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Lecture 1: 
Intro/refresher in 
Matrix Algebra 

Bruce Walsh lecture notes 
Introduction to Quantitative Genetics 

SISG, Brisbane 
9 – 10 Feb 2017 
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Topics 
•  Definitions, dimensionality, addition,

 subtraction 
•  Matrix multiplication 
•  Inverses, solving systems of equations 
•  Quadratic products and covariances 
•  The multivariate normal distribution 
•  Eigenstructure 
•  Basic matrix calculations in R 
•  The Singular Value Decompositon (SVD) 
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Matrices:  An array of elements 

Vectors:  A matrix with either one row or one column. 

Column vector Row vector 

(3 x 1) (1 x 4) 

 Usually written in bold lowercase, e.g. a, b, c  

Dimensionality of a matrix:  r x c (rows x columns) 
think of Railroad Car 
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Square matrix (3 x 2) 

General Matrices 

Usually written in bold uppercase, e.g. A, C, D  

Dimensionality of a matrix:  r x c (rows x columns) 
  think of Railroad Car 

A matrix is defined by a list of its elements. 
 B has ij-th element Bij -- the element in row i 
and column j 
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Addition and Subtraction of Matrices 

If two matrices have the same dimension (both are r x c),  
then matrix addition and subtraction simply follows by  
adding (or subtracting) on an element by element basis 

Matrix addition:   (A+B)ij = A ij + B ij 

Matrix subtraction:   (A-B)ij = A ij - B ij 

Examples: 
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Partitioned Matrices 

It will often prove useful to divide (or partition) the  
elements of a matrix into a matrix whose elements are 
itself matrices.  

One useful partition is to write the matrix as 
either a row vector of column vectors or 
a column vector of row vectors 
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A row vector whose  
elements are column  
vectors 

A column vector whose  
elements are row vectors 
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Towards Matrix Multiplication:  dot products 

The dot (or inner) product of two vectors (both of 
length n) is defined as follows: 

 Example: 

 a .b = 1*4 + 2*5 + 3*7 + 4*9 = 60 
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Matrices are compact ways to write
 systems of equations 
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yields the following system of equations for the βi 

This can be more compactly written in matrix form as  

XTX XTy β"

or, β =  (XTX)-1 XTy  

The least-squares solution for the linear model 
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Matrix Multiplication: 

The order in which matrices are multiplied affects 
the matrix product, e.g.  AB = BA  

For the product of two matrices to exist, the matrices 
must conform.  For AB, the number of columns of A must 
equal the number of rows of B.  

The matrix C = AB  has the same number of rows as A 
and the same number of columns as B. 
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 C(rxc) = A(rxk)  B(kxc)  

Inner indices must match 
columns of A = rows of B  

Outer indices given dimensions of 
resulting matrix, with r rows (A) 
and c columns (B) 

Example:  Is the product ABCD defined?  If so, what 
is its dimensionality?  Suppose 

A3x5 B5x9 C9x6 D6x23 

Yes, defined, as inner indices match.  Result is a 3 x 23 
matrix (3 rows, 23 columns) 
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More formally, consider the product L = MN 

Express the matrix M as a column vector of row vectors 
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Example 

ORDER of multiplication matters!  Indeed, consider 
C3x5 D5x5 which gives a 3 x 5 matrix, versus D5x5 C3x5 ,  
which is not defined. 
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Matrix multiplication in R 
R fills in the matrix from 
the list c by filling in as 
columns, here with 2 rows  
(nrow=2)  

Entering A or B displays what was 
entered (always a good thing to check) 

The command  %*% is the R code 
for the multiplication of two matrices 

On your own:  What is the matrix resulting from BA? 
What is A if nrow=1 or nrow=4 is used? 
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The Transpose of a Matrix   
The transpose of a matrix exchanges the  
rows and columns, AT

ij = Aji 

Useful identities 
 (AB)T = BT AT 

 (ABC)T = CT BT AT 

Inner product = aTb = aT
(1 X n) b 

(n X 1) 

Indices match, matrices conform 
Dimension of resulting product is 1 X 1 (i.e. a scalar) 

Note that bTa = (bTa)T = aTb 
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Outer product = abT = a (n X 1) bT 
(1 X n) 

Resulting product is an n x n matrix"

18 

R code for transposition 
 t(A) = transpose of A 

Enter the column vector a 

Compute inner product aTa 

Compute outer product aaT 
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Solving equations 
•  The identity matrix I 

–  Serves the same role as 1 in scalar algebra, e.g.,
 a*1=1*a =a, with AI=IA= A 

•  The inverse matrix A-1 (IF it exists) 
–  Defined by A A-1 = I, A-1A = I 
–  Serves the same role as scalar division 

•  To solve ax = c, multiply both sides by (1/a) to give:  
•  (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,  
•  Hence x = (1/a)c 
•  To solve Ax = c,  A-1Ax = A-1 c 
•  Or A-1Ax  = Ix = x = A-1 c  
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The Identity Matrix, I 
The identity matrix serves the role of the 
number 1 in matrix multiplication:  AI =A, IA = A 

I is a square diagonal matrix, with all diagonal elements 
being one, all off-diagonal elements zero."

Iij = "
1 for i = j 

0 otherwise"
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The Identity Matrix in R 
 diag(k), where k is an integer, return the k x k I matix  
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The Inverse Matrix, A-1 
For a square matrix A, define its Inverse A-1, as 
the matrix satisfying 
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If det(A) is not zero, A-1 exists and A is said to be 
non-singular.  If det(A) = 0, A is singular, and no 
unique inverse exists (generalized inverses do)"

Generalized inverses, and their uses in solving systems 
of equations, are discussed in Appendix 3 of Lynch &  
Walsh 

A- is the typical notation to denote the G-inverse of a 
matrix 

When a G-inverse is used, provided the system is  
consistent, then some of the variables have a family 
of solutions (e.g., x1 =2, but x2 + x3 = 6)  

24 

Inversion in R 

 det(A) computes determinant of A 

 solve(A) computes A-1 

Using A entered earlier 

Compute A-1 

Showing that A-1 A = I 

Computing determinant of A 



25 

Homework 
Put the following system of equations in matrix 
form, and solve using R  

3x1 + 4x2 + 4 x3  + 6x4 = -10 
9x1 + 2x2  -   x3   - 6x4 =  20 
  x1 +   x2  +   x3 - 10x4 =  2 
2x1 + 9x2  + 2x3   -  x4 = -10 

Example:  solve the OLS for β in y = α + β1z1 + β2z2 + e 
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If ρ12 = 0, these reduce to the two univariate slopes, 

Likewise, if ρ12 = 1, this reduces to a univariate regression, 
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Useful identities "

(AB)-1 = B-1 A-1  

(AT)-1 = (A-1)T 

Also, the determinant of any square matrix A,  
det(A), is simply the product of the eigenvalues λ of A, 
which statisfy 

Ae = λe 
If A is n x n, solutions to λ are an n-degree polynomial. e is
 the eigenvector associated with λ.  If any of the roots to the
 equation are zero, A-1 is not defined. In this case, for some
 linear combination b, we have Ab = 0.   

For a  diagonal matrix D, then det (D), which is also
 denoted by |D|, = product of the diagonal elements 
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Variance-Covariance matrix 

•  A very important square matrix is the
 variance-covariance matrix V associated  with
 a vector x of random variables. 

•  Vij = Cov(xi,xj), so that the i-th diagonal
 element of V is the variance of xi, and off
-diagonal elements are covariances 

•  V is a symmetric, square matrix 
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The trace 
The trace, tr(A) or trace(A), of a square matrix 
A is simply the sum of its diagonal elements 

The importance of the trace is that it equals 

the sum of the eigenvalues of A,  tr(A) = Σ λi 

For a covariance matrix V, tr(V) measures the 
total amount of variation in the variables 

λi / tr(V) is the fraction of the total variation  
in x contained in the linear combination ei

Tx, where 
ei, the i-th principal component of V is also the 
i-th eigenvector of V (Vei = λi ei) 
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Eigenstructure in R 
eigen(A)  returns the eigenvalues and vectors of A 

Trace = 60 

PC 1 accounts for 34.4/60 = 
57% of all the variation 

PC 1 

0.400* x1 – 0.139*x2 + 0.906*x3 
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Quadratic and Bilinear Forms 

Quadratic product: for An x n and xn x 1  

Scalar (1 x 1) 

Bilinear Form  (generalization of quadratic product) 
 for Am x n,  an x 1, bm x1  their bilinear form is  bT

1 x m Am x n an x 1 

Note that bTA a   = aTAT
 b 
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Covariance Matrices for
 Transformed Variables 

What is the variance of the linear combination, 
  c1x1 + c2x2 + … + cnxn ? (note this is a scalar) 

Likewise, the covariance between two linear combinations 
can be expressed as a bilinear form, 
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Example:  Suppose the variances of x1, x2, and x3 are 
10, 20, and 30.  x1 and x2 have a covariance of -5, 
x1 and x3 of 10, while x2 and x3 are uncorrelated.  

What are the variances of the indices 
y1 = x1-2x2+5x3 and  y2 = 6x2-4x3? 

