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LECTURE SCHEDULE
Thursday, 9 Feb 2017
8:30 10:00 am 1. Introduction to matrix algebra (Walsh)
Background reading: LW, Chapter 8
Additional reading: LW Appendix 3; WL Appendix 5

10:00 10:30 am  Break
10:30 12:00 2. The General Linear Model (Walsh)
Background reading: LW Chapter 8
Additional reading: LW Appendices 3, 4, WL Appendices 2, 3

12:00 1:30 pm Lunch
1:30 3:00 pm 3. Overview of the mixed model (Yang)
Additional reading: < LW Chapters 26, 27?>
3:00 3:30 pm Break
3:30 5:00 pm 4. Application: Association mapping (Yang)
Additional reading:

Friday, 10 Feb 2017
8:30 10:00 am 5. Application: BLUP and BLUP breeding values (Walsh)
Additional reading WL Chapter 19



10:00 10:30 am  Break

10:30 12:00 6. Application: Genomic Prediction (Yang)
Additional reading:

12:00 1:30 pm Lunch

1:30 3:00 pm 7. Application: Associative effects (Walsh)
Additional reading: WL Chapter 20

3:00 3:30 pm Break

3:30 5:00 pm 8. Random Regressions (Walsh)



Lecture 1:
Intro/refresher in
Matrix Algebra

Bruce Walsh lecture notes
Introduction to Quantitative Genetics
SISG, Brisbane
9 -10 Feb 2017

Topics

Definitions, dimensionality, addition,
subtraction

Matrix multiplication

Inverses, solving systems of equations
Quadratic products and covariances
The multivariate normal distribution
Eigenstructure

Basic matrix calculations in R

The Singular Value Decompositon (SVD)



Matrices: An array of elements

Vectors: A matrix with either one row or one column.

Usually written in bold lowercase, e.g. a, b, ¢

12
a=[13] b=(2 0 5 21)
47

Column vector Row vector

(3x1) (1x4)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

General Matrices

Usually written in bold uppercase, e.g. A, C, D

3 1 2 01
C=1(2 5 4 D=3 4
1 1 2 2 9
(3 x3)
Square matrix (3x2)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element B; -- the element in row i
and column |



Addition and Subtraction of Matrices

If two matrices have the same dimension (both are r x ¢,
then matrix addition and subtraction simply follows by
adding (or subtracting) on an element by element basis

Matrix addition: (A+B)ij =A;+B;

Matrix subtraction: (A-B), =A,-B;

Examples: s 0 { 2
A:(l 2) and B=(2 1)

4 2 _ 2 -2
C_AJFB_(3 3) and D_A—B_(_l 1)

Partitioned Matrices

It will often prove useful to divide (or partition) the
elements of a matrix into a matrix whose elements are
itself matrices.

31 2 _',}, 1 2 a b
C=12 5 4| = . —( )
112 2 5 4 4B

1 1 2

L 2 (5 4
a=(3)., b=(1 2), d (1) B (1 2)

One useful partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors



3 1 2 r
c_(> 5 1)- (o A column vector whose
1 1 2 13 elements are row vectors
r=(3 1 2)
ra=(2 5 4)
rp=(1 1 2)
3 1 2 A row vector whose
C= 2 5 4 = (CJ Co 'Ca )
L 1 92 elements are column
vectors

Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

a'b= ia,b::
i=1

Example:

and b=(4 5 7 9)

RV

a'b=1*4+2*5+ 3*7 + 4*9 = 60



Matrices are compact ways to write
systems of equations

S5r1+ 62y +4253 =6
Txy — 315 + by = —9

—r] — To + 623 = 12

The least-squares solution for the linear model

y=p+p0121+ " Pnzn
yields the following system of equations for the f;
o(y,21) = B10%(z1) + Bao(21,220) + -+ + Buo(21, 2n)
o(y,22)= Bo(z1,22) + B20%(23) + -+ Bno(z2,2n)

oY, 2a)= B10(21, 2) + B0 (29, 20) + *+ +B.0%(20)
This can be more compactly written in matrix form as

0%(z1) o(z, 32) .. 0(21,2n) 6 o(y, Zl)

o(z1,22) o0%(22) ... o(z2,2n) Ba B o(y, z)

0(21', Zn) ‘7(22': Zn) .- o? (.zn) .B.n U(y; Zn)
XX B Xy

or, [3 = (XTX)'1 Xy



Matrix Multiplication:

The order in which matrices are multiplied affects
the matrix product, e.g. AB # BA

For the product of two matrices to exist, the matrices
must conform. For AB, the number of columns of A must
equal the number of rows of B.

The matrix C = AB has the same number of rows as A
and the same number of columns as B.

Cirxc) = Aprxk) Biixo)
ij-th element of C is given by

Elements in the
Jth column of B

Cij = 12: Ay By Elements in the ifg
=1 row of matrix A

Outer indices given dimensions of
resulting matrix, with r rows (

and ¢ columns (B / \
rxc _

rxk kxc

\/

Inner indices must match
columns of A = rows of B

Example: Is the product ABCD defined? If so, what
is its dimensionality? Suppose

A3x5 BSx9 C9x6 D6x23

Yes, defined, as inner indices match. Resultis a 3 x 23
matrix (3 rows, 23 columns) 12



More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors

m;
M= ( \ where m; = (Miy My =~ M)
\m./

Likewise express N as a row vector of

ms;

column vectors ::J
N=(n; n, -+ m) where n; = !

The ij-th element of L is the inner product |\
- CJ

of M's row i with N's column j

mlonl mlonz .. ml‘-nb
m2-n1 m2.n2 .. mzanb
L= . :
mrnnl mrnn2 .- mr-nb
13

_[a b e f\ _ (ae+bg af+0bh
AB_<C d) <g h)_(ce+dg cf+dh)

Likewise

__[ae+cf eb+df
BA_(ga+ch gd+dh)

ORDER of multiplication matters! Indeed, consider
Cs,5 Ds,s which gives a 3 x 5 matrix, versus D5 C; s,
which is not defined.



Matrix multiplication in R

> A<-motrix(c(l,2,3,4),nron=2) R ﬂ”S In the m?trlx_ from
> B<-matrix(c(4,5,6,7),nron=2) the list ¢ by 'FI”Ing INn as

> A :

1] [.2] columns, here with 2 rows
[,] 1 3 (nrow=2)
2] 2 4
> B

(.11 [.2] Entering A or B displays what was
[1,] 4 &6 .
23] s 7 entered (always a good thing to check)
> A %% B

[11 [,2] .
[1,] 19 27 The command %*% is the R code

L for the multiplication of two matrices

On your own: What is the matrix resulting from BA?
What is A if nrow=1 or nrow=4 is used?

The Transpose of a Matrix

The transpose of a matrix exchanges the

rows and columns, AT, = A,

Useful identities b
(AB)T = BT AT “ i
(ABC)T=CTBTAT  *7 | )

Inner product = ab =a’; y b, x1

3

Indices match, matrices conform

Dimension of resulting product is 1 X 1 (i.e. a scalar)

b. n
(a;, - a,) ( : ) ~ab=Yap  Notethatb'a = (b'a)’ = a'b

by, 16



Outer product = ab™ = a ,x ,bT (1 x 1y

~.

Resulting product is an n x n matrix

a

a9
i (bl b‘2 e bn )
\an
(I.Jbl GJbQ R (llb,z
asby asbs ... ash,
\anbl anb:? s anbbn

R code for transposition

> t(A)

[,1] [, 2] t(A) = transpose of A
[1,] 1 2
[2,] 3 4

> g<-matrix(c(l,2,3),nron=3) Enter the column vector a
> a

1]

(L1 1

(2] 2

(.1 3 _

> ’c(aE %*% 0 Compute inner product a'a
1]

(1,1 14

> a %*% t(a) Compute outer product aa’

(.11 .21 3]

1,] 1 2 3
[2,] 2 4 6
3 6 9



Solving equations

e The identity matrix |

— Serves the same role as 1 in scalar algebra, e.g.,
a*1=1*a =a, with Al=l1A= A

® The inverse matrix A1 (IF it exists)
_ Defined by AA =1, A1A = |

— Serves the same role as scalar division
* To solve ax = ¢, multiply both sides by (1/a) to give:
e (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,
® Hence x = (1/a)c
e Tosolve Ax=c¢c, AlAx=A"c
e OrA'Ax =Ix=x=A"c

The Identity Matrix, |

The identity matrix serves the role of the
number 1 in matrix multiplication: Al =A, [A = A

| is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

1 fori=]j

O otherwise

(i1

oo
o =OoO
o0

20



The Identity Matrix in R

diag(k), where k is an integer, return the k x k | matix

> I<-diag(4)
> 1

(.11 2] [,3] 4]
[1,] 1 0 ) 0

[2,] [0} 1 0 0
[3,] 0 0 1 0
[4,] [0} 0 ) 1
> 12 <-diag(2)
> 12

(11 2]
[1,] 1 0
[2,] 0 1

21

The Inverse Matrix, A

For a square matrix A, define its Inverse A, as
the matrix satisfying

ATA =AAT =1

b _ 1 d -~ b
FOPA:(S d) A 1:‘(—0 a)
/

If this quantity (the determinant)
is zero, the inverse does not exist.

22



If det(A) is not zero, A" exists and A is said to be
non-singular. If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch &
Walsh

A is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is
consistent, then some of the variables have a family
of solutions (e.g., X, =2, but x, + x5 = 6)

23

Inversion in R

solve(A) computes A

det(A) computes determinant of A

> A Using A entered earlier
(.11 [, 2]

1,] 1 3

2,1 2 4 ]

> solve(A) Compute A
.11 [,2]

[1,] -2 1.5

2,1 1-0.5

> solve(A) ¥*% A
[,1] [,2] Showing that AT A = |

1,] 1 -8.881784e-16
2,] 0 1.000000e+00

det(A : :
E]efg ) Computing determinant of A

24



Homework

Put the following system of equations in matrix
form, and solve using R

3Xq + 4x, + 4 x5 + 6x, =-10
Xy + 2%y - X5 -6%x4= 20
X;+ X, + X3-10x, = 2
2x1 + 9%, + 2x3 - %, =-10

25

Example: solve the OLS foriny = a + Bz, + fz,+ €
B - V'l c o (O’(y, 21) ) V= ( 02(31) O'(Zl, 32) )
U(yazz) U(ZIsZ'Z) az(zZ)
It is more compact to use o(z1,22) = p12 0(21)0(22)

1 oXz) —olz, )
v!i=
0%(z1)0%(z2) (1 — p3,) o*(z)

—0o(z), 22)

(.al) ) . ( 02(2) —a(zl,zz)) (a(.u,zl))
B 02(21)0%(22) (1 — pis) —o(z1, 22) 02(21) oy, z2)




L1 oy, z,) o o(y,2;)
fr=1z (37 [ o2(z) P 0(z1)0(32)]
o 1 O'(y, 32) - ' a(yazl)
b= | e ]

If p;, = 0, these reduce to the two univariate slopes,

131 — O'(y, zl) and ,32 — U(y’z2)

0%(21) 02(23)

Likewise, if p;, = 1, this reduces to a univariate regression,

27

Useful identities
(AT = (AT
(AB)' = B A

For a diagonal matrix D, then det (D), which is also
denoted by IDI, = product of the diagonal elements

Also, the determinant of any square matrix A,

det(A), is simply the product of the eigenvalues A of A,
which statisfy

Ae = \e

If Alis n x n, solutions to A are an n-degree polynomial. e is
the eigenvector associated with A. If any of the roots to the
equation are zero, A" is not defined. In this case, for some
linear combination b, we have Ab = 0.

28



Variance-Covariance matrix

* A very important square matrix is the
variance-covariance matrix V associated with
a vector x of random variables.

* V; = Cov(x;x), so that the i-th diagonal
element of V is the variance of x,, and off
-diagonal elements are covariances

* Vis a symmetric, square matrix

29

The trace

The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals
the sum of the eigenvalues of A, tr(A) = X A,

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

A / tr(V) is the fraction of the total variation
in x contained in the linear combination e,'x, where
e, the i-th principal component of V is also the
i-th eigenvector of V (Ve, = A, e)
30



Eigenstructure in R

eigen(A) returns the eigenvalues and vectors of A

> V<-matrix(c(10,-5,10,-5,20,0,10,0,30), nron=3)

>V

L1 2] 3]
[1,] 1 -5 10
[2,] -5 20 0
[3,] 10 6 30
> eigen(V)
$values

[1] 34.410103 21.117310 4.472587

$vectors
54

PC 1

Trace = 60

PC 1 accounts for 34.4/60 =
57% of all the variation
[,2] [,3]

0.3996151 | 0.2117936 ©.8918807

’]
[2.]|-0.1386580 [-0.9477830 0.2871955 0.400* x; — 0.139*x, + 0.906*x
7| 0.9061356 |-0.2384340 -0.3493816

31

Quadratic and Bilinear Forms

Quadratic product: for A, ,, and X, , 4

TL T
T
x Ax = Zzaijfb‘z‘xj Scalar (1 x 1)

i=1 j=1

Bilinear Form (generalization of quadratic product)

for A, .. a1, b, their bilinear form is b"

A a

Txm ™ ™mxn

bTAa = f: i Aijbia;

i=1 j=1

Note that bTAa =a'ATb

32



Covariance Matrices for
Transformed Variables

What is the variance of the linear combination,
CiXq + CX, + ... + ¢, X ? (note this is a scalar)

n n n
o? (ch) = g2 (Zcixl-) =0 Zcixi ,Z(:j T;
i=1 i=1 J=1
n n n T
=3 Y o(azieia) =3 Y o (wi))

i=1j=1 1=1 j=1
—c'Ve
Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

o(a’x,b’x) =a’Vb .

Example: Suppose the variances of x;, x,, and x; are
10, 20, and 30. x, and x, have a covariance of -5,
X, and x5 of 10, while x, and x5 are uncorrelated.

What are the variances of the indices

Var(y,) = Var(c,™x) = ¢, Var(x) ¢, = 960
Var(y,) = Var(c,'x) = ¢, Var(x) ¢, = 1200
Covl(y,,y,) = Cov(c,™x, c,'x) = ¢, Var(x) c, = -910

Homework: use R to compute the above values
34



The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
w. and variance 0,

p0) = [T 207" exp (- B2

=1
n -1 n ( )2
= (2 —n/2 ; —_ Ti —iu"
(2m) (ll_[la ) oxp ( Z 20?2

This can be expressed more compactly in matrix form

35

Define the covariance matrix V for the vector x of
the n normal random variable by

o2 0 = 0

n
0 o2 = 0 :
v=| 7% 7 V=[] o?
Lo e i=1
0 +++ v o2
Define the mean vector u by gives 'Z;
p=|".
n o i2 . :
Z(mz li) :(X_N)I Vv L (X_M) Ln

2
i=1 U‘L

Hence in matrix from the MVN pdt becomes

-n — 1 T ene
p(x) = (2m)" "2 VI exp | = (x— )T VT (x — )

Notice this holds for any vector u and symmetric positive
-definite matrix V, as |V | > 0. 36



The multivariate normal

e Just as a univariate normal is defined by
its mean and spread, a multivariate
normal is defined by its mean vector u
(also called the centroid) and variance
-covariance matrix V

37

Vector of means p determines location

Spread (geometry) about p determined by V

X4, X, equal variances,

X+, X, equal variances
1 %2 €9 ' uncorrelated

positively correlated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.

38



Vector of means p determines location

Spread (geometry) about p determined by V

1 | —
X4, X, equal variances, Var(x,) < Var(x,),
negatively correlated uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation

No tilt = uncorrelated 2

Eigenstructure of V

The direction of the largest axis of
variation is given by the unit-length

vector €, the 1st eigenvector of V.

A, €1 ,
! The next largest axis of orthogonal

_ (at 90 degrees from) e, is
e ™., given by e,, the 2nd eigenvector

40



Principal components

The principal components (or PCs) of a covariance
matrix define the axes of variation.

— PC1 is the direction (linear combination c'x) that explains
the most variation.

