights
I Pathways are defined using GO functions
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Model and Results

I Model: Let j and k be indices for time and levels of sorbitol

EY11 = Λµ, EYjk = Λ(µ+ αj + δk) j , k = 2, 3

I Temporal correlation is modeled directly via R (as AR(1) process)

I Results:

I ∼ 3000 genes,
I 47 pathways showed significant changes of expression
I 24 pathways showed changes over time
I 29 pathways showed changes in response to different sorbitol levels
I 12 pathways showed both types of changes
I Significant pathways overlap with the gene functions recognized by

Gasch et al.
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Yeast ESR Network
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Significant subnetworks

a) Cell Cycle

b) Secretion

c) Signaling

d) Respiration
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Expression Profiles
Average Standardized Expression Levels of Pathways

I Induced and Suppressed Pathways

I Can observe the transient patterns of expressions as predicted by
Gasch et al.
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Effect of Noise In Network Information

I Let Ã be observed network information, and A be the truth.

I It can be shown that, if ‖Ã− A‖ is small then, NetGSA still
works (is asymptotically most powerful unbiased test)
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Metabolic Profiling in Bladder Cancer

Metabolic profiling of bladder cancer (BCa) (Putluri et al., 2012)

I 58 bladder cancer and adjacent benign samples

I Pathways information obtained from KEGG

I Varying number of identified metabolites per pathway (3-15)

I Q: Which pathways show differential activity in BCa?
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Metabolic Profiling in BCa

I 63 metabolites identified, mapped to 70 pathways

I 27 pathways with at least 3 members

Fatty acid biosynthesis
Biosynthesis of unsaturated fatty acids
Sulfur metabolism
Lysine degradation
Alkaloid biosynthesis II
Methionine metabolism
Valine, leucine and isoleucine biosynthesis
Pyrimidine metabolism
Valine, leucine and isoleucine degradation
Pantothenate and CoA biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis

−4 0
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Color Key
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Metabolic Profiling in BCa

I Small pathway sizes & significant overlap among pathways
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I Existing methods may not work well...
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Metabolic Interaction Network
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Significant Pathways

I GSEA does not identify any pathway as differential

I GSA identifies Fatty Acid Biosynthesis as differential

I NetGSA identifies another 7 pathways corresponding to Amino
Acid Metabolism in BCa, also observed by Putluri et al (2012)
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R package netgsa

I Basic usage:

NetGSA(A, x, y, B)

I A: list of m weighted adjacency matrices (p× p) for conditions
1, . . . ,m (e.g. normal vs cancer), to capture network changes

I B: a K × P 0-1 matrix of pathway membership: Bk,j = 1 if
gene/protein/metabolite j in pathway k

I Output: test statistics and p-values for each pathway

I NetGSA takes weighted As as input. However, the package
includes functions that allow you to enter a (partial) edge list
as input, and estimate As (only for undirected networks)
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Summary

I Network-based enrichment analysis methods (SPIA, NetGSA)
can be more powerful (if their assumptions are not violated!)

I Active area of research: a number of other methods have been
recently proposed

I Focus is shifting towards estimating changes in the structure
of networks: differential network biology1

1Ideker & Krogan (2012)
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