Var(y1) = Var(c1
Tx) = c1

T Var(x) c1 = 960 

Var(y2) = Var(c2
Tx) = c2

T Var(x) c2 = 1200 

Cov(y1,y2) = Cov(c1
Tx, c2

Tx) = c1
T Var(x) c2 = -910 

Homework:  use R to compute the above values 
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The Multivariate Normal
 Distribution (MVN) 

Consider the pdf for n independent normal 
random variables, the ith of which has mean 
µi and variance σ2

i 

This can be expressed more compactly in matrix form 

36 

Define the covariance matrix V for the vector x of  
the n normal random variable by 

Define the mean vector µ by gives  

Hence in matrix from the MVN pdf becomes 

Notice this holds for any vector µ and symmetric positive
-definite matrix V, as | V | > 0. 
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The multivariate normal 

•  Just as a univariate normal is defined by
 its mean and spread, a multivariate
 normal is defined by its mean vector µ
 (also called the centroid) and variance
-covariance matrix V 
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Vector of means µ determines location 

µ"

Spread (geometry) about  µ determined by V 

µ"

x1, x2 equal variances, 
positively correlated 

x1, x2 equal variances, 
uncorrelated 

Eigenstructure (the eigenvectors and their corresponding 
eigenvalues) determines the geometry of V. 



39 

Vector of means µ determines location 

µ"

Spread (geometry) about  µ determined by V 

x1, x2 equal variances, 
negatively correlated 

µ"

Var(x1) < Var(x2),  
uncorrelated 

Positive tilt = positive correlations 
Negative tilt = negative correlation 
No tilt = uncorrelated 
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Eigenstructure of V 

µ"

e1 λ1 

e2 λ2 

The direction of the largest axis of  
variation is given by the unit-length  
vector e1,  the 1st eigenvector of V. 

The next largest axis of orthogonal 
(at 90 degrees from) e1,  is 
given by e2, the 2nd eigenvector 
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Principal components  
•  The principal components (or PCs) of a covariance

 matrix define the axes of variation.   
–  PC1 is the direction (linear combination cTx) that explains

 the most variation. 
–  PC2 is the next largest direction (at 90degree  from PC1),

 and so on 

•  PCi = ith eigenvector of V 
•  Fraction of variation accounted for by PCi = λi /

 trace(V) 
•  If V has a few large eigenvalues, most of the variation

 is distributed along a few linear combinations (axis
 of variation) 

•  The singular value decomposition is the
 generalization of this idea to nonsquare matrices 
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 Properties of the MVN - I 

1) If x is MVN,  any subset of the variables in x is also MVN 

2) If  x is MVN,  any linear combination of the  
elements of x  is also MVN.  If x ~ MVN(µ,V)   
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Properties of the MVN - II 

3) Conditional distributions are also MVN.  Partition x 
into two components, x1 (m dimensional column vector) 
and  x2 ( n-m dimensional column vector) 

x1 | x2 is MVN with m-dimensional mean vector 

and m x m covariance matrix 
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Properties of the MVN - III 

4)  If x is MVN, the regression of any subset of  
x  on another subset is linear and homoscedastic  

Where e is MVN with mean vector 0 and 
variance-covariance matrix  
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The regression is linear because it is a linear function 
of x2 

The regression is homoscedastic because the variance- 
covariance matrix for e does not depend on the value of  
the x’s 

All these matrices are constant, and hence 
the same for any value of x 
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Example:  Regression of Offspring value on Parental values 

Assume the vector of offspring value and the values of 
both its parents is MVN.  Then from the correlations 
among (outbred) relatives, 
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Regression of Offspring value on Parental values (cont.) 

Where e is normal with mean zero and variance 
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Hence, the regression of offspring trait value given 
the trait values of its parents is 

zo = µo  + h2/2(zs- µs) + h2/2(zd- µd) + e 

where the residual e is normal with mean zero and 
Var(e) = σz

2(1-h4/2) 

Similar logic gives the regression of offspring breeding 
value on parental breeding value as 

Ao = µo  + (As- µs)/2 +  (Ad- µd)/2 + e 
     = As/2 +  Ad/2 + e 

where the residual e is normal with mean zero and 
Var(e) = σA

2/2 
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50 
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A data set for soybeans grown in New York (Gauch 1992) gives the 
GE matrix as 

Where GEij = value for 
Genotype i in envir. j 

52 

For example, the rank-1 SVD approximation for GE32 is 
g31λ1e12 = 746.10*(-0.66)*0.64 = -315   

While the rank-2 SVD approximation is  g31λ2e12 +   g32λ2e22 = 
 746.10*(-0.66)*0.64 + 131.36* 0.12*(-0.51) = -323 

Actual value is -324 

Generally, the rank-2 SVD approximation for GEij is 
gi1λ1e1j +   gi2λ2e2j 
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Additional R matrix commands 

54 

Additional R matrix commands (cont) 
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Additional references 

•  Lynch & Walsh Chapter 8 (intro to
 matrices) 

• Online notes: 
– Appendix 4 (Matrix geometry) 
– Appendix 5 (Matrix derivatives) 
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Lecture 2: 
Linear and Mixed Models  

Bruce Walsh lecture notes 
Introduction to Quantitative Genetics 

SISG, Brisbane 
9 – 10 Feb 2017 
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Quick Review of the Major Points 

The general linear model can be written as 

 y = Xβ + e 
• y = vector of observed dependent values 

• X = Design matrix:  observations of the variables in the  
          assumed linear model 

• β = vector of unknown parameters to estimate 

• e = vector of residuals (deviation from model fit), 
      e = y-X β"
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 y = Xβ + e 
Solution to β depends on the covariance structure 
(= covariance matrix) of the vector e of residuals 

•  OLS:  e ~ MVN(0, σ2 I) 
•  Residuals are homoscedastic and uncorrelated, 
   so that we can write the cov matrix of e as Cov(e) = σ2I 
• the OLS estimate, OLS(β) = (XTX)-1 XTy     

Ordinary least squares (OLS) 

•  GLS:  e ~ MVN(0,  V) 
• Residuals are heteroscedastic and/or dependent, 
•  GLS(β) = (XT V-1 X)-1 V-1 XTy  

Generalized least squares (GLS) 
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BLUE 

•  Both the OLS and GLS solutions are also
 called the Best Linear Unbiased Estimator (or
 BLUE for short) 

•  Whether the OLS or GLS form is used
 depends on the assumed covariance
 structure for the residuals 
–  Special case of Var(e) = σe

2 I -- OLS 
–  All others, i.e., Var(e) = R -- GLS 
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Linear Models 
One tries to explain a dependent variable y as a linear 
function of a number of independent (or predictor) 
variables. 

A multiple regression is a typical linear model, 

Here e is the residual, or deviation between the true 
value observed and the value predicted by the linear 
model. 

The (partial) regression coefficients are interpreted 
as follows:  a unit change in xi while holding all 
other variables constant results in a change of βi in y  
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Linear Models 

As with a univariate regression (y = a + bx + e), the model 
parameters are typically chosen by least squares, 
wherein they are chosen to minimize the sum  of 
squared residuals, Σ ei

2 

This unweighted sum of squared residuals assumes  
an OLS error structure, so all residuals are equally 
weighted (homoscedastic) and uncorrelated 

If the residuals differ in variances and/or some are 
correlated (GLS conditions), then we need to minimize  
the weighted sum eTV-1e, which removes correlations and 
gives all residuals equal variance. 
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Linear Models in Matrix Form 
Suppose we have 3 variables in a multiple regression, 
with four (y,x) vectors of observations. 

The design matrix X.  Details of both the experimental
 design and the observed values of the predictor variables 
 all reside solely in X 
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Rank of the design matrix 
•  With n observations and p unknowns, X is an n x p

 matrix, so that XTX is p x p 
•  Thus, at most X can provide unique estimates for up

 to p < n parameters 
•  The rank of X is the number of independent rows of

 X.  If X is of full rank, then rank = p 
•  A parameter is said to be estimable if we can provide

 a unique estimate of it.  If the rank of X is k < p, then
 exactly k parameters are estimable (some as linear
 combinations, e.g. β1-3β3 = 4) 

•  if det(XTX) = 0, then X is not of full rank 
•  Number of nonzero eigenvalues of XTX gives the

 rank of X. 
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Experimental design and X 
•  The structure of X determines not only which

 parameters are estimable, but also the expected
 sample variances, as Var(β) = k (XTX)-1 

•  Experimental design determines the structure of X
 before an experiment (of course, missing data
 almost always means the final X is different form the
 proposed X) 

•  Different criteria used for an optimal design.  Let V =
 (XTX)-1 .  The idea is to chose a design for X given
 the constraints of the experiment  that:  
–  A-optimality:  minimizes tr(V) 
–  D-optimality:  minimizes det(V) 
–  E-optimality: minimizes leading eigenvalue of V 
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Ordinary Least Squares (OLS) 
When the covariance structure of the residuals has a 
certain form, we solve for the vector β using OLS 

If the residuals are homoscedastic and uncorrelated, 
σ 2(ei) = σe

2, σ(ei,ej) = 0. Hence, each residual is equally 
weighted,  

Sum of squared 
residuals can 
be written as 

If residuals follow a MVN distribution, OLS = ML solution 
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Ordinary Least Squares (OLS) 

Taking (matrix) derivatives shows this is minimized by 

This is the OLS estimate of the vector β 

The variance-covariance estimate for the sample estimates 
is 

The ij-th element gives the covariance between the 
estimates of βi and βj. 
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Sample Variances/Covariances 
The residual variance can be estimated as 

The estimated residual variance can be substituted into 

To give an approximation for the sampling variance and  
covariances of our estimates. 