— PC2 is the next largest direction (at 90degree from PC1),
and so on

PC. = ith eigenvector of V

Fraction of variation accounted for by PCi = A, /
trace(V)

If V has a few large eigenvalues, most of the variation
is distributed along a few linear combinations (axis
of variation)

The sinqular value decomposition is the

generalization of this idea to nonsquare matrices
41

Properties of the MVN - |

1) If x is MVN, any subset of the variables in x is also MVN

2) If xis MVN, any linear combination of the
elements of x is also MVN. If x ~ MVN(u,V)

for y=x+a, y is MVN,,(n + a, V)

T
for y=alx= Zaixi, y is N(aTu,aTVa)
k=1

for y= Ax, y is MVN,, (Au,ATVA)

42



Properties of the MVN - |

3) Conditional distributions are also MVN. Partition x
into two components, x; (m dimensional column vector)
and x, ( n-m dimensional column vector)

Vx,x, Vx,x,
x=<;1) n= (Z:) and V=(
T
’ VX1X2 Vx2xz
Xy I x5 is MVN with m-dimensional mean vector
— —1
Hx,|x2 = M1 + VX1X2VX2X2 (X2 - “’2)

and m x m covariance matrix

_ _ —1 T
Vx1|x2 - VX1X1 VXIX2VX2X2 VX1X2

Properties of the MVN - I

4) If x is MVN, the regression of any subset of
x on another subset is linear and homoscedastic

X1 = Mx,|x, T €
= Q4+ Vxixz )zglxg (xg — Nz) +e

Where e is MVN with mean vector 0 and
variance-covariance matrix ~ Vx,|x,

44



11+ Vxaxa Vaox, (X2 — #g) + e

The regression is linear because it is a linear function
of x,

The regression is homoscedastic because the variance-

covariance matrix for e does not depend on the value of
the x’s

_ _ —1 T
VX1|X2 - VX1X1 VX.IXZVX2X2 Vx1x2

All these matrices are constant, and hence

the same for any value of x 45

Example: Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN. Then from the correlations
among (outbred) relatives,

2o Lo 1 h2%/2 h?%/2
ze | ~MMVN | | s |,0%2| h2/2 1 0
24 Lhd h2/2 0 1

Let x1=(2), x2= (zs>

2d

. hio? of 1 0
Vxixi =02, Vxix: = 2 (1 1), VX2,X2=U§<O 1

2

= Mgt Vxixa lexz(xz o u'z) +e

46



Regression of Offspring value on Parental values (cont.)

= 1+ Vi3 Viox, (Xg — o) + €

) h202 (1 0
Vxix: = 0%, Vxix, = 22(1 1), VXz,Xz=0f<0 1

Hence, _ W (1 0 (2~ ps
%o = Hot — (1 1)o, 0 1)\ 20— g +e
h? h?
=#0+?‘(Zs_#s)+?(zd_lld)+8

Where e is normal with mean zero and variance

_ -1 T
VX1|X2 = VX1X1 - Vxl)(2vx2x2 VX1X2

h2o02 1 0\ h202 /(1
2 _ 42 _ 0% ~2 z
o5 =0 5 (1 1)o; (O 1) 5 (1)

4
= o2 (1 —h—)
2 47

Hence, the regression of offspring trait value given
the trait values of its parents is

z, = U, +h?/2(z-n) +h?/2(z-uy) + e
where the residual e is normal with mean zero and
Var(e) = 0,%(1-h%/2)

Similar logic gives the regression of offspring breeding
value on parental breeding value as

A, =u, +(A-u)/2+ (Ag-ug/2 +e
=A/2+ AJ/2 +e

where the residual e is normal with mean zero and
Var(e) = 0,%/2

48



The Singular-Value Decomposition (SVD)

An n x p matrix A can always be decomposed as the product of three matrices: ann x p
diagonal matrix A and two unitary matrices, U which is n x n and V which is p x p. The
resulting singular value decomposition (SVD) of A is given by

Anx P Unx nAnx pVT

pXp

(39.16a)

We have indicated the dimensionality of each matrix to allow the reader to verify that each
matrix multiplication conforms. The diagonal elements Ay.---. A, of A correspond to the
singular values of A and are ordered by decreasing magnitude. Returning to the unitary
matrices U and V, we can write each as a row vector of column vectors,

U= (u. --.w. - -uy,). V= (v v vy) (39.16b)

where u; and v; are n and p-dimensional column vectors (often called the left and right
singular vectors, respectively). Since both U and V are unitary, by definition (Appendix4)
each column vector has length one and are mutually orthogonal (i.e., ifi # j, u,-ujT = V; va =
0). Since A is diagonal, it immediately follows from matrix multiplication that we can write
any elementin A as

Aij = ZAk Wik Vkj (39.16¢)
k=1

where )\ is the kth singular value and s < min(p.n) is the number of non-zero singular
values.

The importance of the singular value decomposition in the analysis of G xE arises from
the Eckart-Young theorem (1938), which relates the best approximation of a matrixby some
lower-rank (say k) matrix with the SVD. Define as our measure of goodness of fit between

a matrix A and a lower rank approximation A as the sum of squared differences over all

elements, ’
D (A — Aiy)?
]
Eckart and Young show that the best fitting approximation Aof rank m < sis given from
the first 1 terms of the singular value decomposition (the rank-m SVD),

Aij = Z)\k Wik Vkcj (39.17a)
k=1

For example, the best rank-2 approximation for the G x E interaction is given by
GE,J ~ /\l ;1 l‘jl + /\2 ;o l'j2 (3917}))
where ); is the ith singular value of the GE matrix, u and v are the associated singular

vectors (see Example 39.3). The fraction of total variation of a matrixaccounted forby taking
the first m terms in its SVD is

m

. s AP N
2y 42 L7 T m
EA"ZjA” N+ A2

50



A data set for soybeans grown in New York (Gauch 1992) gives the
GE matrix as

57 176 —233
—36 —196 233 Where GE; = value for

GE = | —45 -324 369 G - HgE
i : enotype I in envir.
66 178 —112 ypP J
89 165 —254
InR, the compact SVD (Equation 39.16d) of amatrix X is given by svd( X), returning the SVD
of GE as

0.40 0.21 0.18

—0.41 0.00 091 746.10 0 0 012 064 -0.76
—-0.66  0.12 -0.30 0 131.36 0 0.81 —0.51 —0.30
0.26 —-0.83 0.11 0 0 0.53 0.58 058  0.58

0.41 0.50  0.19

The first singular value accounts for 746.102/(743.26% + 131.36% + 0.532) = 97.0% of the
total variation of GE, while the second singular value accounts for 3.0%, so that together
they account for essentially all of the total variation. The rank-1 SVD approximation of GE is
givenby setting all of the diagonal elements of A except the first entry to zero,

0.40 0.21 0.18
—0.41 0.00  0.91 746.10 0 0 0.12 064 —-0.76
GE, = | -066 012 —-0.30 0 0 0 0.81 —0.51 —-0.30
026 —-0.83 0.11 ( 0 0 l)) ( 0.58  0.58 l).SS)
0.41 0.50  0.19

Similarly, the rank-2 SVD is givenby setting all but the first two singular val ues to zero,
0.40 021  0.18
—0.41  0.00 091 746.10 0 0 0.12 064 -0.76
GE; = | —066 0.12 —0.30 0 131.36 0 0.81 —0.51 —0.30
0.26 —0.83  0.11 ( 0 0 l)) ( 0.58  0.58  0.58 )
0.41 0.50  0.19

For example, the rank-1 SVD approximation for GEj, is
d31Meq, = 746.10%(-0.66)*0.64 = -315

While the rank-2 SVD approximation is gzjAyei; + gzhsey =
746.10%(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323

Actual value is -324

Generally, the rank-2 SVD approximation for GE; is

giher; + 98y, -



Additional R matrix commands

Operator or Description

Function

A*B Element-wise multiplication

A%*% B Matrix multiplication

A %0% B Outer product. AB'

crossprod(A,B) A'B and A'A respectively.

crossprod(A)

t(A) Transpose

diag(x) Creates diagonal matrix with elements of x in the principal diagonal
diag(A) Returns a vector containing the elements of the principal diagonal
diag(k) If k is a scalar, this creates a k x k identity matrix. Go figure.
solve(A, b) Returns vector x in the equation b = Ax (i.e., A"'b)

solve(A) Inverse of A where A is a square matrix.

ginv(A) Moore-Penrose Generalized Inverse of A.

ginv(A) requires loading the MASS package.

y<-eigen(A) ySval are the eigenvalues of A
ySvec are the eigenvectors of A

y<-svd(A) Single value decomposition of A.
yS$d = vector containing the singular values of A
ySu = matrix with columns contain the left singular vectors of A
yS$v = matrix with columns contain the right singular vectors of A 53

Additional R matrix commands (cont)

R <- chol(A) Choleski factorization of A. Returns the upper triangular factor, such that R'R =
A.

y <- qr(A) QR decomposition of A.
yS$qr has an upper triangle that contains the decomposition and a lower
triangle that contains information on the Q decomposition.
ySrank is the rank of A.
ySqraux a vector which contains additional information on Q.
ySpivot contains information on the pivoting strategy used.

cbind(A,B,...) Combine matrices(vectors) horizontally. Returns a matrix.
rbind(A,B,...) Combine matrices(vectors) vertically. Returns a matrix.
rowMeans(A) Returns vector of row means.

rowSums(A) Returns vector of row sums.

colMeans(A) Returns vector of column means.

colSums(A) Returns vector of coumn means.
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Additional references

* Lynch & Walsh Chapter 8 (intro to
matrices)

e Online notes:
— Appendix 4 (Matrix geometry)
— Appendix 5 (Matrix derivatives)
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Lecture 2:
Linear and Mixed Models

Bruce Walsh lecture notes

Introduction to Quantitative Genetics
SISG, Brisbane
9 -10 Feb 2017

Quick Review of the Major Points

The general linear model can be written as

y=Xp +e
* y = vector of observed dependent values

e X = Design matrix: observations of the variables in the
assumed linear model

* B = vector of unknown parameters to estimate

e e = vector of residuals (deviation from model fit),
e=y-Xp



y=Xp t+e

Solution to B depends on the covariance structure
(= covariance matrix) of the vector e of residuals

Ordinary least squares (OLS)

e OLS: e ~ MVN(O, o21)
e Residuals are homoscedastic and uncorrelated,

so that we can write the cov matrix of e as Cov(e) = o2l
e the OLS estimate, OLS(B) = (X™X)" XTy

Generalized least squares (GLS)

e GLS: e ~ MVN(Q, V)
* Residuals are heteroscedastic and/or dependent,
e GLS(B) = XTV-1X)" V-1 XTy

BLUE

e Both the OLS and GLS solutions are also
called the Best Linear Unbiased Estimator (or
BLUE for short)

e \Whether the OLS or GLS form is used

depends on the assumed covariance
structure for the residuals

— Special case of Var(e) = 6,21 -- OLS
— All others, i.e., Var(e) = R -- GLS



Linear Models

One tries to explain a dependent variable y as a linear
function of a number of independent (or predictor)
variables.

A multiple regression is a typical linear model,

y:ﬂ+ﬁ1$1+/B2-’E2+"'+Bn$w+e

Here e is the residual, or deviation between the true
value observed and the value predicted by the linear
model.

The (partial) regression coefficients are interpreted
as follows: a unit change in x, while holding all
other variables constant results in a change of 3, in'y

Linear Models

As with a univariate regression (y = a + bx + e), the model
parameters are typically chosen by least squares,

wherein they are chosen to minimize the sum of

squared residuals, X ;2

This unweighted sum of squared residuals assumes
an OLS error structure, so all residuals are equally
weighted (homoscedastic) and uncorrelated

If the residuals differ in variances and/or some are
correlated (GLS conditions), then we need to minimize
the weighted sum eTV-'e, which removes correlations and
gives all residuals equal variance.



Linear Models in Matrix Form

Suppose we have 3 variables in a multiple regression,
with four (y,x) vectors of observations.

Yi = 1+ B1%i1 + Boio + P3xi3 + €;
Inmatrix form, y=XpB+e

Y1 7 1 211 Zp T3 €1

. 1 =z Loy To: €

y = Y2 8= | x = 21 T22 T23 | o — 2
Y3 B 1 31 32 33 €3

Y4 Bs 1 z41 T4 a3 €4

The design matrix X. Details of both the experimental
design and the observed values of the predictor variables
all reside solely in X

Rank of the design matrix

* With n observations and p unknowns, X'isan n x p
matrix, so that X"™Xis p x p

e Thus, at most X can provide unique estimates for up
to p < n parameters

e The rank of X is the number of independent rows of
X. If Xis of full rank, then rank = p

e A parameter is said to be estimable if we can provide
a unique estimate of it. If the rank of X'is k < p, then
exactly k parameters are estimable (some as linear
combinations, e.g. $,-3p5 = 4)

e if det(X™X) = 0, then X is not of full rank

e Number of nonzero eigenvalues of X™X gives the
rank of X.



Experimental design and X

e The structure of X determines not only which
parameters are estimable, but also the expected
sample variances, as Var(p) = k (XTX)"'

e Experimental design determines the structure of X
before an experiment (of course, missing data
almost always means the final X is different form the
proposed X)

 Different criteria used for an optimal design. LetV =
(X™X)'". The idea is to chose a design for X given
the constraints of the experiment that:
— A-optimality: minimizes tr(V)
— D-optimality: minimizes det(V)
— E-optimality: minimizes leading eigenvalue of V

Ordinary Least Squares (OLS)

When the covariance structure of the residuals has a
certain form, we solve for the vector § using OLS

If residuals follow a MVN distribution, OLS = ML solution

If the residuals are homoscedastic and uncorrelated,
o%(e) = 6.2, o(e;e) = 0. Hence, each residual is equally
weighted,

y —XB)" (y — XB)

\_—"

Predicted value of the y's

10

'
Sum of squared ZEQ _oToo (
residuals can (A -
be written as —



Ordinary Least Squares (OLS)
Z =(y—XB)" (y — XB)

Taking (matrix) derivatives shows this is minimized by
T — T
p=XX)"X"y
This is the OLS estimate of the vector §

The variance-covariance estimate for the sample estimates
is .
Vg = (X"X)"

The ij-th element gives the covariance between the
estimates of ; and ;. "

Sample Variances/Covariances

The residual variance can be estimated as

—

of =

1 “~
(A
n — rank(X) ; ‘
The estimated residual variance can be substituted into
T _
Vg =(X"X) "o?

To give an approximation for the sampling variance and
covariances of our estimates.

Confidence intervals follow since the vector of estimates
~ MVN(B, V)



Example: Regression Through the Origin

yi=Bx + ¢
)
S I T

n n
X'X=) a X'y=} mu
i—1 i=1

- () "y 3EE | - () o
1 > (yi — Bi)®
o*(p) =
n—1 d>ox? 1
o2 = — Z(gﬁ - Brzi)? .

Polynomial Regressions

GLM can easily handle any function of the observed
predictor variables, provided the parameters to estimate
are still linear, e.g. Y = a + B,f(x) + ,gx) + ~ + e

Quadratic regression:

yi = a+ B T+ Paz7 + €

1 =z .L%
/a 1 zo .L%

ﬂ - ‘dl x —
B2 ]

1 zn Tn 14



Interaction Effects

Interaction terms (e.g. sex x age) are handled similarly

Vi=a+01Ta+ BT+ B35TiTiz + €

a Iz 212 Z11Zy9
. 1 =z Tog T91To
P
B35 . : :
33 1 Tn1 Tna Tn1Tn2

With x, held constant, a unit change in x, changes y

by B, + B3, (i.e., the slope in x, depends on the current
value of x,)

Likewise, a unit change in x, changes y by f3; + B5x,

The GLM lets you build your
own model!

e Suppose you want a quadratic regression
forced through the origin where the slope of
the quadratic term can vary over the sexes
(pollen vs. seed parents)

Y, = Bix; + Boxi? + Pasix?

® s is an indicator (0/1) variable for the sex (0 =
male, 1 = female).

— Male slope = 8,

— Female slope =, + f3;



Generalized Least Squares (GLS)

Suppose the residuals no longer have the same
variance (i.e., display heteroscedasticity). Clearly
we do not wish to minimize the unweighted sum
of squared residuals, because those residuals with
smaller variance should receive more weight.

Likewise in the event the residuals are correlated,
we also wish to take this into account (i.e., perform
a suitable transformation to remove the correlations)
before minimizing the sum of squares.