Confidence intervals follow since the vector of estimates   
 ~ MVN(β, Vβ) 
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Example:  Regression Through the Origin 
 yi = βxi  + ei  
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Polynomial Regressions 
GLM can easily handle any function of the observed 
predictor variables, provided the parameters to estimate 
are still linear, e.g.  Y = α + β1f(x) + β2g(x) + … + e 

Quadratic regression: 
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Interaction Effects 
Interaction terms (e.g. sex x age) are handled similarly 

With x1 held constant, a unit change in x2 changes y 
by β2 + β3x1 (i.e., the slope in x2 depends on the current 
value of x1 ) 

Likewise, a unit change in x1 changes y by β1 + β3x2 
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The GLM lets you build your
 own model! 

•  Suppose you want a quadratic regression
 forced through the origin where the slope of
 the quadratic term can vary over the sexes
 (pollen vs. seed parents) 

•  Yi = β1xi + β2xi
2 + β3sixi

2
 

•  si is an indicator (0/1) variable for the sex (0 =
 male, 1 = female). 
–  Male slope = β2, 
–  Female slope = β2 + β3 
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Generalized Least Squares (GLS) 
Suppose the residuals no longer have the same 
variance (i.e., display heteroscedasticity). Clearly 
we do not wish to minimize the unweighted sum 
of squared residuals, because those residuals with 
smaller variance should receive more weight. 

Likewise in the event the residuals are correlated, 
we also wish to take this into account (i.e., perform 
a suitable transformation to remove the correlations) 
before minimizing the sum of squares. 

Either of the above settings leads to a GLS solution 
in place of an OLS solution. 
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In the GLS setting, the covariance matrix for the 
vector e of residuals is written as  R where  
Rij =   σ(ei,ej) 

The linear model becomes y = Xβ + e, cov(e) = R 

The GLS solution for β is  

The variance-covariance of the estimated model  
parameters is given by 
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Model diagnostics 
•  It’s all about the residuals 
•  Plot the residuals 

–  Quick and easy screen for outliers 
–  Plot y or yhat on e 

•  Test for normality among estimated residuals 
–  Q-Q plot 
–  Wilk-Shapiro test 
–  If non-normal, try transformations, such as log 

20 

OLS, GLS summary 
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Fixed vs.  Random Effects 
In linear models are are trying to accomplish two goals: 
estimation the values of model parameters and estimate 
any appropriate variances.   

For example, in the simplest regression model,  
y = α + βx + e, we estimate the values for α and β and  
also the variance of e.  We, of course, can also 
estimate the ei = yi - (α + βxi ) 

Note that α/β are fixed constants are we trying to 
estimate (fixed factors or fixed effects), while the 
ei values are drawn from some probability distribution 
(typically Normal with mean 0, variance σ2

e).  The  
ei  are random effects.  
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“Mixed” models (MM) contain both fixed and random factors 

This distinction between fixed and random effects is 
extremely important in terms of how we analyzed a model. 
If a parameter is a fixed constant we wish to estimate, 
it is a fixed effect.  If a parameter is drawn from 
some probability distribution and we are trying to make 
inferences on either the distribution and/or specific  
realizations from this distribution, it is a random effect. 

We generally speak of estimating fixed factors (BLUE) and 
predicting random effects (BLUP -- best linear unbiased 
Predictor) 

 y = Xb + Zu + e,   u  ~MVN(0,R), e ~ MVN(0,σ2
eI) 

Key:  need to specify covariance structures for MM 



23 

Random effects models 

•  It is often useful to treat certain effects as
 random, as opposed to fixed 
–  Suppose we have k effects.  If we treat these as

 fixed, we lose k degrees of freedom 
–  If we assume each of the k realizations are drawn

 from a normal with mean zero and unknown
 variance, only one degree of freedom lost --- that
 for estimating the variance 

•  We can then predict the values of the k realizations 
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Environmental effects 
•  Consider yield data measured over several years in a

 series of plots. 
•  Standard to treat year-to-year variation at a specific

 site as being random effects 
•  Often the plot effects (mean value over years) are

 also treated as random. 
•  For example, consider plants group in growing

 region i, location j within that region, and year
 (season) k for that location-region effect 
–  E = Ri + Lij + eijk 
–  Typically R can be a fixed effect, while L and e are

 random effects, Lik ~ N(0,σ2
L) and eikj ~ N(0,σ2

e) 
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Random models 
•  With a random model, one is assuming that

 all “levels” of a factor are not observed. 
 Rather, some subset of values are drawn
 from some underlying distribution 
–  For example, year to year variation in rainfall at a

 location.  Each year is a random sample from the
 long-term distribution of rainfall values 

–  Typically, assume a functional form for this
 underlying distribution (e.g., normal with mean 0)
 and then use observations to estimate the
 distribution parameters (here, the variance) 
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Random models (cont) 
•  Key feature: 

–  Only one degree of freedom used (estimate of
 the variance) 

–  Using the fixed effects and the estimated
 underlying distribution parameters, one then
 predicts the actual realizations of the individual
 values (i.e., the year effects)  

–  Assumption:  the covariance structure among the
 individual realizations of the realized effects.  If
 only a variance is assume, this implies they are
 independent.  If they are assumed to be
 correlated, this structure must be estimated. 
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Random models 
•  Let’s go back to treating yearly effects as random 
•  If assume these are uncorrelated, only use one

 degree of freedom, but makes assumptions about
 covariance structure 
–  Standard: Uncorrelated 
–  Option:  some sort of autocorrelation process, say with a

 yearly decay of r (must also be estimated) 

•  Conversely, could all be treated as fixed, but would
 use k degrees of freedom for k years, but no
 assumptions on their relationships (covariance
 structure) 
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Identifiability  

•  Recall that a fixed effect is said to be
 estimable if we can obtain a unique estimate
 for it (either because X is of full rank or when
 using a generalized inverse it returns a
 unique estimate) 
–  Lack of estimable arises because the experiment

 design confounds effects 
•  The analogous term for random models is

 identifiability 
–  The variance components have unique estimates 
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y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of fixed effects (to be estimated),  
e.g., year, sex and age effects 

Vector of random
 effects, such as

 individual  
Breeding values 
 (to be estimated) 

Vector of residual errors 
 (random effects) 

Incidence
 matrix for
 fixed effects 

Incidence matrix for random effects 
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y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of random
 effects 

Incidence
 matrix for
 fixed effects 

Vector of fixed effects   

Incidence matrix for random effects 

Vector of residual errors 

Observe y, X, Z. 

Estimate fixed effects β 

Estimate random effects u, e 
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Means:  E(u) = E(e) = 0,  E(y) = Xβ 

Let R be the covariance matrix for the  
residuals.  We typically assume R = σ2

e*I 

Let G be the covariance matrix for the vector 
 u of random effects 

The covariance matrix for y becomes   
      V = ZGZT + R 

Means & Variances for y = Xβ + Zu + e 

Variances: 

Hence, y ~ MVN (Xβ, V) 

Mean Xβ due to fixed effects 
Variance V due to random effects 
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Estimating fixed Effects & Predicting  
Random Effects 

For a mixed model, we observe y, X, and Z 

β, u, R, and G are generally unknown 

Two complementary estimation issues 

(i)  Estimation of β and u 

Estimation of fixed effects 

Prediction of random effects 

BLUE = Best Linear Unbiased Estimator 

BLUP = Best Linear Unbiased Predictor 
Recall V = ZGZT + R 
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Different statistical models 
•  GLM = general linear model 

–  OLS ordinary least squares: e ~ MVN(0,cI) 
–  GLS generalized least squares: e ~ MVN(0,R) 

•  Mixed models 
–  Both fixed and random effects (beyond the residual) 

•  Mixture models 
–  A weighted mixture of distributions 

•  Generalized linear models 
–  Nonlinear functions, non-normality 

34 

Mixture models 
•  Under a mixture model, an observation potentially

 comes from one of several different distributions, so
 that the density function is π1φ1 + π2φ2 + π3φ3 
–  The mixture proportions πi sum to one   
–  The φi represent different distribution, e.g.,  normal with mean µi

 and variance σ2  
•  Mixture models come up in QTL mapping -- an

 individual could have QTL genotype QQ, Qq, or qq 
–  See Lynch & Walsh Chapter 13 

•  They also come up in codon models of evolution, were a
 site may be neutral, deleterious, or advantageous, each
 with a different distribution of selection coefficients 
–  See Walsh & Lynch (volume 2A website), Chapters 10,11 
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Generalized linear models 

Typically assume non-normal distribution for 
residuals, e.g., Poisson, binomial, gamma, etc 



Lecture'#3'

GREML:'es0ma0on'of'gene0c'variance'in'

unrelated'individuals'

Jian%Yang%

Ins*tute%for%Molecular%Bioscience%
The%University%of%Queensland%

1%

Keywords'

Gene0c'variance'(VG):%the%amount%of%phenotypic%
variance%(VP)%in%a%popula*on%aEributable%to%
gene*c%factors.%

What%do%we%need%to%es*mate%VG%in%unrelated'
individuals?%%

Why%is%mixed'linear'model%(MLM)%useful%in%this%
case?%



Mendelian'traits' Complex'traits'

Cys*c%fibrosis%
Human%height%

Schizophrenia%

Body%mass%index%

Risk'of'schizophrenia'(%)'

4%

Resemblance'between'twins'for'human'height'

Heritability'='~80V90%%

Heritability'='~70V80%%

Heritability'=%~40V60%%
Resemblance'between'rela0ves'for'body'mass'index'(BMI)'

Relatedness 'Correla0on'

FullVsibs% % %0.36%
FatherVson % %0.28%

Heritability'



5%
8'“known'genes”'for'human'complex'traits'before'2002'

Glazier%et%al.%2002%Science%

Iden0fying'genes'underlying'complex'traits'

1700%

30%

8%

6%

GenomeQwide'Associa0on'Study'(GWAS)'

HighQthroughput'

genotyping'technology'

Simple'methodology%%

Tes*ng%correla*on%between%x%and%y%
x%=%0,%1%and%2%(GG,%AG%and%AA)%
y%=%trait%(e.g.%height)%
y%=%b0%+%x1b1%+%e%

P%=%5x10V8%



7%

An'explosion'of'“gene”'discoveries'

1000s'gene0c'variants'associated'with'100s'traits'/'diseases'

Glazier%et%al.%2002%Science%

Prior'to'GWAS' GWAS'

Height:%
•  40%genes%

•  ~5%%of%variance%explained%
•  heritability%=%~80%%

8%

The'missing'heritability'problem'

Manolio%et%al.%2009%Nature%



To'recap'the'previous'lectures'

•  Linear%regression%model%

y%=%b0%+%x1b1%+%x2b2%+%…%+%xpbp%+%e%
y%=%phenotype%%
xi%=%independent%variable%

y%~%N(b0%+%x1b1%+%x2b2%+%…%+%xpbp,%σ2e)%%
b0%=%mean%term%

b1%…%bp%=%effect%sizes%(regression%coefficients)%%
e%=%%residual,%e%~%N(0,%σ2e)%

Linear'regression'model'

•  In%matrix%form%

y%=%Xb%+%e%
y%=%{yj}n%x%1;%X%=%{Xij}n%x%p;%b%=%{bi}p%x%1;%e%=%{ej}n%x%1%

•  Es*ma*on%
bVhat%=%(XTX)V1XTy'

var(bVhat)'='σ2e(XTX)V1%

No%unique%solu*on%if%p%>%n.%



Mixed'linear'model'(MLM)'

•  y%=%Xb%+%Zu%+%e'

Fixed%effects:%b%(special%case:%X%=%1%and%b%=%b0)%
Random%effects:'u%=%{ui},%u%~%N(0,%σ2uA)'
A%=%correla*on%matrix%between%ui%and!uj&
E(y)%=%Xb'
var(y)%=%V%=%ZAZTσ2u%+%Iσ2e%

If%random%effects%are%independent,%then%%
%var(y)%=%V%=%ZZTσ2u%+%Iσ2e%

Parameter'es0ma0on'

•  Es*ma*on%of%variance%components%(σ2u)''

%logL%=%V1/2(log|V|%+%log|XTVV1X|%+%yTPy%
'P%=%VV1%V%VV1X(XTVV1X)V1XTVV1%

•  Predic*on%of%random%effects%(u)''
'uVhat%=%σ2uVhat%ZTPy'

•  Es*ma*on%of%fixed%effects%(b)%
'bVhat%=%(XTVV1X)V1XTVV1y'(Generalized%least%squares)%

%%%%%Linear%model:%bVhat%=%(XTX)V1XTy%(Least%squares)%



GREML:'fi]ng'all'SNPs'in'a'MLM'

•  y%=%Zu%+%e'
'Z%=%{zij}n%x%m,%zij%=%standardized%SNP%genotype%
%u%~%N(0,%Iσ2u)%
%var(y)%=%ZZTσ2u%+%Iσ2e%
%variance%explained%=%mσ2u%%/%(mσ2u%%+%σ2e)%

•  An%equivalent%model%if%we%let%g'='Zu%
'y%=%g%+%e'
'var(y)%=%Aσ2g%+%Iσ2e%
%g'~'N(0,'Aσ2g),%A%=%ZZT%/m%(gene*c%rela*onship%matrix)%
%variance%explained%=%σ2g%%/%(σ2g%%+%σ2e)%

Family!studies:!comparing!phenotypic!similarity!to!family!relatedness!!
–!GREML:!comparing!phenotypic!similarity!to!gene<c!similarity!(es<mated!
from!SNPs)!in!unrelated!individuals!

GWAS:!tes<ng!a!SNP!at!a!<me!in!unrelated!samples!!
–!GREML:!Es<ma<ng!the!contribu<on!from!all!SNPs!together!

14%

~50%'of'varia0on'explained'by'all'SNPs'for'height'vs.'~10%'from'GWAS%

Reconciling'family'studies'and'GWAS'



15%

Height'is'not'the'only'example'

Yang%et%al.%2011%Nat%Genet%

Lee%et%al.%2012%Nat%Genet%

Yang%et%al.%2010%Nat%Genet%

0%%5%%10%%15%%20%%25%%30%%35%%40%%45%%50%%

Height%

Schizophrenia%

Obesity%(BMI)%

GWAS%

Our%method%

Nature'vs.'nurture'–'gene0cs'of'intelligence'

16%

Davis%et%al.%2011%Mol%Psychiatry%

Deary%et%al.%2012%Nature%



Genome'par00oning'

•  Single%component%MLM%

y%=%g%+%e'(or'y%=%Zu%+%e)%

•  Mul*Vcomponent%MLM%

y'='g1'+'g2'+%…'+'g22%+'e'
%var(y)%=%A1σ2g1%+%A2σ2g2%+%…%+%A22σ2g22%+%Iσ2e%

18%

Yang%et%al.%2011%Nat%Genet% Lee%et%al.%2012%Nat%Genet%Yang%et%al.%unpublished%

~12,000%individuals% 9000%cases%%
12,000%controls%

Schizophrenia'Height' BMI'

~25,000%individuals%

Par00oning'gene0c'variance'into'chromosomes'

Gave'confidence'to'con0nue'with'the'GWAS'paradigm'

More'genes'for'complex'traits'can'be'found'with'larger'sample'sizes'

Important'implica0ons:'



Par00oning'the'gene0c'variance'based'on'

func0onal'annota0on''

19%

Gene*c%signals%are%enriched%in%or%close%to%func*onal%genes%

Yang%et%al.%2011%Nat%Genet% Lee%et%al.%2012%Nat%Genet%

Schizophrenia'

30%%

35%%

35%%

0%0%

CNS+%genes%

intergenic%

Other%genes%83%%

17%%

0%0%
Height%

68%%

32%%

0%0%

Genic%es*mate%

Intergenic%es*mate%

BMI'

#'GWAS'discovery'vs.'sample'size'

Visscher%et%al.%2012%Am%J%Hum%Genet%



Es0ma0on'of'dominance'variance'in'unrelated'

individuals'

•  A%+%D%model%

y%=%b0%+%xa*b1%+%xd*b2%+%e%
b1%=%a;%b2%=%d%

•  Addi*ve%model%
y%=%b0%+%xa*b1%+%e%
b1%=%a%+%(1%–%2p)d%

Genot
ype%

E(y)% xa% xd%

AA% mean%% 0% 0%

AG% mean%+%a%+%d% 1% 1%

GG% mean%+%2a% 2% 0%

Lynch%and%Walsh%1996%

Es0ma0on'of'dominance'variance'in'unrelated'

individuals'

•  Dominance%model%

y%=%ga'+'gd%+%e%
%var(y)%=%Aaσ2a%+%Adσ2d%+%Iσ2e%
%Aa%=%addi*ve%GRM;%%Ad%=%dominance%GRM%

%Ad%=%ZdTZd%/%m,%where%Zd%=%standardised%x’d%matrix%

Genotype% xa% xd% xd’%

AA% 0% 0% 0%

AG% 1% 1% 2p%

GG% 2% 0% (4p%–%2)%



Es0ma0ng'dominance'varia0on'in'unrelated'

individuals'

Mean%h2SNP%=%0.15%
Mean%δ2SNP%=%0.03%

23%

79'quan0ta0ve'traits'(n'='~7000)%

Zhu%et%al.%2015%Am%J%Hum%Genet%

Bivariate'GREML'analysis'to'es0mate'gene0c'

correla0on'in'unrelated'individuals'

•  %%

24%

Lee%et%al.%2012%Bioinforma*cs%



25%

Es0ma0ng'gene0c'correla0on'between'

traits'measured'on'different'samples'

Lee%et%al.%2013%Nat%Genet%

Ques0ons'and'discussion%



Lecture'#4'

Applica/on'of'GREML'and'related'methods'to'
GWAS'data'with'GCTA'

Jian%Yang%

Ins*tute%for%Molecular%Bioscience%
The%University%of%Queensland%

1%

SE'of'GREML'es/mate'

•  SE%=%sd%of%es*mate%

•  Sampling%variance%of%GREML%es*mate%%
=%SE2%%

=%~%2%/%[N%*%var(GRM)]%

•  var(GRM)%is%propor*onal%to%1%/%Me%where%Me%is%the%
effec*ve%number%of%independent%markers.%

Visscher%et%al.%2014%PLoS%Genet%



A'frequently'asked'ques/on:'
how'many'individuals'are'required'to'run'a'
GCTAEGREML'analysis'

•  SE2%=%~%2%/%[N2%*%var(GRM)]%

•  For%analysis%in%unrelated%individuals%with%HapMap3%
SNP%(~1M),%var(GRM)%=%~2e[5,%so%SE%=%~%316%/%N.%%

•  For%the%analysis%with%whole[genome%sequence%data,%
var(GRM)%=%~4.5e[6,%so%SE%=%~667%/%N.%

SE'of'the'es/mate'from'bivariate'GCTAEGREML'

•  Depending%on%more%parameters%(es*mates)%

•  For%traits%measured%on%the%same%sample%

•  For%traits%measured%on%different%samples%

Visscher%et%al.%2014%PLoS%Genet%



GCTAEGREML'analysis'in'family'data'

•  The%confounding%of%real%gene*c%effects%with%common%
environmental%effects%shared%between%rela*ves%

Yang%et%al.%2017%under%review%

GCTAEGREML'analysis'in'family'data'

•  Solu*on%#1:%remove%close%rela*ves%

•  Solu*on%#2:%es*mate%SNP[based%and%pedigree[based%
heritability%simultaneously%

y%=%g1'+'g2%+%e%
%var(y)%=%A1σ21%+%A2σ22%+%Iσ2e%
%A1%=%GRM%%
%A2%=%GRM%with%large%relatedness%values%only%

"σ21%/%σ2P%=%%SNP[based%heritability%
%(σ21%+%σ22%)%/%σ2P%=%%pedigree[based%heritability%

Zaitlen%et%al.%2013%PLoS%Genet%



SNPs'need'to'be'pruned'for'LD?'