Either of the above settings leads to a GLS solution
in place of an OLS solution.

In the GLS setting, the covariance matrix for the
vector e of residuals is written as R where

R, = ole,e)

The linear model becomesy = X + e, cov(e) = R

The GLS solution for f is
-1
b=(X"RX) X'Rly

The variance-covariance of the estimated model
parameters is given by

- -1
Vp =(X"R'X) o2



Model diagnostics

¢ |t's all about the residuals

e Plot the residuals
— Quick and easy screen for outliers
— Ploty oryhaton e
e Test for normality among estimated residuals
- Q-Q plot
— Wilk-Shapiro test
— If non-normal, try transformations, such as log

OLS, GLS summary

OLS GLS

Assumed distribution

of residuals e~ (0.0%1) e~ (0.V)
Least-squares

estimator of 3 8= (XTX) 1XTy B = (XTV“X) 1XTyv 1y
Var(3) (XTX) o2 (XTVIx) !
Predictedyalues,

vy = X3 X(XTxX) 1 xTy X(XTv1x) 1 xXTvly
Var(¥) X(XTX)1x" 52 X(X'vix)1x?

e

20



Fixed vs. Random Effects

In linear models are are trying to accomplish two goals:
estimation the values of model parameters and estimate
any appropriate variances.

For example, in the simplest regression model,

y = a + px + e, we estimate the values for a and § and
also the variance of e. We, of course, can also
estimate the e, = y. - (o + px,)

Note that o/p are fixed constants are we trying to
estimate (fixed factors or fixed effects), while the

e, values are drawn from some probability distribution
(typically Normal with mean O, variance 02,). The

e, are random effects.

21

This distinction between fixed and random effects is
extremely important in terms of how we analyzed a model.
If a parameter is a fixed constant we wish to estimate,

it is a fixed effect. If a parameter is drawn from

some probability distribution and we are trying to make
inferences on either the distribution and/or specific
realizations from this distribution, it is a random effect.

We generally speak of estimating fixed factors (BLUE) and
predicting random effects (BLUP -- best linear unbiased
Predictor)

“Mixed"” models (MM) contain both fixed and random factors

y=Xb+Zu+e, u ~MVN(Q,R), e ~ MVN(O,52,I)

Key: need to specify covariance structures for MM
22



Random effects models

e |t is often useful to treat certain effects as

random, as opposed to fixed

— Suppose we have k effects. If we treat these as
fixed, we lose k degrees of freedom

— If we assume each of the k realizations are drawn
from a normal with mean zero and unknown
variance, only one degree of freedom lost --- that
for estimating the variance

* We can then predict the values of the k realizations

23

Environmental effects

Consider yield data measured over several years in a
series of plots.

Standard to treat year-to-year variation at a specific

site as being random effects

Often the plot effects (mean value over years) are

also treated as random.

For example, consider plants group in growing

region i, location j within that region, and year

(season) k for that location-region effect

- E=Ri+Lij+eijk

— Typically R can be a fixed effect, while L and e are
random effects, L, ~ N(0,02) and ¢, ~ N(0,02,)

24



Random models

e \With a random model, one is assuming that
all “levels” of a factor are not observed.
Rather, some subset of values are drawn
from some underlying distribution

— For example, year to year variation in rainfall at a
location. Each year is a random sample from the
long-term distribution of rainfall values

— Typically, assume a functional form for this
underlying distribution (e.g., normal with mean 0)
and then use observations to estimate the
distribution parameters (here, the variance)

25

Random models (cont)

e Key feature:

— Only one degree of freedom used (estimate of
the variance)

— Using the fixed effects and the estimated
underlying distribution parameters, one then
predicts the actual realizations of the individual
values (i.e., the year effects)

— Assumption: the covariance structure among the
individual realizations of the realized effects. If
only a variance is assume, this implies they are
independent. If they are assumed to be
correlated, this structure must be estimated.

26



Random models

e Let's go back to treating yearly effects as random

e |f assume these are uncorrelated, only use one
degree of freedom, but makes assumptions about
covariance structure
— Standard: Uncorrelated

— Option: some sort of autocorrelation process, say with a
yearly decay of r (must also be estimated)

e Conversely, could all be treated as fixed, but would
use k degrees of freedom for k years, but no
assumptions on their relationships (covariance
structure)

27

Identifiability

e Recall that a fixed effect is said to be
estimable if we can obtain a unique estimate
for it (either because X is of full rank or when
using a generalized inverse it returns a
unique estimate)

— Lack of estimable arises because the experiment
design confounds effects

e The analogous term for random models is
identifiability

— The variance components have unique estimates

28



The general mixed model

Vector of fixed effects (to be estimated),
e.g., year, sex and age effects

Vector of
observations Incidence matrix for random effects
(phenotypes)
=XB +Zu + e Vector of residual errors
y B (random effects)
Incidgnce Vector of random
matrix for effects, such as
fixed effects individual
Breeding values
(to be estimated)
29
The general mixed model
Vector of fixed effects
Vector of
observations Incidence matrix for random effects
(phenotypes)
y = XB +7Zu+e Vector of residual errors
Incidgnce Vector of random
matrix for effects

fixed effects

Observey, X, Z.
Estimate fixed effects B

Estimate random effects u, e 30



Means & Variances fory = Xp + Zu + e
Means: E(u) = E(e) =0, E(y) = Xp

Variances:

Let R be the covariance matrix for the
residuals. We typically assume R = ¢2_*|

Let G be the covariance matrix for the vector
u of random effects

The covariance matrix for y becomes
V=2GZ"+R
Hence, y ~ MVN (Xp, V)

Mean Xf due to fixed effects

Variance V due to random effects .

Estimating fixed Effects & Predicting
Random Effects

For a mixed model, we observe y, X, and Z

B, u, R, and G are generally unknown

Two complementary estimation issues
(i) Estimation of p and u
B=x"v'x) 'X"v~'y Estimation of fixed effects
BLUE = Best Linear Unbiased Estimator
i=Gz'V™" (y-XB) Prediction of random effects

BLUP = Best Linear Unbiased Predictor
Recall V = ZGZT + R 32



Different statistical models

GLM = general linear model

— OLS ordinary least squares: e ~ MVN(O,cl)

— GLS generalized least squares: e ~ MVN(O,R)

Mixed models

— Both fixed and random effects (beyond the residual)

Mixture models

— A weighted mixture of distributions
Generalized linear models

— Nonlinear functions, non-normality

33

Mixture models

* Under a mixture model, an observation potentially
comes from one of several different distributions, so
that the density function is mt,¢, + 7y, + 7305
— The mixture proportions &; sum to one
— The ¢, represent different distribution, e.g., normal with mean y;

and variance o2

* Mixture models come up in QTL mapping -- an
individual could have QTL genotype QQ, Qg, or qq
— See Lynch & Walsh Chapter 13

* They also come up in codon models of evolution, were a
site may be neutral, deleterious, or advantageous, each
with a different distribution of selection coefficients
— See Walsh & Lynch (volume 2A website), Chapters 10,11

34



Generalized linear models

The Generalized Linear Model (note the ized ending) takes this a step further
by assuming for some monotonic function g, that

Elyil=g (y + Z‘Bk-rik) (2)

k=1
In particular, taking the inverse g ! of the function g returns a linear model, with

9 ' (Elw)) =;L+derik (3)
k=1
The function f with the property that expresses the expected value of the
response variable as a linear function of the predictor variables, i.e.,

f(Elyi])=pn +Z BrTik
k=1

is called the link function of the particular generalized linear model.

Typically assume non-normal distribution for
residuals, e.g., Poisson, binomial, gamma, etc

35
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Lecture #3

GREML: estimation of genetic variance in
unrelated individuals

Jian Yang
Institute for Molecular Bioscience

The University of Queensland

Keywords

Genetic variance (V): the amount of phenotypic
variance (V;) in a population attributable to
genetic factors.

What do we need to estimate V. in unrelated
individuals?

Why is mixed linear model (MLM) useful in this
case?



Mendelian traits Complex traits

Cystic fibrosis

Human height

Unaffected
"Carrier"
Father

Unaffected
"Carrier"
Mother

Body mass index

Unaffected Unaffected "Carrier” Affected
1in 4 chance 2in 4 chance 1in4 chance . .
Schizophrenia
. oge
Heritability

Resemblance between twins for human height

Identical twins (1170 pairs); r = 0.85 | Non-identical twins (850 pairs); r = 0.45

Heritability = ~80-90%

Twin1
Twinl

Resemblance between relatives for body mass index (BMlI)

Relatedness Correlation Heritability = ~40-60%
Full-sibs 0.36
Father-son 0.28
Risk of schizophrenia (%) Heritability = ~70-80%
Population 1st degree relative MZ twin
Schizophrenia 1 10 50




Identifying genes underlying complex traits

1800 — -— 100
—m— Human Mendelian traits 1700
4 <4 90

1609 —&— All complex traits
Ly . 1 80
s E 14004+ | —&— Human complex traits H
= c
c & +70 &
S8 1200+ =
[7]
238 {e0 £
S5 1000t 3
€3 150 g
[
£ ° 800+ g
2E 405
v~ £ [
5} 600 +
g 5 30 &
a3 s
Es 4004+ H
g o 20

2001+ 10

0 = } 0
1980 1985 1990 1995 2000
Year

Glazier et al. 2002 Science

8 “known genes” for human complex traits before 2002

Genome-wide Association Study (GWAS)

High-throughput Simple methodology

genotyping technology

Testing correlation between x and y
x=0,1and 2 (GG, AG and AA)

y = trait (e.g. height)

y=by,+x.b, +e

14+

y




An explosion of “gene” discoveries

Prior to GWAS

1800+

1600 4

1400+

—m— Human Mendelian traits

—&— All complex traits

—a— Human complex traits

12004+

1000+

Number of human Mendelian traits
for which molecular basis found

GWAS

- 100

+ 90

Lgo 5000

IS
=]
S
=]

Number of SNPs
w
&
S
(=]

2000

Number of complex trait genes

1000

1985

Glazier et al. 2002 Science

6000 1

n

P
2006 2007

2008 2009 2010 2011 2012 2013

first half

Year

1000s genetic variants associated with 100s traits / diseases

The missing heritability problem

Height:
i 40 genes

. ~5% of variance explained
. heritability = ~80%

Disease

Number

Percent of Heritability

NEWS FEATURE PERSONAL GENOWES

The case of the missing heritability

alighton

Six places where the missingloot could be stashed avay.

Heritability

Age-related macular
degeneration
Crohn’s disease

Systemic lupus
erythematosus

Type 2 diabetes

HDL cholesterol
Height

Early onset myocardial

infarction
Fasting glucose

of loci

18

40

9

4

Measure Explained
50%

20%
15%
6%
5.2%
5%
2.8%

1.5%

Measure

Sibling recurrence
risk

Genetic risk
(liability)

Sibling recurrence
risk

Sibling recurrence
risk
Phenotypic
variance
Phenotypic
variance
Phenotypic
variance
Phenotypic
variance

Manolio et al. 2009 Nature



To recap the previous lectures

* Linear regression model

y =bg +x;b; +X,0, + ... + X b, + €

y = phenotype

x; = independent variable

y ~ N(bg + x;b; + x,0, + ... + x b, 0%)

by = mean term

b, ... b, = effect sizes (regression coefficients)
e = residual, e ¥ N(0, 02,)

Linear regression model

* |n matrix form
v=Xb+e
y = {yj}nx 1; X = {Xij}nx p; b = {bi}pxl; e= {ej}nx 1

* Estimation
b-hat = (X"X) X"y
var(b-hat) = 0%,(X"X)!

No unique solution if p > n.



Mixed linear model (MLM)
e y=Xb+Zu+e

Fixed effects: b (special case: X=1and b =b,)
Random effects: u = {u}, u~ N(0, 0% ,A)

A = correlation matrix between u; and u;

E(y) =Xb

var(y) =V = ZAZ'0? + 102,

If random effects are independent, then
var(y) =V =2Z"g2 + 102,

Parameter estimation

* Estimation of variance components (02 )
logL = -1/2(log|V| + log|X"V-1X| + y'Py
P =V1-VIX(X"V1X)IXTV1

* Prediction of random effects (u)
u-hat = 02 -hat Z'Py

» Estimation of fixed effects (b)
b-hat = (X'V-1X)1X"V-ly (Generalized least squares)
Linear model: b-hat = (X"X)1X"y (Least squares)



GREML: fitting all SNPs in a MLM

e y=2Zu+e
Z ={z;},, m 2; = standardized SNP genotype
u~N(0, lo2,)
var(y) = ZZ7¢?  + 102,
variance explained = mo?, / (mo?, + 02,)

* An equivalent model if we let g = Zu

y=g+e

var(y) = Ao?, + lo?%,

g~ N(0, Ac?), A=2Z" /m (genetic relationship matrix)
variance explained = 0%, / (0%, + 0°,)

Reconciling family studies and GWAS

Family studies: comparing phenotypic similarity to family relatedness
— GREML: comparing phenotypic similarity to genetic similarity (estimated
from SNPs) in unrelated individuals

GWAS: testing a SNP at a time in unrelated samples
— GREML: Estimating the contribution from all SNPs together

ANALYSIS
nature
genetics

~50% of variation explained by all SNPs for height vs. ~10% from GWAS

Common SNPs explain a large proportion of the heritability
for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy', Scott Gordon, Anjali K Henders!, Dale R Nyholt!,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery!, Michael E Goddard? &

Peter M Visscher!
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Height is not the only example

H GWAS

Obesity (BMI)
& Our method

Schizophrenia

Height

r T T T T T T T T T T

50% 45% 40% 35% 30% 25% 20% 15% 10% 5% 0%

Yang et al. 2011 Nat Genet

Lee et al. 2012 Nat Genet

Yang et al. 2010 Nat Genet

15

Nature vs. nurture — genetics of intelligence

Table 1 Estimates of variance explained by all SNPs

8¢ 8f
N 3254 3181
" (s0)
P-value 7 X 10" 22X 1077

Davis et al. 2011 Mol Psychiatry
Deary et al. 2012 Nature
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Genome partitioning

* Single component MLM

y=g+e(ory=2Zu+e)

e Multi-component MLM

y=g,+g,+..+g,,+e
- 2 2 2 2
var(y) = Aj0%,; + Ay0%,) + ... + Ay,0°,5, + 107,

Partitioning genetic variance into chromosomes

Schizophrenia

0 150 200

Height BMI
0.06 4 0.025
~12,000 individuals 003 1 ~25,000 individuals 9000 cases
1 w02/ 12,000 controls &
> 0.02 > e ©
g ° 2.° o
= e i’ = 0
oo o 0.01 - ] ®
S 3 g o°
> © & ®
S‘D 11‘]0 ;

o —o
0 50

length

Chromosome length (Mb)

Chromosome length (Mb)

Yang et al. 2011 Nat Genet

Yang et al. unpublished

Important implications:

Lee et al. 2012 Nat Genet

Gave confidence to continue with the GWAS paradigm

More genes for complex traits can be found with larger sample sizes

18




Partitioning the genetic variance based on

functional annotation

Height BMI
0

Yang et al. 2011 Nat Genet

& Genic estimate

& Intergenic estimate

Schizophrenia

0

[ CNS+ genes
Wintergenic

B Other genes

Lee et al. 2012 Nat Genet

Genetic signals are enriched in or close to functional genes
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# GWAS discovery vs. sample size

® Height 100 7 e crohn's disease

100 1 A Body mass index A Prostate cancer |

o QT interval O Breast cancer ]

%X HDL cholesterol < Type 2 diabetes m

+ Bone mineral density X Ulcerative colitis
8 ] 2 " a
£ [ ] z =
7 v 10
< <
= 10 - E = ] C1 - .
o f= [ o EE m =1

; ] a
%] ™ ml BT
1 T 1 1 +—a—o—a T ,
2000 20000 200000 1000 10000 100000
Discovery sample size # cases

Visscher et al. 2012 Am J Hum Genet




Estimation of dominance variance in unrelated
individuals

e
*h,+e
AA 0

—_ k
y =bg+x,%b; + x4

mean 0
b1=a; b2=d AG mean+a+d 1 1
GG mean + 2a 2 0

e Additive model
y=by+x,*b, +e
b,=a+(1-2p)d

Lynch and Walsh 1996

Estimation of dominance variance in unrelated
individuals

* Dominance model

AA 0 0

0
AG 1 1 2p

GG 2 0 (4p-2)
y=g,t84%t¢€

var(y) = A 0, + A0%, + 10?2,
A, = additive GRM; A, = dominance GRM
A ,=2,"2,/ m, where Z, = standardised x’4 matrix



Estimating dominance variation in unrelated
individuals

79 quantitative traits (n = ~7000)

-
3]

—_
o

2
hzsz
| Fpes

Frequency

5 ||||| I ‘l |I I
0.0 0.2

. 0.4
Estimates of hzsz or 823Np

Zhu et al. 2015 Am J Hum Genet

Mean h?g, = 0.15
Mean 6%, = 0.03
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Bivariate GREML analysis to estimate genetic
correlation in unrelated individuals

Vi=Xb;+8;,+e;
Y,=X,b,+8,+e,
2 2
V = var }’1] | A10gy +logy A1204142 + 10e1e2]
= Yl =

2 2
A120 4142 T 10,1 Az0y, + 10,

glg

For traits measures on different samples

A10'2 + 10'2 A120'
V = var B;] _ g1 el glg2

2 2
A12041452 A0 + 10,

Lee et al. 2012 Bioinformatics
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Estimating genetic correlation between
traits measured on different samples

0.35 -, Heritabilities Coheritabilities
0.30 ~
2 0.25 1
8 020
2 015+
o
& 0.10 A
3
%- 0.05 ~ Ii_Ii_ILJD
) 0 EI:I:I::I:EF
-0.05 ~
_0'10—DDNDDDDDDDDDDDD
ILO0OQ0NAO0OQINIINOI
oonans<aosso<00<<0
< NANSNS<ao <
8858850883
0297 RH=" 2

Lee et al. 2013 Nat Genet
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Questions and discussion
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Application of GREML and related methods to
GWAS data with GCTA
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SE of GREMLL estimate

* SE =sd of estimate

10 20 30 40 50 60

0

0.2 03 0.4 0.5 0.8

SNP-based heritablity estimate

e Sampling variance of GREML estimate
= SE?
=~2/ [N * var(GRM)] Visscher et al. 2014 PLoS Genet

* var(GRM) is proportional to 1 / M, where M, is the
effective number of independent markers.