•  Es*mate%increases%with%the%
decrease%of%LD%pruning%(PLINK)%
threshold%but%LRT%does%not%

•  LD%pruning%changes%the%MAF%
spectrum%(cau*ous%about%the%
interpreta*on%of%the%es*mate)%

Yang%et%al.%2017%under%review%

Large'sample'size'

Yang%et%al.%2017%under%review%

•  Computa*onal%challenge%when%n%>%100,000%

•  Really%necessary%to%run%a%GREML%analysis%with%n%>%
100K?%

•  HE%regression?%
yiyj%~%b0%+%b1%*%Aij%+%e%
b0%=%Vg%if%yi%and%yj%%

are%standardised%



Demo'

•  Simula*ng%phenotypes%based%on%a%real%GWAS%data%
set%in%GCTA%

•  Crea*ng%the%gene*c%relatedness%matrix%using%all%SNPs%
(by[product:%PCA%analysis).%

•  GCTA[GREML%analysis%to%es*mate%the%SNP[based%
heritability%

•  Bivariate%GREML%analysis%to%es*mate%the%gene*c%
correla*on%between%traits%

Script'1'

#%Randomly%sample%5%SNPs%as%causal%variants%

bim%=%read.table("test.bim",%colClasses=c(rep("character",6)))%
qtl%=%sample(bim$V2,%5)%
write.table(qtl,%"test.qtl",%row.names=F,%col.names=F,%sep="\t",%quote=F)%

#%Generate%phenotype%

gcta64%[[bfile%test%[[simu[qt%[[simu[causal[loci%test.qtl%[[simu[hsq%0.1%[[out%test%

#%Compute%GRM%
gcta64%[[bfile%test%[[make[grm%[[out%test%[[thread[num%30%

#%REML%analysis%

gcta64%[[grm%test%[[pheno%test.phen%[[reml%[[out%test%[[thread[num%30%

#%PCA%analysis%[%by%product%
gcta64%[[grm%test%[[pca%[[out%test%[[thread[num%30%

pc%=%read.table("test.eigenvec")%

plot(pc$V3,%pc$V4,%xlab="PC1",%ylab="PC2",%col="red")%



Script'2'

%#%Simulate%two%traits%

bim%=%read.table("test.bim",%colClasses=c(rep("character",6)))%
qtl_comm%=%sample(bim$V2,%5)%
tmp%=%bim$V2[which(is.na(match(bim$V2,%qtl_comm)))]%
qtl1%=%c(qtl_comm,%sample(tmp,5))%
qtl2%=%c(qtl_comm,%sample(tmp,5))%

write.table(qtl1,%"test.qtl1",%row.names=F,%col.names=F,%sep="\t",%quote=F)%
write.table(qtl2,%"test.qtl2",%row.names=F,%col.names=F,%sep="\t",%quote=F)%

gcta64%[[bfile%test%[[simu[qt%[[simu[causal[loci%test.qtl1%[[simu[hsq%0.1%[[out%test_tr1%
gcta64%[[bfile%test%[[simu[qt%[[simu[causal[loci%test.qtl2%[[simu[hsq%0.2%[[out%test_tr2%

tr1=read.table("test_tr1.phen")%
tr2=read.table("test_tr2.phen")%
tr2=tr2[match(tr1$V2,%tr2$V2),]%
tr=cbind(tr1,tr2$V3)%
write.table(tr,"test_2tr.phen",row.names=F,col.names=F,quote=F,sep="\t")%

%#%Bivariate%GREML%
gcta64%[[grm%test%[[pheno%test_2tr.phen%[[reml[bivar%1%2%[[out%test_2tr%[[thread[num%50%

Ques/ons'and'discussion%



Lecture'#5'

MLM'based'associa1on'analysis'

Jian%Yang%

Ins*tute%for%Molecular%Bioscience%
The%University%of%Queensland%

1%

To'recap'

•  Linear%regression%
y%=%b0%+%x1b1%+%e%
y%=%trait%value;%x1%=%SNP%genotype%(0,%1%or%2)%

b1Lhat%=%X1
Ty%/%(X1

TX1)%=%cov(x1,y)%/%var(x1)%

SE(b1Lhat)%=%σ2e%/%[n%var(x1)]%

Manolio%2008%NEJM%



Inflated'test:sta1s1cs'due'to'popula1on'
structure'
•  Assump*on%underlying%Linear%regression:%ei%and%ej%
are%independent%and%iden*cally%distributed.%
yi%=%b0%+%xib1%+%ei%

•  Two%issues:%
–  Popula*on%stra*fica*on%%
–  Cryp*c%relatedness%

•  Solu*ons:%
–  Fi[ng%PCs%(Price%et%al.%2007%Nat%Genet)%

–  Genomic%control%(Devlin%&%Roeder%1999%Biometrics)%

Popula1on'stra1fica1on'inferred'from'
SNP'data%

Problem:%PCs%are%unable%to%capture%relatedness%

Yang%et%al.%2010%Nat%Genet%



Genomic'control'

•  %%

McCarthy%et%al.%2008%Nat%Rev%Genet%

Yang%et%al.%2011%EJHG%

Genomic'infla1on'factors'under'polygenic'
model'

•  %%

Yang%et%al.%2011%EJHG%



Es1ma1ng'heritability'and'#causal'from'
genomic'infla1on'factor'

•  h2:%

•  #causal%%

Yang%et%al.%2011%EJHG%

(LD%score%regression%is%a%more%elegant%solu*on)%

MLM'based'associa1on'analysis'

•  y%=%xb%+%Zu%+%e%or%y%=%xb%+%g%+%e%%
'V%=%var(y)%=%Aσ2g%+%Iσ2e%

•  Tes*ng%for%fixed%effects%given%sample%structure%
'bLhat%=%(xTVL1x)L1xTVL1y'
'var(bLhat)%=%σ2e(xTVL1x)L1%

•  Issue:%a%SNP%is%fieed%twice%(MLMi:%MLM%associa*on%
including%the%target%SNP%in%GRM).%%

Kang%et%al.%2010%Nat%Genet%



MLMe:'MLM'associa1on'excluding'the'target'
SNP'from'the'GRM'
•  Expected%chiLsquared%values%

Yang%et%al.%2014%Nat%Genet%

Defla*on:%E(chiLsquared)%<%1%for%null%SNPs%

Power'comparison'at'causal'variants'



Selec1on'of'SNPs'to'compute'the'GRM'

Yang%et%al.%2014%Nat%Genet%

Computa1onal'challenge'

Yang%et%al.%2014%Nat%Genet%

Loh%et%al.%2015%Nat%Genet%



BOLT:LMM'

•  Computa*onally%efficient%when%the%number%of%SNPs%
is%not%large.%%

•  It%uses%a%cross%valida*on%approach%predic*on%
approach%to%specify%models%(infinitesimal%model%vs.%
mixture%normal%model).%

•  LeaveLoneLchromosomeLout%analysis%as%the%default.%

Computer'prac1cal'

•  Simula*ng%phenotypes%based%on%a%real%GWAS%data%
set%in%GCTA%

•  Linear%regression%analysis%in%PLINK%

•  GCTALMLMA%analysis%(MLMi)%

•  GCTALMLMALLOCO%%

•  BOLTLLMM%



Ques1ons'and'discussion%
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Lecture 6: 
BLUP and Genomic Prediction 

1:  BLUP 

Bruce Walsh lecture notes 
Introduction to Quantitative Genetics 

SISG, Brisbane 
9 – 10 Feb 2017 

2 

Estimation of Var(A) and Breeding Values in  
General Pedigrees 

The classic designs (ANOVA, P-O regression)  for variance  
components are simple, involving  only a single type of relative  
comparison.  Further, they assume  balanced designs, with the  
number of offspring the same in each family. 

In the real world, we often have a pedigree of relatives, with 
a very unbalanced design.  Fortunately, the general mixed 
model (so called because it includes both fixed and random  
effects), offers an ideal platform for both estimating genetic 
variances as well a predicting the breeding values of individuals.  

Almost all animal breeding is based on such models, with REML 
(restricted max likelihood) used to estimated variances and 
BLUP (best linear unbiased predictors) used to predict BV 
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Y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of fixed effects (to be estimated),  
e.g., year, location and treatment effects 

Vector of random
 effects, such as

 individual  
genetic values  (to

 be estimated) 

Vector of residual errors 
 (random effects) 

Incidence
 matrix for
 fixed effects 

Incidence matrix for random effects 

4 

Y = Xβ + Zu + e 

The general mixed model 

Vector of
 observations
 (phenotypes) 

Vector of random
 effects 

Incidence
 matrix for
 fixed effects 

Vector of fixed effects   

Incidence matrix for random effects 

Vector of residual errors 

Observe y, X, Z. 