A frequently asked question:
how many individuals are required to run a
GCTA-GREML analysis

e SE2="~2/[N?* var(GRM)]

* For analysis in unrelated individuals with HapMap3
SNP (~1M), var(GRM) = ~2e-5, so SE =~ 316/ N.

* For the analysis with whole-genome sequence data,
var(GRM) = ~4.5e-6, so SE = ~667 / N.

SE of the estimate from bivariate GCTA-GREML

* Depending on more parameters (estimates)
* For traits measured on the same sample

(1—rgre)* +(rg —rp)’

var(fg) = 7
G h%, h%,N? var(4;) (7)

* For traits measured on different samples

rG(NThG, + N3hy) + 266G, hg, N1 N2

var(fg)~

(10)

Visscher et al. 2014 PLoS Genet



GCTA-GREML analysis in family data

* The confounding of real genetic effects with common
environmental effects shared between relatives

. Height

. Simulation with comman env. only

1.0
0.8
0.6 =
0.4
0.2
0.0

5k related 5k related + 5k related + Skrelated+ 35k unrelated
10k unrelated 20k unrelated 30k unrelated

Sample

: 2 2
Estimate of h, or hgye

Yang et al. 2017 under review

GCTA-GREML analysis in family data

* Solution #1: remove close relatives

* Solution #2: estimate SNP-based and pedigree-based
heritability simultaneously

y=g,+g,+e

var(y) = A,0%, + A,0%, + 102,

A, = GRM

A, = GRM with large relatedness values only
02, / 0%, = SNP-based heritability

(0%, + 0%,) / 02, = pedigree-based heritability

Zaitlen et al. 2013 PLoS Genet



SNPs need to be pruned for LD?

0z

e Estimate increases with the
decrease of LD pruning (PLINK
threshold but LRT does not

. 2
Estimate of hg, .
o - n w £ [3.] (=21 - -]
LRT

0o

01 0.2 0.3 04 08 06 o7 08 09 1.0
SNP panel

* LD pruning changes the MAF
spectrum (cautious about the
interpretation of the estimate)

7 threshald
1.0
i

Density

0.4
0.1

Yang et al. 2017 under review — — — — — —
MAF

Large sample size

* Computational challenge when n > 100,000

0.15

* Really necessary to run a GREML analysis with n >

100K?

0.0-01 0.1-0.2 0.2-0.3 0.3-04 0.4-05
MAF

e HE regression?
YiY;~ bg+ by *A;+e
by =V, ify,andy;

=
=]

Estimate of hZ,

=
=
&

are standardised

0.00

Yang et al. 2017 under review



Demo

* Simulating phenotypes based on a real GWAS data
set in GCTA

* Creating the genetic relatedness matrix using all SNPs
(by-product: PCA analysis).

* GCTA-GREML analysis to estimate the SNP-based
heritability

» Bivariate GREML analysis to estimate the genetic
correlation between traits

Script 1

# Randomly sample 5 SNPs as causal variants

bim = read.table("test.bim", colClasses=c(rep("character",6)))

qtl = sample(bim$V2, 5)

write.table(qtl, "test.qtl", row.names=F, col.names=F, sep="\t", quote=F)

# Generate phenotype

gctab4 --bfile test --simu-qt --simu-causal-loci test.qtl --simu-hsq 0.1 --out test

# Compute GRM
gctab4 --bfile test --make-grm --out test --thread-num 30

# REML analysis

gctab4 --grm test --pheno test.phen --reml --out test --thread-num 30

# PCA analysis - by product
gctab4 --grm test --pca --out test --thread-num 30

pc = read.table("test.eigenvec")
plot(pcSV3, pcSV4, xlab="PC1", ylab="PC2", col="red")



Script 2

# Simulate two traits

bim = read.table("test.bim", colClasses=c(rep("character",6)))

qtl_comm = sample(bim$V2, 5)

tmp = bim$V2[which(is.na(match(bimS$V2, gtl_comm)))]

qtll = c(qtl_comm, sample(tmp,5))

qtl2 = c(qtl_comm, sample(tmp,5))

write.table(qtl1, "test.qtl1", row.names=F, col.names=F, sep="\t", quote=F)
write.table(qtl2, "test.qtl2", row.names=F, col.names=F, sep="\t", quote=F)

gctab4 --bfile test --simu-qt --simu-causal-loci test.qtll --simu-hsq 0.1 --out test_trl
gctab4 --bfile test --simu-qt --simu-causal-loci test.qtl2 --simu-hsq 0.2 --out test_tr2

trl=read.table("test_trl.phen")

tr2=read.table("test_tr2.phen")

tr2=tr2[match(triSV2, tr2sv2),]

tr=cbind(tr1,tr25V3)
write.table(tr,"test_2tr.phen",row.names=F,col.names=F,quote=F,sep="\t")

# Bivariate GREML
gctab4d --grm test --pheno test_2tr.phen --reml-bivar 1 2 --out test_2tr --thread-num 50

Questions and discussion
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MLM based association analysis
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To recap

Linear regression
y=by+x.b, +e

y = trait value; x, = SNP genotype (0O, 1 or 2)

b,-hat = X;Ty / (X;"X;) = cov(x,,y) / var(x,)
SE(b,-hat) = 0%, / [n var(x,)]

Manolio 2008 NEJM




Inflated test-statistics due to population
structure

* Assumption underlying Linear regression: e, and e,
are independent and identically distributed.
y; = by +xb; +e

* Two issues:
— Population stratification
— Cryptic relatedness

* Solutions:
— Fitting PCs (Price et al. 2007 Nat Genet)
— Genomic control (Devlin & Roeder 1999 Biometrics)

Population stratification inferred from
SNP data

0.1

008 -

006 -

004 -

eigenvector 2

002 -

Yang et al. 2010 Nat Genet

1 1 1 1 1 1
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
eigenvector 1

Problem: PCs are unable to capture relatedness



35
Genomic control . i‘;
z
3 Chi-squared statistics / 4 % 2]2 -
A = mean chi-squared =1o-
A = median(chi-squared) / 0.455 Z |

I
0 5 10 15 20 25 30
x? expected

McCarthy et al. 2008 Nat Rev Genet

* Assumption: only a few true signals. If there is no inflation,
the expected value

* Genomic inflation is expected under polygenic model
E(chi-squared) =1 +NCP=1+n*h?/m

Yang et al. 2011 EJHG

Genomic inflation factors under polygenic
model

~ 2 H
¢ A gian ~ % and number of causal variants

a 114 | s Observed (h2=0.8) b 105
observed (h?=0.4)

= 1124 mem Observed (h?=0.2) = 1.04-
g —e— predicted (h?=0.8) s

o 1149 —+— predicted (h2=0.4) 2 4 03-
£ 4108 | —a— predicted (h?=0.2) g

S 1.06 1 g 1.021
X R
c 1.04 A §

g 3 1.01 1
< 1.02 &E

14 1-

1 10 50 100 500 1000 1 10 50 100 500 1000

# Causal variants

# Causal variants

Yang et al. 2011 EJHG



Estimating heritability and #causal from
genomic inflation factor
NK?r2s
n
(LD score regression is a more elegant solution)

* h% U~ 1+

* #eausal 2 U1

2—
1617 h?=0.74
c 1.5

3
3 1.4
1.3
1.2
1.1
1]

100 500 1000 2000 3000 4000
# Causal variants

Yang et al. 2011 EJHG

MLM based association analysis

* y=xb+Zu+eory=xb+g+e
V =var(y) = Ao’ + lo?,

» Testing for fixed effects given sample structure
b-hat = (x"V-1x)1x"V-1ly
va r(b-hat) = o'ze(xTV‘lx)'l Kang et al. 2010 Nat Genet

* Issue: a SNP is fitted twice (MLMi: MLM association
including the target SNP in GRM).



MLMe: MLM association excluding the target
SNP from the GRM

* Expected chi-squared values
Amean (LR) = 1+ NH2/ M

AMmean (MLMi) =1 Deflation: E(chi-squared) < 1 for null SNPs

Nh! | M

lmean (MLMC) = 1+ %

1-r°h,

Linear regression MLMi MLMe MLMe / MLMi

NB; I M +1-7°h; 1+Nhgz/Mq 1+Nhg2/M
) ol St B e "q e
Causal markers (Mq) 1+ Nh2 /M, Nth/M+1—r2hgz l—rzhg l—rzhé
ek 1-7°h} 1+Nhgz/M
Null markers (M-M,) 1 NE TM+1-7h 1 1= 722
Lmark 1+bﬂﬁ/Al 1+AM§/A{
) il Sl e
All markers (M) 1+ Nh2 | M 1 [ -

Yang et al. 2014 Nat Genet

Power comparison at causal variants

250 -
4 MLMi
© MLMe .
200 - R A
s o« o
—
2 150 - L A
- a
3 .
© ¢ o A
g ‘
[ A A
& 100 - o A
= (4 A
U -

100 150 200
Chi-squared (linear regression)



Selection of SNPs to compute the GRM

A-median

1.9-
18] ks
1.7
1.6
151
1.4
1.3
1.2
1.1
1.0

« Random markers

W Top associated markers

1,000 3,000 10,000 30,000 100,000
Number of markers

300

Figure 2 Effectiveness of mixed linear models using random or top
associated markers in correcting for stratification. We report average Anegian
(+s.e.m.) in 100 simulations with population stratification based on
N=10,000 samples, M = 100,000 markers, 2 discrete subpopulations with
fixation index (Fg1) = 0.005 and a mean trait difference of 0.25 s.d.
between subpopulations. Calibration of small P values is reported in
Supplementary Table 4.

Yang et al. 2014 Nat Genet

Computational challenge

# samples (V) | # markers (M) | GCTA-MLMi | GCTA-LOCO
5,000 50,000 0.3hr/2.0GB 1.0hr / 4.1GB
5,000 100,000 0.6hr / 3.0GB 1.4hr/ 5.2GB
10,000 50,000 1.3hr / 5.9GB 7.2hr / 14.3GB
10,000 100,000 2.5hr / 7.9GB 8.2hr/ 16.3GB
Yang et al. 2014 Nat Genet
a 10% 9 b
FaST-LMM-Select FaST-LMM-Select

——— GEMMA 3 ——— GCTA-LOCO

——— EMMAX 10 —— EMMAX

———— GCTA-LOCO ——— GEMMA

5 —— BOLT-LMM ) ——— BOLT-LMM )
10 ~———— BOLT-LMM:-inf ~———— BOLT-LMM:-inf

CPU time (h)

102_

Memory use (GB)

7,500 30,000 120,000480,000

Number of samples (N)

7,500 30,000 120,000 480,000

Number of samples (N)

Loh et al. 2015 Nat Genet




BOLT-LMM

Computationally efficient when the number of SNPs
is not large.

It uses a cross validation approach prediction
approach to specify models (infinitesimal model vs.
mixture normal model).

Leave-one-chromosome-out analysis as the default.

Computer practical

Simulating phenotypes based on a real GWAS data
set in GCTA

Linear regression analysis in PLINK

GCTA-MLMA analysis (MLMi)

GCTA-MLMA-LOCO

BOLT-LMM



Questions and discussion
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1: BLUP

Bruce Walsh lecture notes

Introduction to Quantitative Genetics
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9 - 10 Feb 2017

Estimation of Var(A) and Breeding Values in
General Pedigrees

The classic designs (ANOVA, P-O regression) for variance
components are simple, involving only a single type of relative
comparison. Further, they assume balanced designs, with the
number of offspring the same in each family.

In the real world, we often have a pedigree of relatives, with

a very unbalanced design. Fortunately, the general mixed
model (so called because it includes both fixed and random
effects), offers an ideal platform for both estimating genetic
variances as well a predicting the breeding values of individuals.

Almost all animal breeding is based on such models, with REML
(restricted max likelihood) used to estimated variances and
BLUP (best linear unbiased predictors) used to predict BV



The general mixed model

Vector of fixed effects (to be estimated),
e.g., year, location and treatment effects

Vector of
observations Incidence matrix for random effects
(phenotypes)
Y — XB + ZU + e Vector of residual errors
(random effects)
Incidence Vector of random
matrlx for effects, such as
fixed effects individual
genetic values (to
be estimated)
3
The general mixed model
Vector of fixed effects
Vector of
observations Incidence matrix for random effects
(phenotypes)
Y — XB + ZU + e Vector of residual errors
Incidence Vector of random
matrix for effects

fixed effects

Observey, X, Z.
Estimate fixed effects B

Estimate random effects u, e 4



Example

Suppose we wish to estimate the breeding values of

three sires (fathers), each of which is mated to a random female (dam),
producing two offspring, some reared in environment one, others

in environment two. The data are

Observation | Value Sire environment
' 9 1 1
Y1 12 1 2
Yo, 11 2 1
Y1 6 2 1
Ya1q 7 3 1
Yoo 14 3 2

Here the basic model is
Yie = By + up + ey
/ Breeding value of sire i
Effect of environment |

Y1,1,1 9
Y1,2,1 12
The mixed model vectors and y = yaua | _ | 1
matrices become y2,1,2 6
Y311 7
Y3,2,1 14

O O
-0 O O - O
N
I
OO O - =
OO - =O O
=0 000
@

I
/N
R
S
=
I
0~
£ =
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Means & Variances fory = Xp + Zu + e

Means: E(u) = E(e) =0, E(y) = Xp

Variances:

Let R be the covariance matrix for the
residuals. We typically assume R = 0 *|

Let G be the covariance matrix for the
breeding values (the vector u)

The covariance matrix for y becomes
V=2GZ"+R

Estimating fixed Effects & Predicting
Random Effects

For a mixed model, we observe y, X, and Z
B, u, R, and G are generally unknown

Two complementary estimation issues
(i) Estimation of g and u
B= (x‘f‘v ‘x) 1X‘V 'y Estimation of fixed effects
BLUE = Best Linear Unbiased Estimator
i=Gz'v™ (y X@) Prediction of random effects

BLUP = Best Linear Unbiased Predictor
Recall V=72GZT + R 8



Henderson's Mixed Model Equations

y=XB+Zu+e, u~(0,G),e~(0,R), coviue) =0,
If XisnxpandZisnxq

pxp pxq
(x"‘n“x X"R7'Z )(5) (x"‘n“y)
Z'R'X Z'R'Z+G™! u - Z'R 'y
axp axq

The whole matrix is (p+q) x (p+9)

Easier to numerically work f., _ (XTV lx) ! xTv 1y
with than BLUP/BLUE

equations s=cgzlv! (y _ XZ")
V=2GZ"+R T

Inversion of an n x n matrix

Standard Errors

A relatively straightforward extension of Henderson’s mixed-model equations
provides estimates of the standard errors of the fixed and random effects. Let the
inverse of the leftmost matrix in Equation 26.5 be

XTR X XTR 'Z /ey O
= (26.6)
Z'TR'X Z'R'Z+G ! cl,
where Cy, Cy3, and Cy; are, respectively, p xp, p x q, and g x g submatrices. Using

this notation, Henderson (1975) showed that the sam pling covariance matrix for

the BLUE of 3 is given by

o~

o(3)=Cn (26.7a)

that the sam pling covariance matrix of the prediction errors (i — u) 1s given by

and that the sampling covariance of estimated effects and prediction errors is
given by
oB.i—u)=C, (26.7¢)

(We consider G — u rather than G as the latter includes variance from both the
prediction error and the random effects u themselves.)