Estimate fixed effects β 

Estimate random effects u, e 
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Example 
Suppose we wish to estimate the breeding values of 
three sires (fathers), each of which is mated to a random female (dam), 
producing two offspring, some reared in environment one, others  
in environment two.  The data are 

Observation Value Sire environment 

Y111 9 1 1 

Y121   12 1 2 

Y211 11 2 1 

Y212 6 2 1 

Y311 7 3 1 

Y321 14 3 2 

6 

Here the basic model is 
     Yijk = βj + ui + eijk 

Effect of environment j 
Breeding value of sire i 

The mixed model vectors and  
matrices become 
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Means:  E(u) = E(e) = 0,  E(y) = Xβ 

Let R be the covariance matrix for the  
residuals.  We typically assume R = σ2

e*I 

Let G be the covariance matrix for the  
breeding values   (the vector u) 

The covariance matrix for y becomes   
      V = ZGZT + R 

Means & Variances for y = Xβ + Zu + e 

Variances: 

8 

Estimating fixed Effects & Predicting  
Random Effects 

For a mixed model, we observe y, X, and Z 

β, u, R, and G are generally unknown 

Two complementary estimation issues 

(i)  Estimation of β and u 

Estimation of fixed effects 

Prediction of random effects 

BLUE = Best Linear Unbiased Estimator 

BLUP = Best Linear Unbiased Predictor 

Recall V = ZGZT + R 
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Henderson’s Mixed Model Equations 

If X is n x p and Z is n x q 

Inversion of an n x n matrix 

p x p  p x q 

The whole matrix is (p+q) x (p+q) 

y = Xβ + Zu + e,  u ~ (0,G), e ~ (0, R), cov(u,e) = 0,  

V = ZGZT + R 

Easier to numerically work 
with than BLUP/BLUE 
equations 

q x q q x p 

10 
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Let’s redo our example on slide 6 
using Henderson’s Equation 

Taking the inverse gives The MM equations become 
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The Animal Model, yi = µ + ai + ei 

Here, the individual is the unit of analysis, with 
yi the phenotypic value of the individual and ai its BV 

Where the additive genetic relationship matrix A is given by 
   Aij  = 2θij, ,namely twice the coefficient of coancestry 

Assume R = σ2
e*I, so that R-1 = 1/(σ2

e)*I. 
Likewise, G = σ2

A*A, so that G-1 = 1/(σ2
A)*A-1. 

The “animal” model estimates the breeding value for each 
individual, even for a plant or tree!  Same approach also 
works to estimate line (genotypic) values for inbreds. 
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Henderson’s mixed model equations 

This reduces to 

here  λ = σ2
e / σ2

A = (1-h2)/h2  

Returning to the animal model 
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Example 

1 2 3 

4 5 

Suppose our pedigree is 

Suppose λ =1 (corresponds to h2 = 0.5).  In this case,  
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Suppose the vector of 
observations is 

Here n = 5, Σ y = 41, and Henderson’s equation becomes 

Solving gives 
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More on the animal model 
•  Under the animal model 

–  y = Xβ + Za  + e  

–   a ~ (0,σA
2A),  e ~ (0, σe

2I) 
–  BLUP(a) = σA

2AZTV-1(y- Xβ) 
–  Where V = ZGZT + R = σA

2ZAZT + σe
2I  

•  Consider the simplest case of a single observation on 
one individual, where the only fixed effect is the 
mean m, which is assumed known 
–  Here  Z = A = I = (1),  
–   V = σA

2 + σe
2 

–   σA
2 AZTV-1 = σA

2 /(σA
2 + σe

2) = h2 

–  BLUP(a) = h2(y-µ) 
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•  More generally, with single observations on n 
unrelated individuals,  
–  A = Z = In x n 

–  V = σA
2ZAZT + σe

2 I = (σA
2 + σe

2) I 

–   σA
2 AZTV-1 =   h2 I 

–  BLUP(a) = σA
2A ZT V-1 (y- Xβ) = h2(y- µ)  

•  Hence, the predicted breeding value of individual i is 
just BLUP(ai) = h2(yi-µ) 

•  When at least some individuals are related and/or 
inbred (so that A = I) and/or missing or multiple 
records (so that Z = I), then the estimates of the BV 
differ from this simple form, but BLUP fully accounts 
for this   
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BLUP is a shrinkage estimator 
•  For a single observation on one individual, 

BLUP(a) = h2(y-µ) 
–  The difference between the observed value (y) 

and the mean (µ) is  shrunk by the factor h2 --- 
shrinks the estimate back towards the mean (zero 
in the case of BVs) 

•  More generally, BLUP(a) = G ZT  V-1 (y- Xβ)  
–  First adjusts observations (y) for fixed effects (Xβ) 

and then regresses this difference back towards 
zero (the mean BV), as Cov*Var-1 is a generalized 
regression coefficient 
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The Relationship Matrix A 
•  Typically given from a pedigree, but 

increasingly being estimated from marker 
data 

•  The diagonal elements indicate the amount 
of inbreeding 
–  Aii = 1 + Fi, where Fi is inbreeding coefficent for 

individual i.  
–  For a fully-inbred, Aii = 2  

20 

Marker-based relationship matrices 
•  There are two reasons for using a marker-estimated 

relationship matrix 
–  Pedigree either unknown or poorly known 
–  With very dense markers, provides a better estimate than a 

known pedigree.  Why? 
•  Consider two (non-inbred) full-sibs.  The expectation 

under a pedigree is that they share exactly half their 
genes. 

•  However, there is a sampling variance about this 
expected value, so that some pair of sibs may share 
more than 50%, while another may share less.  Using 
markers to detect such pairs improves the estimated 
values 

•  This is called G-BLUP (in animal breeding) and is a form 
of genomic selection 
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Marker-based relationship matrix 

Simplest case is to consider a very large number (L) of SNPs, and 
treat alike in state as IBD, and then compute the probability 
fxy that x and y share a randomly-drawn allele for each SNP marker. 
Twice the average over all markers is the entry for x and y in the  
relationship matrix (as Axy = 2fxy) 

00 01 11 
00 1 0.5 0 
01 0.5 0.5 0.5 
11 0 0.5 1 

SNP genotype for x 

SN
P 

ge
no

ty
pe

 fo
r y

 

Values for fxy given the SNP genotypes 

22 

Estimation of R and G 

A second estimation issue concerns the covariance  
matrix for residuals R and for breeding values G 

As we have seen, both  matrices have the form  &
σ2*B, where the variance σ2 is unknown, but  
B is  known 

For example, for residuals, R = σ2
e*I 

For breeding values, G = σ2
A*A, where A is given 

from the pedigree  
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REML Variance Component Estimation 

REML = Restricted Maximum Likelihood.   

REML maximizes that portion of the likelihood that  
does not depend on fixed effects 

Standard ML variance estimation assumes fixed 
factors are known without error.  Results in downward 
bias in variance estimates 

Basic idea:  Use a transformation to remove fixed  
effects, then perform ML on this transformed vector 

24 

Simple variance estimate under ML vs. REML 

REML adjusts for the
 estimated fixed effect,  
in this case, the mean 

With balanced design, ANOVA variance estimates are 
 equivalent to REML variance estimates 
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Example 

1 2 3 

4 5 

Suppose individuals 1 - 3 are measured, 4 & 5 are not. 

10 16 7 

Assume only a single fixed effect, the mean µ. 

Model becomes 
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V = ZGZT + R = 200* I 

Here  

Letting Var(A) = 100, Var(e) = 100,  

Average base pop EBVs = 0 

EBVs for individuals (4,5) with no  
phenotypic records 

Key:  Information from relatives provides estimates 
for BV of unmeasured relatives. 

Solving gives 
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G-BLUP 

1 2 3 

4 5 

2 slightly inbred 

4 & 5 slightly 
less related 

than 1/2 sibs 

Pedigree-BLUP G-BLUP 

Suppose marker data gives 
A as Suppose we have maker data. 

How does this change EBVs? 
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Often there are several
 vectors of random effects 

•  Repeatability models 
– Multiple measures 

• Common family effects 
– Cleaning up residual covariance structure 

• Maternal effects models 
– Maternal effect has a genetic (i.e.,

 breeding value) component 
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Multiple random effects 

y = Xβ + Za + Wu + e 

β is a q x 1 vector of fixed effects 

a is a p x 1 vector of random effects 

u is a m x 1 vector of random effects 

X is n x q,  Z is n x p,  W is n x m 

y is a n x 1 vector of observations 

y, X, Z, W observed. β, a, u, e to be estimated 
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Covariance structure 

Defining the covariance structure key in any mixed-model 

y = Xβ + Za + Wu + e 

These covariances matrices are still not sufficient, as we  
have yet to give describe the relationship between e, a,  
and u.  If they are independent: 

Suppose e ~ (0,σe
2 I), u ~ (0,σu

2 I), a ~ (0,σA
2 A),  

as with breeding values 
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y = Xβ + Za + Wu + e 

Note that if we ignored the second vector u of random
 effects, and assumed y = Xβ + Za + e*, then e* = Wu +
 e, with Var(e*) = σe

2 I + σu
2 WWT 

Consequence of ignoring random effects is that these 
are incorporated into the residuals, potentially  
compromising its covariance structure 

Covariance matrix for the vector of observations y 

6 

Mixed-model Equations 
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The repeatability model 

•  Often, multiple measurements (aka “records”) are
 collected on the same individual 

•  Such a record for individual k has three components 
–  Breeding value ak 
–  Common (permanent) environmental value pk 
–  Residual value for ith observation eki 

•  Resulting observation is thus  
–  zki = µ + ak + pk +eki 

•  The repeatability of a trait is r = (σA
2+σp

2)/σz
2 

•  Resulting variance of the residuals is σe
2  = (1-r) σz

2 
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Resulting mixed model 
y = Xβ + Za + Zp + e 

In class question:  Why can we obtain separate estimates 
of a and p?  