Let’s redo our example on slide 6
using Henderson'’s Equation

Trp-1y _ 1 (4 0 Tl _ (7Tp-1yx). _1(1 2 1
xTR x_6(0 2), xR Z_(ZR x) -1 01

100
G1+ZTRlzz§<o 1 o), xTR‘1y=1(33), ZTRly:l(
6 6 \ 26 6
001
The MM equations become Taking the inverse gives
401 2 1\ (4 33 B, 148
0 2101 B2 26 B2 1 | 235
115 00||zm|=]2 w (=15 | L
2 005 0| a 17 u2 2
1 10 0 5/ \us 21 3 —1

As found above
11

The Animal Model, y. = u + a, + ¢

Here, the individual is the unit of analysis, with
y; the phenotypic value of the individual and a; its BV

1 a

1 as .
X=1:.1 B=n u= . G=UjA,

1 ag

Where the additive genetic relationship matrix A is given by

A = 265, namely twice the coefficient of coancestry

Assume R = 0?.*], so that R = 1/(c?)*I.
Likewise, G = 0%,*A, so that G = 1/(c?,)*A".

The “animal” model estimates the breeding value for each
individual, even for a plant or tree! Same approach also
works to estimate line (genotypic) values for inbreds.



Returning to the animal model

Henderson's mixed model equations

XX X'z ) 3 X"y
Z'X Z'Z + A u Zly
here A =02,/ 0%, = (1-h?)/h?

This reduces to

Example

Suppose our pedigree is

10 012 o0
1 2 3 0 1 0 1/2 1/2
A=l o o 1 0 1

\4‘/\5‘/ /2 12 0 1 1/4
0 1/2 1/2 1/4 1

Suppose A =1 (corresponds to h? = 0.5). In this case,

52 1/2 0 -1 0

/2 3 1/2 -1 -
I+AA" = 0 1/2 5/2 0 —

-1 -1 0 3

0 -1 -1 0

WO



Suppose the vector of n 7
observations is ) 9
y=|ws | =10

Ya 6

ys 9

Here n =5, 2y = 41, and Henderson's equation becomes

5 1 1 1 1 1 i 41

1 5/2 1/72 0 -1 0 a) 7

1 1/2 3 1/2 -1 -1 @2 9

1 0 1/2 5/2 0 -1 az | | 10

1 -1 -1 0 3 0])\a 6

1 0 -1 -1 0 3/ \a; 9

Solving gives
a1 —662/689 —0.961
a0 s 4/53 0.076
ji = — ~ 8.302, a3 | =] 610/689 | ~| 0885
53 a4 —732/689 ~1.062 15

as 381/689 0.553

More on the animal model

* Under the animal mode|
-y=Xp+Za +e
— a~(0,0,2A), e~ (0, 0.2)
— BLUP(a) = 0,°AZ™V-1(y- XB)
— Where V =ZGZ" + R = 0,°ZAZ" + ¢ 2
e Consider the simplest case of a single observation on

one individual, where the only fixed effect is the
mean m, which is assumed known

— Here Z=A=1=(1),

- V=0,+0,

— 0,2 AZV = 0,2 /(0% + 0,2 = h?
— BLUP(a) = h2(y-w)



e More generally, with single observations on n
unrelated individuals,

~A=Z=1_
~ V=0,°ZAZ"+ 0 2| = (0> + 0 ) |
~ G 2AZV = R

— BLUP(a) = 0,°A ZT V-1 (y- XB) = h2(y- w)
* Hence, the predicted breeding value of individual i is
just BLUP(a) = h2(y.-u)
e \When at least some individuals are related and/or
inbred (so that A # 1) and/or missing or multiple
records (so that Z # 1), then the estimates of the BV

differ from this simple form, but BLUP fully accounts
for this

BLUP is a shrinkage estimator

e For a single observation on one individual,
BLUP(a) = h(y-u)

— The difference between the observed value (y)
and the mean (u) is shrunk by the factor h? ---

shrinks the estimate back towards the mean (zero
in the case of BVs)

e More generally, BLUP(a) = G ZT V- (y- XB)

— First adjusts observations (y) for fixed effects (Xp)
and then regresses this difference back towards

zero (the mean BV), as Cov*Var! is a generalized
regression coefficient



The Relationship Matrix A

* Typically given from a pedigree, but
increasingly being estimated from marker
data

e The diagonal elements indicate the amount
of inbreeding

- A, =1+ F, where F, is inbreeding coefficent for

individual i.
— For a fully-inbred, A, = 2

Marker-based relationship matrices

e There are two reasons for using a marker-estimated
relationship matrix
— Pedigree either unknown or poorly known

— With very dense markers, provides a better estimate than a
known pedigree. Why?

e Consider two (non-inbred) full-sibs. The expectation
under a pedigree is that they share exactly half their
genes.

* However, there is a sampling variance about this
expected value, so that some pair of sibs may share
more than 50%, while another may share less. Using
markers to detect such pairs improves the estimated
values

e This is called G-BLUP (in animal breeding) and is a form
of genomic selection

20



Marker-based relationship matrix

Simplest case is to consider a very large number (L) of SNPs, and
treat alike in state as IBD, and then compute the probability

f., that x and y share a randomly-drawn allele for each SNP marker.
Twice the average over all markers is the entry for x and y in the
relationship matrix (as A, = 2f,)

SNP genotype for x

5 00 | O1 11
g 00 1 05| O
e | o1 |05 05|05
%O: 11 0 | 05 | 1
Values for f,, given the SNP genotypes 21

Estimation of R and G

A second estimation issue concerns the covariance
matrix for residuals R and for breeding values G

As we have seen, both matrices have the form
02*B, where the variance o2 is unknown, but
B is known

For example, for residuals, R = 02_*|

For breeding values, G = 6%,*A, where A is given
from the pedigree

22



REML Variance Component Estimation

REML = Restricted Maximum Likelihood.

Standard ML variance estimation assumes fixed
factors are known without error. Results in downward
bias in variance estimates

REML maximizes that portion of the likelihood that
does not depend on fixed effects

Basic idea: Use a transformation to remove fixed
effects, then perform ML on this transformed vector

23

Simple variance estimate under ML vs. REML

REML adjusts for the
estimated fixed effect,
in this case, the mean

With balanced design, ANOVA variance estimates are
equivalent to REML variance estimates

24



Example

Suppose individuals 1 - 3 are measured, 4 & 5 are not.
Assume only a single fixed effect, the mean u.

1 0 0 1/2 0
M @1 ()7 0 1 0 1/2 1/2
A= 0 0 1 0 1/2
\ / \ / /2 1/2 0 1 1/4
@ @ 0 1/2 1/2 1/4 1
Model becomes
a
10 1 1 0 0 0 0 s €
6 =11 }p+10 1 0 0 0 az | + | es
8 1 0O 0 1 0 0 ay €3
as
25

Here | 1000 0
X=1|11]. Z=10 1 0 0 0
1 00 1 0 0

Letting Var(A) = 100, Var(e) = 100, V=27ZGZ" + R = 200* |

Solving gives

—0.50\ <-....
25)8 <<,....'Zi':':.:_:_:.;; Average base pop EBVs =0
a=| —200 |«
1.00 J< ..., EBVs for individuals (4,5) with no
0925/ <=7 phenotypic records

Key: Information from relatives provides estimates
for BV of unmeasured relatives.

26



G-BLUP Suppose marker data gives

Suppose we have maker data. A as

How does this change EBVs? .2 slightly inbred
1L 00 05 0

4 & 5 slightly
less related

than 1/2 sibs

G-BLUP Pedigree-BLUP
~0.69 B
2.62 2.50
a—|-159 a=|-200
0.80 1.00
0.25

0.30 27
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Genomic risk prediction
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Conceptual difference between estimation and
prediction

* Estimation: only a few parameters (e.g. 0°,and 0%,
are required to be estimated. Estimate !~ sample; SE
~ sample size.

Y=8 +e
var(y) = Ao?, + 1o,

* Prediction: all the SNP effects need to be estimated
with little errors. Prediction accuracy ~ discovery
sample size; SE ~ validation sample size.

vy=2Zu+e



Genetic risk prediction

) /' Totally

" independent

Heritability is the upper limit

* The accuracy of GBLUP prediction depends on SNP-based
heritability and M / N, ratio

hi

M a-ry
Ndhfd : Wray et al. 2013 Nat Rev Genet

R =

1+

where M is the effective number of independent SNPs.

0.8

o
o
I

R? from prediction
°
2

e
~

T T T T
100 1,000 10,000 100,000
Discovery sample size (N,



A common pitfall - sample overlap

’ U;i Two scenarios where the
08 prediction accuracy is
07 inflated due to sample
08 overlap

0.5

04 —4— Validation set excluded from GWASs and excluded
when estimating prediction equation

—#— Validation set included in GWASs but excluded

0.2 when estimating prediction equation

—#— Validation set included in GWASs and included

03

Correlation of actual phenotype with
predicted phenotype in validation set

01 when estimating prediction equation
°% 3 % 5 4 3 3 3 0
log(P value in GWASs)
b 3
y=-0.017 +0.757x
R?=0.57 » .
oo In-sample prediction (top 10 SNPs)
-
2
2 2
o
—4 o
. 3 B I 5 : ; ; Wray et al. 2013 Nat Rev Genet

Predicted phenotypic values

Genomic prediction vs. mid-parental prediction

Predicting human height by Victorian and genomic
methods

Yurii S Aulchenko*!*7, Maksim V Struchalin'*7, Nadezhda M Belonogova®*,
Tatiana I Axenov1ch Mlchael N Weedon?®, Albert Hofman'!, Andre G U1tter11nden
Manfred Kayser?, Ben A Oostra®, Cornelia M van Duijn?, A Cec1le JW Janssens! and
Pavel M Borodin®*

Department of Epidemiology and Bi istics and Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands;
2Labaml‘ory of Recombination and Segregation Analysis, Institute of Cytology and Genetics SD RAS, Novosibirsk,
Russia; *Department of Forensic Molecular Biology, Erasmus MC, Rotterdam, The Netherlands; 4Department of
Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia; Department of Genetics of Complex Traits
and Diabetes Genetics, Peninsula College of Medicine and Dentistry, Exeter, UK; ®Department of Internal Medicine,
Erasmus MC, Rotterdam, The Netherlands

In the Victorian era, Sir Francis Galton showed that ‘when dealing with the transmission of stature from
parents to children, the average height of the two parents, ... is all we need care to know about them’
(1886). One hundred and twenty-two years after Galton’s work was published, 54 loci showing strong
statistical evidence for association to human height were described, providing us with potential genomic
means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci

ic profile explained 4-6% of the sex- and age-adjusted height variance, and had limited ability to
discriminate tall/short people, as characterized by the area under the receiver-operating characteristic
curve (AUQ). In a family-based study of 550 people, with both parents having height measurements, we
find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted
he|ght variance, and showed high discriminative accuracy. We have also explored how much variance a

o T S

1) Common environmental effects?
2) Late onset diseases?

i
3) Parental data are missing? Aulchenko et al. 2009 EJHG



Current GWAS

Accuracy of prediction based on GWAS result is still very limited

Height n =~250,000

d  B-PROOF (n = 2,555)
= FRAM (n = 1,145)
= QIMR (n = 3,627)
. TwinGene (n = 5,668)

254 = WTCCC-T2D (n = 1,914)
Weighted average
20 == Predicted

Prediction R? (%)

50x10° 50x107 50x10° 50x10° 50x10* 50x107°
Threshold P value

Possible reasons

BMI n > 300,000

c

Prediction R?

7% s QIMR (n = 3953)

s TwinGene (n = 5668)

6% X
Weighted average

5.0E-08 5.0E-07 5.0E-06 5.0E-05 5.0E-04 5.0E-03 All

Threshold p-value

Wood et al. 2014 Nat Genet
Locke et al. 2015 Nature

* The polygenic architecture: too many variants of
small effects (the average variance explained by the
top associated height SNPs is ~0.02%).

* Sample heterogeneity: the effective sample size is
likely smaller than the reported.

* Modelling: one SNP is fitted at a time.



Summary-data based BLUP (sBLUP)

* GCTA-COJO: re-estimation of SNP effects using summary-level
data from GWAS/meta-analysis and LD correlation between
SNPs from a reference sample (Yang et al. 2012 Nat Genet)

b= (X'X)_IX'y and var(l;) = 0'12 (X'X)_1

ﬁ = D_lX'y and var(ﬁ) = 0'12\,1D_1

b= B_lDﬁ and var(b) = O'IZB_I

Multiple regression

Simple regression in matrix form

* Similar idea can be applied to performed a summary-data
based BLUP analysis (ridge regression) — GCTA-COJO-sBLUP

br = (XX +11) " 'Db = (R+11/n) " 'b

Peters et al. 2015 Nat Commu
Robinson et al. 2017 Nat Hum Behav

Summary-data based mixture model

LDpred: a mixture of random effect models

0.5F

o

c
2

Predicti

Prediction R?,,

Prediction R?,,

0.0

0.5F
0.4+
0.3}
0.2}
0.1}

0.0

0.5F
0.4}
0.3}
0.2
0.1+

0.0

0.4+
0.3t
0.2}
0.1H

T _RA o

DDD BDQD S Remf 0 |

8 T20 HT
CAD

vvvvvvv

s A N i I

[0 LDpred-inf
[ LDpred

[0 Unadjusted PRS
[0 P+T (LD-pruning + Thresholding)

Vilhja'Imsson et al. 2015 AJHG



Questions and discussion



Lecture 07:
Models with Multiple Random
Effects: Repeated Measures,
Maternal and Associative effects

Bruce Walsh lecture notes

Introduction to Quantitative Genetics
SISG, Brisbane
9 —-10 Feb 2017

Often there are several
vectors of random effects

* Repeatability models
— Multiple measures
e Common family effects
— Cleaning up residual covariance structure

e Maternal effects models

— Maternal effect has a genetic (i.e.,
breeding value) component



Multiple random effects

y=Xp+Za+Wu+e

y is a n x 1 vector of observations

B is a g x 1 vector of fixed effects

ais a p x 1 vector of random effects

uisamx 1 vector of random effects

Xisnxqg, Zisnxp, Wisnxm

y, X, Z, W observed. 3, a, u, e to be estimated

Covariance structure
y=XBp+Za+Wu+e

Defining the covariance structure key in any mixed-model

Suppose e ~ (0,6.2 1), u ~ (0,02 1), a ~ (0,052 A),
as with breeding values

These covariances matrices are still not sufficient, as we
have yet to give describe the relationship between e, a,
and u. If they are independent:

a 0 oc2-A 0 0
ul|~1{(0], 0 o2 -1 0
e 0 0 0 o1



a 0 o2-A 0 0
y=Xp+Za+Wu+e ul~|{0], 0 o1 0
e 0 0 0 o1
Covariance matrix for the vector of observations y
Var(y) = V=ZAZ" 0% + WWT52 + 152
Note that if we ignored the second vector u of random
effects, and assumed y = XB + Za + e*, then e* = Wu +
e, with Var(e*) = 6.2 | + 0,2 WWT
Consequence of ignoring random effects is that these
are incorporated into the residuals, potentially
compromising its covariance structure
5
Mixed-model Equations
X'X X'z X'w 3 X"y
ZTX  ZTZ+ MAT! ZTW al=| 2
WX w7z W'W + 21/ \d W'y

where

b
Q

gLV Rl V]

2
o
A=— and A\, = —



The repeatability model

Often, multiple measurements (aka “records”) are
collected on the same individual

Such a record for individual k has three components
— Breeding value a,

— Common (permanent) environmental value p,

— Residual value for ith observation e

Resulting observation is thus

—Zg =Wt At P tey

The repeatability of a trait is r = (0,*+0,%)/
Resulting variance of the residuals is 0,.% =

0,2
(1-r

) 0,2

Resulting mixed model

y=Xp+Za+Zp+e

0 oc4-A 0 0
~{o}.[ o &I o0
0 0 0 o1

Notice that we could also write this model as
y=Xp+Zla+p)+e=y=Xp+Zv+e v=atp

© TP

In class question: Why can we obtain separate estimates
of a and p?



The careful reader might notice that the two vectors of random effects, the breeding values
a and permanent environment effects p, enter the model as Za and Zp, respectively. Why
then do we simply not combine these, e.g, Zu where u = a + p? The reasonwe cannot do
this (and ind eed the reason we can estimate @ and p separately!) is that a and p have different
covariance strictires, ﬂi A versus ﬁg I. Thus, we assume that permanent environment effects
are uncorrel ated across individuals and are homosced astic. On the other hand, breeding val ues
generate covariances in relatives. Again, the critical importance of the covariance matrix to a
mixed model analysis is apparent.

The incident matrix Z

Suppose we have a total of 7 observations/records, with
3 measures from individual 1, 2 from individual 2, and
2 from individual 3. Then:

3/11\ 1 0 0

Y12 1 0 0

Y13 1 0 0 A p1
Yy=1|vya |. Z=10 1 0], a=|A2], p=|pe

Y22 0 1 0 A P3

Y. 0 0 1

3/:2) 0 0 l/

Why? Matrix multiplication. Consider y,;.

Yor =W+ A+ py + ey



Consequences of ignoring p

* Suppose we ignored the permanent environment
effects and assumed the model y = X + Za + e*
- Thene*=12Zp +¢,
- Var(e*) =02 + opz 777

e Assuming that Var(e*) = 6.2 | gives an incorrect
model

e \We could either

— use y = Xp + Za + e* with the correct error
structure (covariance) for e* = 6,2 | + 0p2 y74l

— Orusey=Xp +Za +Zp + e, where e = 6,2 |

The repeatability model was used by Estany et al. (1989) to examined the selection response
for litter size in rabbits. Their model assumed two groups of fixed effects, d; the year-season
(environmental) effect which had 22 levels in this experiment and the reproductive state /;
of the doe (] has three levels: [ for primiparious does, [3 for lactating does, and /> for non-
primiparious and non-lactating does). Since only two of these [, factors are estimable, [y
was assigned a value zero. Their model had three random effects, a;, and py, for the additive
genetic and permanent environmental effect of the kth doe, and the residual ¢, giving the
overall model as
Yewei = b+ i + dy + ag + pr + €erei

where if;1.¢; denotes thelitter size for the fthlitter of doek in reprod uctivestate i in season-year
t.

In matrix form, the mixed-model becomes
y=XB8+Za+Zp+te

where aand p aren x 1 vectors corresponding to the n does, Var(a) = ﬂi A, Var(p) =
nr;z I,and Var(e) =« f I X and Z are incid ent matrices, and the vector of fixed effects is



Resulting mixed-model equations

XTX X7z X77 3 XTy

ZTX  ZTZ 4 A A YA/ al=12z"

yADS YA/ Z'Z + A1 p Z'y
where 2 _ P .
Aq = ﬁ% =3 and A, = ,7_:2) r—

Common family effects

Sibs in the same family also share a common
environment

— Cov(full sibs) = 6,%/2 + 0p?/4 + 0.2

Hence, if the model assumesy, = u + a, + ¢, + e, with
a~0,0,%A, c~0,0l Ifthere are records for
different sibs from the same family, Var(e) is no
longer ¢ 2|

y=Xp+Za+Wc+e

Again, if common family effect ignored (we assume
y = XB + Za + e*) the error structure is e* = 6,2 | +
0'cf2

— Where 0 =0p?/4 + 0,2

— The common family effect may contain both environment
and non-additive genetic components



Example: Measure 7 individuals, first five are
from family one, last two from family 2

y=Xp+Za+Wc+e

Y11 Ay 1 0

Y2 \ ‘42\ 1 0

Y3 As 1 0 .
v=|wys |. Z=1, a=|As|. W=]|1 0 c= ("

Y A 1 0 ©

v Aq 0 1

Y / ‘47) 0 1

Z = | as every individual has a single record.
If there are missing and/or repeated records,
Z does not have this simple structure

y=Xp+Za+Wc+e

Y11 \ Ay 1 0

Y2 Ay 10

Y3 Ag 1 0 c
v=| vy |, Z=1, a=| Ay |, W=]1 0 c=((_i)

Ys As 10 -

Ys Ag 0 1

Yz ) .-47) 0 1

Again, matrix multiplication gives us the form of the Z and
W matrices. Consider y;:



Maternal effects with genetic
components

The phenotype of an offspring can be influenced by
its mother beyond her genetic contribution

For example, two offspring with identical genotypes
will still show potentially significant differences in
size if they receive different amounts of milk from
their mothers

Such maternal effects can be quite important

While we have just discussed models with common
family effects, these are potentially rather different
that maternal effects models

— Common family environmental effects are assumed not to
be inherited across generations.

Consider milk yield. The heritability for this
trait is around 30% and the milk yield of the
mother has a significant impact on the
weight of her offspring

Offspring with high breeding values for milk
will tend to have daughters with above
-average milk yield, and hence above
-average maternal effects

The value of an offspring can be considered
to consist of two components

— A direct effect (intrinsic breeding value)

— A maternal contribution



Phenotypic value = direct value + maternal value

P,=Pq+ P,
e \.~

Observable Latent (unseen) values

Both of the latent values can be further decomposed into breeding
plus residual (environmental + non- additive genetic) values

Py=u+ A+ Ey, P,=u+A,+E,

The direct breeding value A, appears in the phenotype of its
carrier

The maternal breeding value A, DOES NOT appear in the
phenotype of its carrier, but rather in the phenotype of her
offspring

Direct vs. maternal breeding values

e The direct and maternal contributions are best
thought of as two separate, but potentially
correlated, traits.

— Hence, we need to consider o(A4,A,,) in addition to ¢ %(Ay)
and 0 %(A,,). This changes the form of the mixed-model

equations
* The direct BV (A) is expressed in the individual
carrying it
* The maternal BV (A,,) is only expressed in the
offspring trait value (and only mom’s A, appears)

20



Covariance structure

aq 0 UQ(Ad) A O-(Ade Am) A
a,, 0/ \o(As, A, )A  02(A,)A
This is often written using the Kronecker (or direct) product:
(l‘“B (l‘lnB
A®B= : . :
(l'mlB e mn B
Giving
ag 0 0-2(‘4(1) O-(Ad“ Anz)
~ G2 A G = |
A, 0 O-(A(lf Am) O"‘)(Am)

The mixed-model becomes

Direct effects
breeding values

y=Xp+Zjay+Z.a, +e

/

Maternal effects
breeding values

The error structure needs a little care, as the
direct E4 and maternal E_ residual values can be
correlated*. Initially, we will assume Var(e) ~ .2l

*See Bijma 2006 J. Anim. Sci. 84:800-806 for treatment

of correlated environmental residuals under this model -



The resulting mixed-model equations become

XTX XTZ(I XTZS /B XTy
Z, X" ZYZo+MAT' Z)Z,, 4+ NAT a; | =| Zjy
ZmXT Z;IIV;Z(I + /\ZA_l Z;Ir'er + /\3A_l am Z;Iny

where the weights \; are related to elements in the inverse of G, viz.,

' 1
’\1 ’\2 2 -1 _ 2 02(*4(1) 0-(*4(1-*4771)
(,\2 ,\3) =0 G = G4, A, oA,

23

Filling out the maternal effects
incident matrix Z,

A little bookkeeping care is needed when filling out Z,,, because the A
associated with a record (measured individual) is that of their mother.

d 4 1-7 have
— records

All sires

unrelated
— O f

g 7 24




4 Ag + Ao

O,

Ad2 + Am1

o @
@ Age + A
Agr + Ao @

Agz + Ay Vi

Ad5 + AmZ

Ad7 + Am3

The observed values are y, through y;.
What we can estimate are A, through A,
A o through A

25
/ Y1 \ A \
Y2 Ad2 _‘47” o
Y3 Ad s A
Y= Yy B ag = ‘4(1«1 P Zd =1, am = '_17 1.‘
Ys Ads . 4"' 2
“1m.3

Ye A d,6
\yr ) \ Ad7 ]
Note that we estimate A, even though we don’t have a
record (observation) on her.

Since Z,,a,, must be a 7 x 1 matrix, Z,,is 7 x4 (as a,, is 4 x 1)

Record 1 is associated with A, 4
Records 2 and 3 are associated with A,

Records 4 and 5 are associated with A,

Records 6 and 7 are associated with A5 26



Record 1 is associated with A,

Records 2 and 3 are associated with A,

Records 4 and 5 are associated with A,

Records 6 and 7 are associated with A 5

1

Zm = 0

C OO O =F=O
SO OOoOCO

What about A, through A_-?

0

as

Zm a4, =

|

O OO O == O

C O m=O0o0o

Amo
A m, 1
A m,2
Ans

27

Although we have records that only directly relate A, to A3, through the use
of A we can (in theory) also estimate the maternal breeding values for
individuals 4 through 7. Note this includes the maternal BVs for the two males

(5 & 7), as they can pass this onto their daughters.

Z:, =

m

1
0

OO OO == O

SO == OOO

_—_-—0 O O O O

SO OO O OO

OO O O OO

OO OO O OO

0

m -

el

A m,0

=

M M e b M

-

Am,

(=

-~

m,

m,

-~

m,7

@D wr = W =

S——

28



Note that

1 00 000O0O0 (j\ Ao
00100000 0}f™ A
001000000 4 A,
Zia=10 010 0 0 0 0 4‘ = | Ao
0010000 0ff"™ A2
0001000 0[f™ Am3
\0 00 10000 \‘4’"-‘_5) \.«m.g/

All this raises the question about what can, and cannot, be
estimated from the data (y) and the design (Z,,, Z)?

First issue: Is the structure of the design such that we
can estimate all of the variance components. This is the
issue of identifiability

29

Estimability vs. Identifiability

Details: Identifiability of Variance Components

Due to potential confounding of effects, any particular design might not allow for all vari-
ables of interest tobe uniquely estimated. For the vector 3 of fixed effects, this is the concept
of estimability (LW Chapter 26). For z ~ (X3.V), the vector of fixed effects is estimable
(all have unique values) if (XTVIX)~! exists. Otherwise, some of the fixed effects are
confounded and cannot be separated by the design (X) being used. With (co)variance com-
ponents (often called dispersal parameters), a similar concept, identifiability, also exists.
If variance components are not identifiable in the design, then BLUPs for their associated
vectors of random effects do not exist.

30



Condifions foridentifiabili ty of REML estim ates of (co)variance com ponents are given by Rothenberg (197 1),
Jiang (1996), and Cantetand Cappa (2008). Before presenting these, wefirstreview a few details about REML.
Recall (LW Chapter 27) that REML estimates are those that maximize that part of the likelihood function
thatis independentof the fixed effects (this is often stated as being the translationinvariant part). Let V be
the covanance matnx of z, which is a function ofits variance com ponents. As detailed in LW Chapter 27,
Harville (1977) shows that (if it exists) the transformation provided by the matnx

P=v ' vIXX"v'x)“'x"v-! (1a)
plays acritical role in REML estimates. Thatthis matnx can remove fixed effects can be seen by noting that
Pz -V~ (z—xﬁ) (1D)

yields a vector that is the data vector adjusted by the (estimated) fixed effects. Now consider covanance
structures of the form

V=)V, (2a)
=1

where V; 1s a matnx ofknown constants and the #; are unknown variances and covanances to be estimated.

31

The equations to maximize the likelihood over the restricted space (the REML estimates) are given by
LW Equations 27.18 and 27.19, and are solved iteratively. These equations involve the trace (sum of the
diagonal elements) of matnx products involving P and the V;. Recall (LW Appendix 4) that fora vector @
of n unknowns, the Fisherinformation matnx F (the matnx of second partial denivatives of the likelihood
with respect to the parameters) can be used to provide large-sam ple standard errors. The resulting » x n
information matnx for REML estimates of the unknown #; in Equation 2ais

F,‘J' =trace[PV,~PVJ-) [2])]

Much in the same fashion that the existence of (X7 V~!'X)~! informs us that all fixed effects are estimable
in a given design, all variance com ponents #; are identifiable if all of the eigenvalues of F' are positive, that
is, that F'is positive-definite (Rothenberg 1971, Jiang 1996). For the matemal effects mixed model, Equation
2a becomes

V =V o (A4) + Vao(Ap A) + Vo2 (A) + Vyo? (3a)

where B B
V) = Z4AZY. Vy = (z,,Az’

m

+z,,,Az’f,'). Vi = Z,AZ'. V=1 (3b)

Substituting Equations 1a and 3b into Equation 2b fills out the F matnx (which is only 4 x 4 in this case
given the four unknown variance com ponents). For any particular design, the eigenvalues of this matnx
can be com puted to determine if the variance com ponents are all identifiable.

32



Second issue, connectivity

Even if the design is such that we can estimate all the genetic
variances, whether we can estimate all of the B, ay, and a, in the
model depends on whether a unique inverse exists for the MME

x7'x X"Z, X"z, 3 X"y
Z X" ZYZa+MAT' ZYZ,+ AT || ag | = | Zly
ZmXT Z,I” Zd + /\'.E-lA_l Z,]” Zm + )\ISA_J Am Z,]n Yy

Unique estimates of all the B require (XTV-1X)-! exists

If XTV-1X)-" does not exist, a generalized inverse is used
which can uniquely estimate k linear combinations of the
B where k is the rank of XTV-1X

33

Likewise, if the MME equation does not have an inverse (and this is not
due to constraints on B), then a generalized inverse can be used

to estimate unique estimates of certain linear combinations of the
aqand a,,.

XX X" X'z, 3 X'y
ZcIXT Z;II‘Z(I + )\IA_J Z;]I‘Zm + /\’JA—I ad = Zzlly
Zn X' ZrZa+ A" Z1Z. + MA™! Am Zhy

A key role in ensuring that unique estimates of ay and a, exist is
played by the relationship matrix A. If individuals with records and
individuals without records are sufficiently well connected (non-zero
entries in A for their pair-wise relatedness), then we usually can
estimate values of un-observed individuals (although their precision is

another issue)
34



Associative effects models

* A very powerful recent development in quantitative genetics
(although the idea dates back to Griffin's work in the 1960s) is
the notion of direct vs. associative (or social, or indirect genetic)
effects

* This idea unifies kin and group selection, offers models for the
evolution of social (group-level) traits, and shows why selection
can often fail

* The basic idea is that the phenotype of a target individual is a
function of some intrinsic direct value and also the phenotypes
of those individuals with which it interacts.

35

Direct & Associative effects

e Consider egg production from chickens
raised in cages. Production is a function of
both a chicken’s own genetics and the
environment (her other cage-mates)

— Direct effects = intrinsic egg production
— Associative effects = competitive ability

e Suppose our focal individual (i) interacts with

n-1 others in a group

JFi 36



Direct and associative effects
can be antagonistic

e Consider a plant with a trait that allows it to
more efficiently garner resources

e This gives it a high direct effect but a
negative associative effect --- it reduces the
trait values in those individuals with which it
interacts

® Thus, the best performing single plants can
have very low average plot performance

37

Breeding values for direct (A) and
associative (A,) effects

e Can express the phenotype of i in terms of its
direct breeding value (A4;) and the
associative breeding values (A, ) of its group
mates

Zi = WU -+ (.""1(1'- + 15(1; ) + Z (-;fl.‘;.j + ]5“1)

G

2z =+ Ag, + Z A, + e, e; = Eq, + Z E,,
j#i

JF

38



Total response

The trait mean equals the mean of the direct effects
plus the means of the associative effects,

fo =pa, +(n—1)ua.