Notice that we could also write this model as  
 y = Xβ + Z(a + p) + e = y = Xβ + Zv + e, v = a+p 
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The incident matrix Z 
Suppose we have a total of 7 observations/records, with 
3 measures from individual 1, 2 from individual 2, and 
2 from individual 3.  Then: 

Why?  Matrix multiplication.  Consider y21. 

y21 = µ + A2 + p2 + e21 

13 
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Consequences of ignoring p 
•  Suppose we ignored the permanent environment

 effects and assumed the model y = Xβ + Za + e*  
–  Then e* = Zp + e, 
–  Var(e*) = σe

2 I + σp
2 ZZT 

•  Assuming that Var(e*) = σe
2 I gives an incorrect

 model 
•  We could either  

–  use y = Xβ + Za + e* with the correct error
 structure (covariance) for e* = σe

2 I + σp
2 ZZT 

–  Or use y = Xβ + Za +Zp + e, where e = σe
2 I 

12 
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Resulting mixed-model equations 
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Common family effects 
•  Sibs in the same family also share a common

 environment 
–  Cov(full sibs) = σA

2/2 + σD
2/4 + σce

2 

•  Hence, if the model assumes yi = µ + ai + ci + ei, with
 a ~ 0, σA

2A, c ~ 0, σcf
2I.   If there are records for

 different sibs from the same family, Var(e) is no
 longer σe

2 I 
•  y = Xβ + Za + Wc + e 
•  Again, if common family effect ignored  (we assume

 y = Xβ + Za + e*) the error structure is e* = σe
2 I +

 σcf
2 WWT 

–  Where σcf
2  = σD

2/4 + σce
2 

–  The common family effect may contain  both environment
 and non-additive genetic components 
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Example:  Measure 7 individuals, first five are
 from family one, last two from family 2 

y = Xβ + Za + Wc + e 

Z = I as every individual has a single record. 
If there are missing and/or repeated records, 
Z does not have this simple structure 
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y = Xβ + Za + Wc + e 

Again,  matrix multiplication gives us the form of the Z and  
W matrices.   Consider y6: 

y6 = µ + A6 + c2 + e6 
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Maternal effects with genetic
 components 

•  The phenotype of an offspring can be influenced by
 its mother beyond her genetic contribution 

•  For example, two offspring with identical genotypes
 will still show potentially significant differences in
 size if they receive different amounts of milk from
 their mothers 

•  Such maternal effects can be quite important 
•  While we have just discussed models with common

 family effects, these are potentially rather different
 that maternal effects models 
–  Common family environmental effects are assumed not to

 be inherited across generations. 
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•  Consider milk yield.  The heritability for this
 trait is around 30% and the milk yield of the
 mother has a significant impact on the
 weight of her offspring 

•  Offspring with  high breeding values for milk
 will tend to have daughters with above
-average milk yield, and hence above
-average maternal effects 

•  The value of an offspring can be considered
 to consist of two components 
–  A direct effect (intrinsic breeding value) 
–  A maternal contribution 
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Phenotypic value = direct value + maternal value  

Pz = Pd + Pm 

Observable Latent (unseen) values 

Both of the latent values can be further decomposed into breeding
 plus residual (environmental + non- additive genetic) values  

Pd = µ + Ad + Ed,            Pm = µ + Am + Em,  

The maternal breeding value Am DOES NOT appear  in the
 phenotype of its carrier, but rather in the phenotype of her 
offspring 

The direct breeding value Ad appears in the phenotype of its
 carrier 
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Direct vs. maternal breeding values 
•  The direct and maternal contributions are best

 thought of as two separate, but potentially
 correlated, traits. 
–  Hence, we need to consider σ(Ad,Am) in addition to σ 2(Ad)

 and σ 2(Am).  This changes the form of the mixed-model
 equations 

•  The direct BV (Ad) is expressed in the individual
 carrying it 

•  The maternal BV (Am) is only expressed in the
 offspring trait value (and only mom’s Am appears) 
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Covariance structure 

This is often written using the Kronecker (or direct) product:    

Giving 
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y = Xβ + Zdad + Zmam + e 

The mixed-model becomes 
Direct effects 
breeding values 

Maternal effects 
breeding values 

The error structure needs a little care, as the 
direct Ed and maternal Em residual values can be 
correlated*.  Initially, we will assume Var(e) ~ σe

2I 

*See Bijma 2006 J. Anim. Sci. 84:800-806 for treatment 
of correlated environmental residuals under this model 
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The resulting mixed-model equations become 
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Filling out the maternal effects
 incident matrix Zm  

A little bookkeeping care is needed when filling out Zm, because the Am
 associated with a record (measured  individual) is that of their mother. 

0 
1 

a 
b 

c 

2 

3 

d 

f 

e 

g 

4 

5 

6 

7 

1-7 have 
records 

All sires 
unrelated 



25 

0 1 

2 

3 

4 

5 

6 

7 

Ad1 + Am0 

Ad2 + Am1 

Ad3 + Am1 

Ad4 + Am2 

Ad5 + Am2 

Ad6 + Am3 

Ad7 + Am3 

The observed values are y1 through y7.  
What we can estimate are Ad1 through Ad7,   
Am0 through Am3 
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Note that we estimate Am0 even though we don’t have a 
record (observation) on her. 

Since Zmam must be a 7 x 1 matrix, Zm is 7 x 4 (as am is 4 x 1) 

Records 4 and 5 are associated with Am2 

Record 1 is associated with Am0 

Records 2 and 3 are associated with Am1 

Records 6 and 7 are associated with Am3 
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Records 4 and 5 are associated with Am2 

Record 1 is associated with Am0 

Records 2 and 3 are associated with Am1 

Records 6 and 7 are associated with Am3 
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What about Am4 through Am7? 
Although we have records that only directly relate Am0 to Am3, through the use
 of A we can (in theory) also estimate the maternal breeding values for
 individuals 4 through 7.  Note this includes the maternal BVs for the two males
 (5 & 7), as they can pass this onto their daughters. 
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Note that 

All this raises the question about what can, and cannot, be 
estimated from the data (y) and the design (Zm, Zd)? 

First issue:  Is the structure of the design such that we 
can estimate all of the variance components.  This is the 
issue of identifiability  
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Estimability vs. Identifiability 
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32 
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Second issue, connectivity 
Even if the design is such that we can estimate all the genetic
 variances, whether we can estimate all of the β, ad, and am in the
 model depends on whether a unique inverse exists for the MME 

Unique estimates of all the  β require (XTV-1X)-1 exists 

If (XTV-1X)-1 does not exist, a generalized inverse is used 
which can uniquely estimate k linear combinations of the 
β where k is the rank of XTV-1X 
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Likewise, if the MME equation does not have an inverse (and this is not
 due to constraints on β), then a generalized inverse can be used 
to estimate unique estimates of certain linear combinations of the 
ad and am. 

A key role in ensuring that unique estimates of ad and am exist is
 played by the relationship matrix A.  If individuals with records and
 individuals without records are sufficiently well connected (non-zero
 entries in A for their pair-wise relatedness), then we usually can
 estimate values of un-observed individuals (although their precision is
 another issue) 
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Associative effects models 
•  A very powerful recent development in quantitative genetics 

(although the idea dates back to Griffin’s work in the 1960s) is 
the notion of direct vs. associative (or social, or indirect genetic) 
effects 

•  This idea unifies kin and group selection, offers models for the 
evolution of social (group-level) traits, and shows why selection 
can often fail 

•  The basic idea is that the phenotype of a target individual is a 
function of some intrinsic direct value and also the phenotypes 
of those individuals with which it interacts. 
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Direct & Associative effects 
•  Consider egg production from chickens 

raised in cages.  Production is a function of 
both a chicken’s own genetics and the 
environment (her other cage-mates) 
–  Direct effects = intrinsic egg production 
–  Associative effects = competitive ability 

•  Suppose our focal individual (i) interacts with 
n-1 others in a group 
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Direct and associative effects 
can be antagonistic 

•  Consider a plant with a trait that allows it to 
more efficiently garner resources 

•  This gives it a high direct effect but a 
negative associative effect --- it reduces the 
trait values in those individuals with which it 
interacts 

•  Thus, the best performing single plants can 
have very low average plot performance 
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Breeding values for direct (Ad) and 
associative (As) effects 

•  Can express the phenotype of i in terms of its 
direct breeding value (Ad,i) and the 
associative breeding values (As,j) of its group 
mates 
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Total response 

Total response is the sum of the response Rd in the direct 
breeding values plus the sum of the responses Rs in the 
associative effects breeding values, 

The trait mean equals the mean of the direct effects 
plus the means of the  associative effects, 
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Total breeding value 

Note that part (As,i) 
of the total breeding value  
of i never appears in its  
phenotype.  Must either 
use informative from relatives  
or the group to estimate it. 