Total response is the sum of the response R} in the direct
breeding values plus the sum of the responses R, in the
associative effects breeding values,

R.=Rq+ (n—1)R,

39

Total breeding value

The key to predicting response is the
total breeding value of an individual, where

*471i==*4dj *‘(”-_'1L43i

Note that part (A, )
of the total breeding value
of i never appears in its

%1
/ \\A phenotype. Must either
5,1
As.l Ag |

Aq |

use informative from relatives

or the group to estimate it.

AT = +3A
1=4Aq) 5,1 40



h2 and 12

e 12, the analog for h?, is the ratio of the total
breeding value to the individual phenotypic
variance

— 1 = Var(Ay)/Var(z)
e Note that, unlike h?, 2 can exceed one,

e Why? A potentially large fraction of A; never
appears in z, and hence Var(z)
— Var(A;) = Var(Ay) + (n-1)Var(A)
— 12 =Var(Ay) /NVar(z) + (n-1)Var(A)/Var(z)
— =h?+ (n-1)Var(A)/Var(2)

41

BLUP estimation

e While the total breeding value cannot be
estimated directly from an individual's
phenotype, using an appropriate mixed
model, we can obtain

— BLUPs of Direct breeding values (Ay)
— BLUPs of Associative (or social) BVs (A,)

— REML estimates of 62(Ay), 0%(A), and the
direct-associate effects covariance o(A, A,

42



This works: Muir's result

® Bill Muir (Purdue University) selection on
six-week weight in Japanese quail over 23
generations using two different schemes

— BLUP selection on estimated direct BV (D)
¢ Denoted by D-BLUP

— BLUP selection on estimated total BV
® Denoted by C-BLUP

43

120 e
[0 === = total BV T
“_L:Erﬁ 0o o oo~ C
1001 2 =TT O [:* *" H
E CL“:r—"“, 2k - B
.‘E A_—-,.; ﬂi D
g w0 0 g * .
70 o
60 >
5(
1 g | 13 1 19 1T 23
HATCH

Weighted increased under selection using total
BV (C), decreased under selection using
direct BV (D).
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Under BLUP selection on direct BV (D), significant
decline in the mean social value, which over-rode
the positive response in the direct value

Under BLUP selection of total BV (C), both increase
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The mixed model

szﬁ'f'zdad'f' Zsas +e

Example: Individuals 1-4 and 5-8 are half sibs
from unrelated families

/ 1 025 025 025 0 0 0 0\
025 1 025 025 0 0 0 0
025 025 1 025 0 0 0 0

025 025 025 1 0 0O 0 0

A=l 0 0 0 0 1 025 025 0.25
0O 0 0 0 025 1 025 025

0O 0 0 0 025 02 1 025

\o 0 0 o0 025 025 02 1 /



Filling out Z,

* Suppose group one contains individuals 1, 2, 5,
6. The resulting values for these individuals
become
—z;=m+ Ay +tAL+tAsHA, T e
-z, =m+Ap+A,+tAs+A, e
—zZs=m+As+A,+tA, +tA, + e
—zg=mtAgtAGtAgtAste

The result Z, and Z; incident matrices become
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Z=X6+Zdad+zsas+e

1 1 Aay 10000000
22 1 Ay 01 000000
2 1 Ags 00100000

) 24 1 Ags 00010000

L XK= A Ags +Za=lg 0001000 T
% 1 Ads 00000100
27 1 Aaz 00000010
\:g) \1) \.4.,,8} 00000001

Group one contains individuals 1,2,5,6; while group two contains 3,4,7,8.

01001100 Ay
(1 000110 0\ (.4.“_3\
00010011 Ags
00100011 A,y
Zs=ly 1000100 ®7|Aa.
11001000 Ags
00110001 Agn
00110010 \4“_8) "



Lots of hidden variation to exploit

e Bergsma et al. (2008) examined four
traits in 14,000 pigs grown in pens of
6-12 animals.

e Heritability for these traits was
estimated in a model without social

effects,
Growth Back fat Muscle Intale
a?( A) 2583 2.83 7.94 41,275
h? 37 0.36 0.25 041
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Next, amodel was fitallowing forheritable social effects, z = X3+ Zgaq + Za, + Z.c +e, which
gave estimates of

Growth Back fat Muscle Intake
a?(Ag) 1522 2.75 6.68 16,950
h? 0.21 0.35 0.21 0.17
a?(Ag) 51 0.01 0.03 596
a?(Ay) 5,208 3.19 10.35 68,687
T2 0.71 041 0.32 0.70
Here h% = o0?(Aq)/o?(2), while 72 = o2( Ay )/0?(2). h% measures the response potential under

phenotypic selection, while 72 > /3 measures the total genetic potential for improvement under
specialized selection designs.

Growth Baclk fat Muscle Intalee
a?( A) 2583 2.83 7.4 41,275
h? 37 0.36 0.25 041

Hence, for growth and food intake, lots of
additional genetic variation for trait response
lies “hidden” in associative effects.

50



Lecture 8:

Infinite-dimensional/Function-valued
Traits: Covariance Functions and
Random Regressions

Bruce Walsh lecture notes
Introduction to Quantitative Genetics
SISG, Brisbane
9 -10 Feb 2017

Longitudinal traits

* Many classic quantitative traits are longitudinal --
measured at multiple time points --- milk yield, body
size, etc.

* We have already examined the repeated-measures
design wherein an identical trait (assumed to be
unchanging) is measured multiple times.

* For most longitudinal traits, we expect the trait to
change over time, such as a growth curve.

e These are function-valued traits, also called infinite-
dimensional traits.

® One critical feature of such traits is that their additive
variances change with t, and trait values from
different time points have different correlations.
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Figure 3 - Mixed logistic growth curves (---) fitted for all progeny of'sire 1(24 males and 32 females)

and all progeny of sire 57 (20 males and 59 females) and associated average growth
curves (—).

Sci Agric. 66: 85-89

Norms of reaction

* The other type of function-valued trait is one indexed by some
continuous environmental variable (as opposed to time), such
as adult body weight as a function of temperature or grain yield
as a function of total rainfall.

e The measurement of such traits generally requires replication of
individuals over environments (versus the sequential evaluation
of a single individual with longitudinal traits). As with G x E, this
can be done

— Using clones/pure lines
— Using family members

e Such curves are common in ecology & evolution and are called

norms of reaction, and are measures of G x E
— Norms of reaction measure phenotypic plasticity --- variation

that can be expressed from a fixed genotype, which is often
an important adaptation in changing environments.
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Figure 18-6
Introduction to Genetic Analysis, Ninth Edition
© 2008 W. H. Freeman and Company

How to model such traits?

* One obvious approach is to treat the trait measured at discrete
time points as a series of correlated traits.

— Makes sense to do this for something like parity (litter
number), as individuals are all measured at the same event,
i.e., parity one, parity two, etc.

— However, with a trait like a growth or some performance
curve, we often expect to have different time measurements
for different individuals.

* We could either lump these into groups (reducing
precision) or treat each different time/tuning variable
value as a different trait (much missing data).

— Better solution: estimate the trait covariance function, where
Clty,t,) = Covlz(ty),z(t,)] or Cov[A(t;),Alt,)]




Covariance function approach

e Kirkpatrick popularized the use of covariance functions (largely

in evolutionary biology) in the mid-late 1980’s.

He noted that traits measured with respect to some continuous
indexing variable (such as time or temperature) have effectively
infinite dimensions, as one could (in theory) always consider
finer and finer time scales.

— Thus, rather than treat them as a (potentially) every-
expanding set of discrete correlated traits, better to simply
consider the covariance Cft;,t,) between any two time
points within the range of the sampled data. Note that
C(t;,t;) is the trait variance at time t,.

— C(t,,t,) is the covariance function, the logical extension of

the covariance matrix C(i,j) used for correlated traits, using
continuous, rather than integer, indexes.

Covariance functions (cont)

As with any quantitative trait, the covariance between the
values at two time points can be decomposed into an additive-
genetic (breeding value) covariance function and a residual (or

environmental) covariance function,
- C,ty,t) = Calty,ty) + Celty 1)
The issue in the estimation of the additive covariance function is
how one proceeds from an additive-covariance matrix estimate
G from discrete time points to a continuous function covering
all possible values with the span of time sampled to estimate G.
— Basic (initial) idea: Use curve-fitting based on low-degree
polynomials to use G to fit a covariance function
— This is typically done by using Legendre polynomials as the
basis function.




Riska et al. (1984) data on breeding values for log(body weight)

2 3 4

The basic idea was illustrated

by Kirkpatrick with a data set 436 522 424

on mouse body weight measured

at ages 2, 3, and 4 weeks. Riska é = | 522 808 665
et al. estimated the G matrix as 424 665 558

Plotting these values on
a lattice at these discrete
time points gives

ADDITIVE GENETIC
COVARIANCE
. | I E——
P
w
=
—_——-
|
- —_—a

Ideally, would like some sort of .
smooth curve for this data.

Towards the covariance function

* Suppose we assume the breeding value at time t (for
2 <t < 4 weeks) is in the form of a quadratic, so that
individual’s i breeding value is given by
— Here the a; (for 0 < j < 2) are regression

coefficients unigue to individual i, and are
unchanging over time.

e A different individual (j) also has a quadratic
regression, but with different coefficients
— 2
- Al =a,+a;t+a,t”
— the a; are referred to as random regression coefficients, as
they are random (drawn from some distribution) OVER

individuals, but constant over time WITHIN an individual.

10



Towards the covariance function (cont)

We can think of these random regression coefficients
as being drawn from a distribution:

2
ap 05  Oo1 Oo2
2
ap | ~0,Cqg. where Cgq=|o00n o] o1
(5] Tn2 T12 03

Ideally, we would like to use our estimate of G to make
inferences on the elements in Cg.

We can write the additive value in time t for individual
iasa'*t, where =a'=(ag a,, a, andth = (1, t, t?

"1

Towards the covariance function

The regression A(t) = a,_ + a,t+ a,t?=alt
yields the covariance function, as the value
of the vector t for different times are

constants, giving

COV[Ai(t1), Al(tz) ] = COV[aiTt1, aIth]
= t1T COV(aI,'aI) t2
=1, Cg t,

This is a bilinear form (the generalization of a
quadratic form).

12



a5 Oo1 Oo2 1
2] 2
=(1 &ty t1)| o0 o7 o012 to
2 2
Op2 O12 03 t3

Expanding gives

Cov[A(ty), A(ta)] = o5 + 001 (t1 + t2) + ooa(t] +t3)
+ ottty + o1a(t] ta + t1 t3) + 05 t7 15

More generally, fitting an m-th degree polynomial for A gives
the product of two m-degree polynomials for the covariance function

m

As(t) =) agt!

j: 0

m m

Cov[A;(t1), As(t)] = Y > ajt]h

7=0 k=0 13

Kirkpatrick estimated to covariance function

for the Riska data by assuming an individual’s breeding
value over time can be modeled by 2nd degree
polynomial. The resulting covariance function

gives the following surface:

ADDITIVE GENETIC

COVARIANCE

Estimated additive-genetic covariance function
14



Details

e Before building on these basic ideas to estimate the
covariance function, some background on Legendre
polynominals is required, as these are used as the basis
functions (building blocks) for curve-fitting instead of the
set (1, t, t2, ...t

— Specifically, we could approximate a function f(t) by
the k-th degree polynomial f(t) = =« at'.

— Instead, we approximate it by a weighted sum of the
functions ¢q(t), ¢4(1), ..., ¢ (t), where o(t) is a
polynomial of degree j (the Legendre polynomial of
orderj, for0 <j<k), using f(t) = =< b, ¢.(1).

15

Legendre Polynomials

For curve-fitting, orthogonal polynomials are often used, where ¢,(t)
denotes a k-th degree polynomial. The set of these building

blocks ¢, (t), ¢41(t), ... ¢ (t) .. are defined to be orthogonal in the sense
that the integral of ¢(t) q)j(t) = 0 when i and j are not equal. We also
assume they are scaled to have unit length, with the integral ¢2(t) = 1.

For-1<t<1, the first five scaled Legendre polynomials are given by

hot) = 0.7071

O,(t) = 1.2247 t

d,(t) = -0.7906 + 2.3717 t?

d5(t) = -2.8062 t + 4.6771 3

d4(t) = 0.7955 - 7.9550 t2 + 9.2808 t*
ds(t) = 4.2973 t- 20.5205 t3 + 18.4685 t°

For example, the curve y = a + b t can be written as

y = a/(0.7071) ¢o(t) + b/(1.2247) ¢,(t) for-1 <t < 1.

More generally, any k-th degree polynomial can be written as

AT q)i(t) 16



dot) = 0.7071
0,(t) = 1.2247
d,(t) = -0.7906 + 2.3717 2
d5(t) = -2.8062 t + 4.6771 3
d4(t) = 0.7955 - 7.9550 t2 + 9.2808 t*
ds(t) = 4.2973 t- 20.5205 t3 + 18.4685 t°
oo(t) 1
o1(t) t
In matrix form, ¢ = Mt, where ¢ = Z“;E;; t= ;3
@4(t) t!
@5 (1) t°
j-th row of M are the coefficients for the jth Legendre polynomial
0.7071 0 0 0 0 0
0 1.2247 0 0 0 0
Mo | —07906 0 2.3717 0 0 0
Row 4 = 0 —2.8062 0 4.5777 0 0
coefficients  ....oer > 0.7944 0 —7.9950 0 0.2808 0
for ¢ 0 4.2073 0 9205205 0 184685
1 t t t t4 £

17

How do we write the following 5th order polynomial in terms of
Legendre polynomials?

y =4 —6x+ 1422 + 262° + 502* — 1102°

4 1

—6 x

Note that y = a"x, where a= éé . X = i;

50 2t

—110 2’
@D(l‘) 1 1 (f)g(.‘l.‘)
o1(x) T x o1(x)
oo(z) | x? . - z? g1 | o2(x)
ba(z) | = M 3 implies B = M 6a()
oa(x) ;1.'? ;17? oOa(x)
o5(x) x? x? os(x)

Giving x = M1¢. Sincey = a'x = a’M-'¢, weights on Legendre
polynomials are given by a'™-!
18



Weights are given by a™™"!

(1 L2 L3 L4 L3 [E]

[1,] 0.7071 0.0000 0.0000 0.0000 0.0000 0.0000
[2,] 0.0000 1.2247 0.0000 0.0000 0.0000 O.0000

R returns 03,1 -0.7906 0.0000 2.3717 0.0000 0.0000 0.0000
[4,] 0.0000 -2.8062 0.0000 4.5777 0.0000 0.0000
[5,] 0.7944 0.0000 -7.9950 0.0000 9.2808 0.0000
[6,] 0.0000 4.2973 0.0000 -20.5205 0.0000 18.4685
> t(a)%*%solve(M)

L,1] L, 2] L,3] .4 L.3] L.6]
[1,] 26.51006 -32.1633 24.06409 -21.01970 5.387467 -5.956087

Giving y = 26.51006*y(x) -32.1633 *¢;(x) + 24.06409 *¢,(x)
-21.01970 *s(x) + 5.387467 *@,(x) -5.956087 *¢s(x)

More generally, any k-degree polynomial y = a"x, can be expressed as a
weighted series of the first k+1 Legendre polynomials ¢y, .., ¢, where the
weights are a™M-1. M is (k+1) x (k+1), with the jth row being the
coefficients on x for the j-th order Legendre polynomial.

19

The Covariance function in terms of
Legendre polynomials

* Express the trait breeding value for individual i at time t, by an
m-th order polynomial,

Alt) = Z™ ay ¢y (t), where a; ~ 0, Cg
— Define the vectors

o ¢,(1) = (Do), d¢(1), ..., (1) )T, which we often write as
just ¢, or ¢ for brevity

® a =(ag ay, -y @iy )"

* Hence Ai(tj) = ¢m(t)Tai - aiTq)m(t)'
o CoVv[A(ty), Alt) 1= COV[aiT dmlty), aiT Orm(to)]
o Cov[Aty), Alty) ] = ¢n(t)T Cg dn(ty)

20



Covariance function (cont)

o CovlA(ty), At = 0 (t)" C dp(t)
e Recall fort, = (1,t,t3 ..., t")" that

- ¢,(t) = Mt, where M is the (m+1) x (m+1) matrix
of coefficients for the first (m+1) Legendre
polynomials

e Substituting in ¢(t) = Mt yields
— CovA(t), Aty ] = t,TMTC5M t,, or
— CovIA|(ty), Aty) 1 = t,THt,, with H=MTCM

* This allows us to express the covariance function in
terms t, and t, directly

21

From G to Cg

* The key component to the covariance function is the
covariance matrix Cg for the additive genetic random
regression coefficients. How do we obtain this?

¢ We start with what Kirkpatrick called the “full
estimate”

— Given an estimated G matrix of the trait measured

at m time points, we can describe trait breeding
value as an m-1 degree polynomial

— This is done as a weighted combination of the first
m Legendre polynomials, ¢q, ¢, ... ¢\

- Gy = CovIA (), Alt) ] = ¢,,(t) Cg onlt)T

22



The full estimate does an element-by-element matching of G

to functions of ¢,,(t) (which are known constants) and Cg.

Gll Glm

G = . where Gy = (j>7 (t:)Gool(t;)
Gml e Gmm
" (t)Ggp(t1) - ¢ (t1)Gad(tn)

ST (tm)Gd(t)) - T (tm)GCd(tm)
@' (1) $(t1)

= : Gol| @ |=2"Ge®
@ (tm) B(tm)

23

T iy 1 -
G=0"G® implies Go = (@) Go”
where
(P,IT‘(fJ) Gol(ty)  o1(ty) -+ Gmoi(th)
&7 @ (t2) Oo(ta)  o1(t2) -+ GOm-1(ta2)
¢)T([‘m ) C’D([m ) ol (f m ) e C’m —1 (['m )

Note that ®@ is a matrix of constants --- the Legendre
polynomials evaluated at the sample time points. Note
that time points are scaled to be within (-1, 1), so
ordering time on the original scale as T, < ... <T_, scaled
values are given by t = 2(T. - T)/(T, - T,) -1

24



Example: Riska’s data

436.0 522.3 424.2
G = | 5223 R08.0 664.7
4242 664.7 558.0

oo(—1) o1(—1) oa(—1)\ < 2weeks, t=-1
P = ®0(0) o1(0)  02(0) < 3weeks, t=0
oo(l) o1(1) o2(1) < 4 weeks, t =1

0.7071 —1.2247  1.5811
= | 0.7071 0 —0.7906
0.7071  1.2247 1.5811

25

» 1348.1 666 —1117
Ge=(2") Gl | 666 212 —140
1117 140 145

> G<-matrix(c(436.0,522.3,424.2,522.3,808.0,664.7,424.2,664.7,558.0), nrow=3)
>0

11 L2 3]
[1,] 436.06 522.3 424.2
[2,] 522.3 808.0 664.7
[3,] 424.2 664.7 558.0
> Phi<-matrix(c(0.7071,0.7071,0.7071,-1.2247,0,1.2247,1.5811,-0.7906,1.5811), nrow=3)
> Phi

[,1] [,2] [,3]
[1,] 0.7671 -1.2247 1.5811
[2,] 0.7071 0.0000 -0.7906
[3,] 0.7671 1.2247 1.5811
> solve(Phi)%*% G ¥*% solve(t(Phi))

[,1] [,2] [,3]

[1,] 1348.14866 66.55166 -111.68492
[2,] 66.55166 24.26844 -14.01216
[3,] -111.68492 -14.01216  14.50677

26



The resulting covariance function becomes

Cov(t1,t2) = ¢" (t1)Gol(ta)

1348.1  66.6 —111.7\ [ 60(t1)
— (6o(t1) é1(t1) oo(t))| 666 242 —14.0 é1(t1)
—1117 —140 145 ] \6a(t1)

This bilinear form expresses the covariance function
in terms of the Legendre polynomials. Usually we
would like to express this as a polynomial in t; & t,:

One could do this by first substituting in the polynomial form
for ¢,(t), expanding and collecting terms. However, much
easier to do this in matrix form. Recall the coefficient

matrix M from earlier in the notes, where ¢ = Mt. Writing the
covariance function as ¢," G ¢, = (Mt;)" G(Mt,) =1, MTG- M t, =
t,THt,, where H=MTC;M.

27

The covariance function becomes t,THt,, with H=MTC5M

Since the first three Legendre polynomials are used, M is 3 x 3

0.7071 0 0
0 1.2247 0
—0.7906 0 23717
H-MTCgM gives

808.0 712 —2145
H=| 712 364 —407
—214.5 |

Expanding this out gives

Cov(A,A)) =808 +71.2(t; +t,) + 3644, 1,
-40.7(t,% t, + 11,2 -215.0(t,2 + t,9)
+ 81.6t,%t,2

M

More generally, the coefficient on t,""t,)7" in the covariance

expansion is given by H;. - the (i,j)-th element of H. 28



The Eigenstructure of Cg

® The variance-covariance matrix Cg of the random regression
coefficients is extremely information on the nature of variation
for the function-valued trait.

® The function-valued analogue of the eigenvector is the
eigenfunction, which also has an associated eigenvalue. Akin
to the eigvenvector associated with the largest eigenvalue
accounting for the largest single direction of variation, the
eigenfunction associated with the largest eigenvalue is the
functional curve associated with the most variation.

* The eigenvalues of CG are the same as those for the covariance
function, while the associated eigenvectors of Cg give the
weights on the orthogonal polynomials that recover the
eigenfunctions of the covariance function.

29

Back to Riska’s data

L, (13481 666 1117
Ge=(2") Go={ 666 212 -140
117 140 145

> ei1gen(CG)
$values
[1] 1360.844364  24.544765 1.534744

: (,1]: L, 2] L, 3]
[1,]:-0.99526560 : 0.07934234 -0.05613532
[2,]:-0.05042736 ~0.91529538 -0.39961406
[3,]: 0.08308671 : 0.39489133 -0.91496308

First eigenvector 30



2000
Linear
1000 CG has a dominant
eigenvalue --- most of the
variation in
0 the breeding value for growth
is along one curve
10000
1000 Log
1001
10
l ==

Ay ho  Ag
EIGENVALUE
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Associated eigenfunctions for Cg for the Riska dataset

27 a,=1361
Y@ o et —

AGE (weeks)
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Eigenfunctions of Cg

e |f e, denotes the eigenvector associated with
the ith eigenvalue A, of Cg, then for the
covariance function

— A is the ith eigenvalue

— associated eigenfunction is ¢,,(t)7 e

— = € o(t) + epfy(t) + 7 + 4 (L)

— Since ¢ = Mt, we have (Mt)Te, = tT (MTe) ,
giving the weights on (1, t, t?, .. ,t™") as MT e,

— For Riska’s data, the leading eigenfunction is

— YP,(t) = 0.7693 - 0.0617 t - 0.1971 t?

33

Eigenfunctions: ,(t) = tT (MTe)

0.995 —0.079 0.056
e = 0.050 |, e = 0915 |, e; = | 0.400
—0.083 —0.395 0.915

- 0.769 - 0.256 - —0.684
Mie, =1 0062 |, Mle, = 1.121 |, Mles =1 0490
—0.197 —0.937 2.170

Po(t) = 0.256 + 1.121*t - 0.937*2
P5(t) = -0.684 + 0.490*t +2.170*t2

34
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Figure 3. Estimated first and second eigenfunction of the genetic covariance func-
tion, for orders of polynomial fit of 3 (x), 4 (+), 5 (*) and 6 (U), respectively (rank
3 estimates of the coefficient matrices).

Meyer's data on Cattle Weight 35

Over-fitting G¢?
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Figure 5. Estimates of genetic correlations for orders of polynomial fit (k) of 4
and 6.

Meyer's data showing how increasing the degree of polynomial used
results in over-fitting. In her words: “surfaces become ‘wiggly” “
36



Reduced estimation of Cg

e While the full estimate (rank Cg = rank of observed G) is
(relatively) straightforward, this likely results in an overfit of the
data, as the covariance function is forced to exactly fit the
observed values for all t;, t,, some of which are sampling noise

— Results in a less smooth covariance function than one based
on using a reduced dimension.

— Kirkpatrick originally suggested a least-squares approach,
while Meyer & Hill suggested a REML-based approach

— Key breakthrough, first noticed by Goddard, and fully
developed by Meyer, is the connection between covariance
functions and random regressions.

— This should not be surprising given that we started with
random regressions to motivate covariance functions.

— The key is that standard BLUP approaches (for multivariate
traits) can be used for random regressions.

37

Mixed-Models (BLUPs) for Longitudinal traits

e Simplest setting is the repeatability model, the trait breeding
and residual (permanent environmental) values are assumed
constant over time. The jth observation on i is

- a~0,Var(AA
* At the other extreme is the multiple-trait approach, where each
sampled time point is considered as a separate, but correlated,
trait. Here y; is the jth “trait” (sampled time point) for individual
I.
- a~0 GXA
® In the middle are random-regressions, where for the jth
observation (time t) on individual i is
— ¥ = U+ E0 aud(t) + Z7 pedy(t) + e
- a~0 Cs;and p,~ 0, C

38



The repeatability model

* The repeatability model assumes that the trait is unchanging
between observations, but multiple observations (records) are
taken over time to smooth out sampling noise (e)

* Such a record for individual k has three components
— Breeding value a,
— Common (permanent) environmental value py
— Residual value for ith observation e
¢ Resulting observation is thus
—Zg = Wt At Pty
* The repeatability of a trait is r = (0,?+0
e Resulting variance of the residuals is o

2)/

NTO

0,2
(1-r) 0,2

e z

39
Mixed-model y = Xf) + Za + Zp + e
a 0 oc4-A 0 0
p|l~10 0 oI 0
e 0 0 0 o1
Mixed-model equations
XTX X7z X'z 3 XTy
Z'X ZTZ+ ,\‘4A’1 AN/ al =1|2%
77X AN/ 277 + A1 p Z'y
where
\7rr;’71—r 4 \7(7371—1
A4 = (Tfl — 1’2 anc Ay — _(T—‘-: — . — /’2



The multiple-trait model

e With a clearly discrete number of stages (say k), a
longitudinal trait could be modeled as k correlated
traits, so that individual i has values y, y.,, .., Y-

* In this case, there is no need for permanent
environmental effects, as these now appear in
correlations among the residuals, the within-
individual environmental correlations (which are
estimated by REML).

* This can be put into standard Mixed Model
equations by simply “stacking” the vectors for each
trait to create one vector for each random effect.
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For trait j (1 <j < k), the mixed model becomes

yj XJ'BJ- } ZJ"d, 8 O.J'

aJ' 0 ”ijA 0
(‘-J' 0 ' ﬂ'g I
J

We can write this asy = Xp + Za + e, where

Yy Xy - 0 B, Z, --- 0 a e

3 =N SR N I S IR N N R
(y,‘) ( o - X;.-) (51\4) (0 Zk) (ﬂk> (QA-)
Again, the BLUP for the vector of all EBVs is given by

i=gzlv™! (y ~ x,?a)

With V the covariance structure for this model
42



Covariance structure for EBVS

The resulting covariance structure for the stacked vector of breeding values is

a, a2(ADA - o(ALADA
0(5)_ L ~GzA

ay oA ADA - d2(ApA

where © denotes the Kronecker (or direct) product (LW Chapter 26) and

(72(;‘1) (T(_"l..’l;‘.)

a=|

F(Ag.Ay) e 0%(Ay)

is the matrix of genetic covariances of interest.

The genetic variance-covariance matrix G accounts
for the genetic covariances among traits. G has k
variances and k(k-1)/2 covariances, which must be

estimated (REML) from the data.
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Covariance structure for residuals

Similarly, the covariance structure for the stacked vectors of residuals is

e a2(ey) - ole.ep)
‘7( : ) = E®I where E= : :

€. ”’(‘k-‘l) fT.z((A.)

Finally, we need to specify any covariances between a and e. By construction a(a,.e,) =
7(ay.e,) = 0, while the standard assumption is 7(A..e,) = o(A,.e,) = 0, giving the
covariance structure as

()

ax GoA 0
e 0 ExI

\ex

Here the matrix E accounts for within-individual correlations in the
environmental (or residual) values.

Il
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Random regressions

e Random regression models are basically a hybrid
between repeated records models and multiple-trait
models.

— The basic structure of the model is that the trait at time t is
the sum of potentially time-dependent fixed effects u(t), a
time-dependent breeding value a(t), a time-dependent
permanent environmental effect p(t), and a residual error e.
These last three are random effects

-yl =ult)+al)+p()+e

— a(t) and p (t) are both approximated by random regressions,
of order n and m, respectively (usually n = m)

- ai(tj) = 2" ayd(t) and p;(tj) = 2, bydi(t)

— The vectors a; and b; for individual i are handled in a multiple-trait
framework, with covariance matrices Cg and Cg for the within-

individual vectors of additive and permanent environmental
effects.
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To build up the random regression model, consider the g; observations
from different times for individual i

y(ti)

y, = = XiB; + Zia; + Ziop; + e;
.(/(tfq;)
in Pio €i0
Aim I)gm €im

Here are fitting m-degree polynomials (m < g;) for both the breeding value
and permanent environmental value regressions. We also assume that any
fixed-effects are not time dependent. Both of these assumptions are easily
relaxed.
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Model & covariance structure for vector y, of

observations from individual i
y(tin)

y; = = Xi8; + Zi1a; + Ziop; + e
.l/({‘iq,')

ain Pio €i0
Aim Pim €im

Covariance structure

a; 0 CG 0
Pi; ~ 0 . O CE
e; 0 0 0 o°1

o o
~—

The design matrix for the regression coefficients
on the breeding values is very information

v = XiB; + Zypa; + Ziop; + e

OO([."J) Tt om([‘il)

ol]([i'l) e C)rrz({i'.?)
Z -

Goltig;) -+ Omltig;)

Z, is a g; x (m+1) matrix of fixed constants that depend on the
values of order zero through m Legendre polynomials, where

the jth row represents these evaluated at time t;.
A KEY FEATURE is that this set of times could be different
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for each individual, yet the mixed model does all the bookkeeping

to fully account for this.
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As with the multiple trait model, stacking the individual vectors
allows us to put this model in standard form. Note that while the
vectors stacked for the multiple trait model represented the
vectors for each trait separately, here the stacked vectors are

the observations for each individual.

¥, a) P e

<
Il
»
Il
T
I
o
Il

yn An p n €n

y=XB8+Za+Zp+e

Z,, 0 -~ 0
. 0 Zyp --- 0

Z,,Z, Block diagonal z,-| . 0
0 Zln
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Full Model & covariance structure
¥ a) P e
yn a" pn e”
y=XB+Za+Zp+te

Covariance structure

a 0 A® CG 0 0
pl~10]. 0 IxCg O
e 0 0 0 0?1

More generally, we can replace 6,21 by R.
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Mixed-model equations (slightly more
generalized covariance structure)

b X"R™ 'y
a 0 A®Cq 0 0
al = Z'{'R—ly pl~1{0]. 0 IxCg O
e 0 0 0 R
p ZyR™'y
where
X'"R™'X X"R'Z, X"R'Z,
H=|ZR'X ZIR'Z+A ' Cg Z'R™'Z,
ZIR™'X ZIR™'Z, ZIR™'Z, + 1 Cy'

E
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Model-fitting issues

e A central issue is what degree m of
polynomials to use.

e Standard likelihood tests can be used
(compare m = k with m =k + 1).

e Meyer suggests that tests should be
comparing k with k + 2, as often going from
odd to even does not improve fit, but going
from even to even (k+2) does, and vice-versa.
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Response to selection

e Standard BLUP selection can be used, based
on some criteria for an optimal functional
value (curve) in the offspring.

* The expected response in the offspring is
simply obtained by substituting the average
of the parental breeding values into the
polynomial regression for the breeding value
to generate an expected offspring curve.
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