The key to predicting response is the  
total breeding value of an individual, where 
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h2 and τ2 

•   τ2, the analog for h2, is the ratio of the total 
breeding value to the individual phenotypic 
variance 
–   τ2 = Var(AT)/Var(z) 

•  Note that, unlike h2, τ2 can exceed one, 
•  Why? A potentially large fraction of AT never 

appears in z, and hence Var(z) 
–  Var(AT) = Var(Ad) + (n-1)Var(As) 
–    τ2  = Var(Ad) /Var(z) + (n-1)Var(As)/Var(z) 
–    = h2 + (n-1)Var(As)/Var(z) 
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BLUP estimation  

•  While the total breeding value cannot be 
estimated directly from an individual’s 
phenotype, using an appropriate mixed 
model, we can obtain 
– BLUPs of Direct breeding values (Ad) 
– BLUPs of Associative (or social) BVs (As) 
– REML estimates of σ2(Ad), σ2(As), and the 

direct-associate effects covariance σ(Ad ,As) 
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This works: Muir’s result 
•  Bill Muir (Purdue University) selection on 

six-week weight in Japanese quail over 23 
generations using two different schemes 
– BLUP selection on estimated direct BV (D) 

• Denoted by D-BLUP 
– BLUP selection on estimated total BV 

• Denoted by C-BLUP 
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= total BV 

Weighted increased under selection using total 
BV (C), decreased under selection using  
direct BV (D). 

C

D
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Under BLUP selection on direct BV (D), significant  
decline in the mean social value, which over-rode 
the positive response in the direct value 

Under BLUP selection of total BV (C), both increase 

C 

D 
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The mixed model 

Example: Individuals 1-4 and 5-8 are half sibs 
from unrelated families 
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Filling out Zs 

•  Suppose group one contains individuals 1, 2, 5, 
6.  The resulting values for these individuals 
become 
–  z1 = m + Ad1 + As2 + As5 + As6 + e 
–  z2 = m + Ad2 + As1 + As5 + As6 + e 
–  z5 = m + Ad5 + As1 + As2 + As6 + e 
–  z6 = m + Ad6 + As1 + As2 + As5 + e 
–  The result Zd and Zs incident matrices become 
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Group one contains individuals 1,2,5,6; while group two contains 3,4,7,8. 
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Lots of hidden variation to exploit 
•  Bergsma et al. (2008) examined four 

traits in 14,000 pigs grown in pens of 
6-12 animals. 

• Heritability for these traits was 
estimated in a model without social 
effects, 
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Hence, for growth and food intake, lots of  
additional genetic variation for trait response 
lies “hidden” in associative effects. 
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Longitudinal traits 
•  Many classic quantitative traits are longitudinal -- 

measured at multiple time points --- milk yield, body 
size, etc. 

•  We have already examined the repeated-measures 
design wherein an identical trait (assumed to be 
unchanging) is measured multiple times. 

•  For most longitudinal traits, we expect the trait to 
change over time, such as a growth curve. 

•  These are function-valued traits, also called infinite-
dimensional traits.  

•  One critical feature of such traits is that their additive 
variances change with t, and trait values from 
different time points have different correlations. 



3 Sci Agric.  66:  85-89 
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Norms of reaction 
•  The other type of function-valued trait is one indexed by some 

continuous environmental variable (as opposed to time), such 
as adult body weight as a function of temperature or grain yield 
as a function of total rainfall. 

•  The measurement of such traits generally requires replication of 
individuals over environments (versus the sequential evaluation 
of a single individual with longitudinal traits).  As with G x E, this 
can be done 
–  Using clones/pure lines 
–  Using family members 

•  Such curves are common in ecology & evolution and are called 
norms of reaction, and are measures of G x E 
–  Norms of reaction measure phenotypic plasticity --- variation 

that can be expressed from a fixed genotype, which is often 
an important adaptation in changing environments. 
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How to model such traits? 
•  One obvious approach is to treat the trait measured at discrete 

time points as a series of correlated traits.   
–  Makes sense to do this for something like parity (litter 

number), as individuals are all measured at the same event, 
i.e., parity one, parity two, etc. 

–  However, with a trait like a growth or some performance 
curve, we often expect to have different time measurements 
for different individuals. 

•  We could either lump these into groups (reducing 
precision) or treat each different time/tuning variable 
value as a different trait (much missing data). 

–  Better solution: estimate the trait covariance function, where 
C(t1,t2) = Cov[z(t1),z(t2)] or Cov[A(t1),A(t2)]  
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Covariance function approach 

•  Kirkpatrick popularized the use of covariance functions (largely 
in evolutionary biology) in the mid-late 1980’s.  

•  He noted that traits measured with respect to some continuous 
indexing variable (such as time or temperature) have effectively 
infinite dimensions, as one could (in theory) always consider 
finer and finer time scales. 
–  Thus, rather than treat them as a (potentially) every-

expanding set of discrete correlated traits, better to simply 
consider the covariance C(t1,t2) between any two time  
points within the range of the sampled data.  Note that 
C(t1,t1) is the trait variance at time t1. 

–  C(t1,t2) is the covariance function, the logical extension of 
the covariance matrix C(i,j) used for correlated traits, using 
continuous, rather than integer, indexes. 
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Covariance functions (cont) 
•  As with any quantitative trait, the covariance between the 

values at two time points can be decomposed into an additive-
genetic (breeding value) covariance function and a residual (or 
environmental) covariance function, 
–  Cz(t1,t2) = CA(t1,t2) + CE(t1,t2)  

•  The issue in the estimation of the additive covariance function is 
how one proceeds from an additive-covariance matrix estimate 
G from discrete time points to a continuous function covering 
all possible values with the span of time sampled to estimate G. 
–  Basic (initial) idea:  Use curve-fitting based on low-degree 

polynomials to use G to fit a covariance function 
–  This is typically done by using Legendre polynomials as the 

basis function.  
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Riska et al. (1984) data on breeding values for log(body weight) 

2 3 4 
The basic idea was illustrated 
by Kirkpatrick with a data set 
on mouse body weight measured 
at ages 2, 3, and 4 weeks.  Riska 
et al. estimated the G matrix as 

Plotting these values on 
a lattice at these discrete 
time points gives 

Ideally, would like some sort of  
smooth curve for this data.  
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Towards the covariance function 
•  Suppose we assume the breeding value at time t (for 

2 < t < 4 weeks) is in the form of a quadratic, so that 
individual’s i breeding value is given by 
–   Ai(t)  = aio + ai1 t + ai2 t2.  
–  Here the aij (for 0 < j < 2) are regression 

coefficients unique to individual i, and are 
unchanging over time. 

•  A different individual (j) also has a quadratic 
regression, but with different coefficients 
–  Aj(t)  = ajo + aj1 t + aj2 t2. 

–   the aij are referred to as random regression coefficients, as 
they are random (drawn from some distribution) OVER 
individuals, but constant over time WITHIN an individual. 
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Towards the covariance function (cont) 

We can think of these random regression coefficients 
as being drawn from a distribution: 

Ideally, we would like to use our estimate of G to make 
inferences on the elements in CG.  

We can write the additive value in time t for individual  
i as ai

T*t, where = ai
T = (ai0, ai1, ai2) and tT = (1, t, t2) 
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Towards the covariance function 
The regression Ai(t)  = aio + ai1t + ai2t2 = ai

Tt 
yields the covariance function, as the value 
of the vector t for different times are  
constants, giving   

Cov[Ai(t1), Ai(t2) ] = Cov[ai
Tt1, ai

Tt2]  
                                  = t1

T Cov(ai,,ai) t2 

                                  = t1
T CG t2 

This is a bilinear form (the generalization of a  
quadratic form). 
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More generally,  fitting an m-th degree polynomial for A gives 
the product of two m-degree polynomials for the covariance function 

Expanding gives 
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Estimated additive-genetic covariance function 

Kirkpatrick estimated to covariance function 
for the Riska data by assuming an individual’s breeding  
value over time can be modeled by 2nd degree 
polynomial.  The resulting covariance function 
gives the following surface: 
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Details 
•  Before building on these basic ideas to estimate the 

covariance function, some background on Legendre 
polynominals is required, as these are used as the basis 
functions (building blocks) for curve-fitting instead of the 
set (1, t, t2, …tk) 
–  Specifically, we could approximate a function f(t) by 

the k-th degree polynomial f(t) = Σk aiti.  
–  Instead, we approximate it by a weighted sum of the 

functions φ0(t), φ1(t), …, φk(t), where φj(t) is a 
polynomial of degree j (the Legendre polynomial of 
order j,  for 0 < j < k),  using f(t) = Σk bi φi(t). 
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Legendre Polynomials 

For -1 < t < 1,  the first five scaled Legendre polynomials are given by 

φ0(t) = 0.7071 
φ1(t) =  1.2247 t 
φ2(t) = -0.7906 + 2.3717 t2 
φ3(t) = -2.8062 t + 4.6771  t3 

φ4(t) = 0.7955 - 7.9550 t2 + 9.2808 t4 
φ5(t) = 4.2973 t - 20.5205 t3 + 18.4685  t5 

For curve-fitting, orthogonal polynomials are often used, where φk(t) 
denotes a k-th degree polynomial.  The set of these  building 
blocks φo(t), φ1(t), … φk(t) .. are defined to be orthogonal in the sense 
that the integral of  φi(t) φj(t) = 0 when i and j are not equal.  We also 
assume they are scaled to have unit length, with the integral φi

2(t) = 1. 

For example, the curve y = a + b t can be written as  
y = a/(0.7071) φ0(t) + b/(1.2247) φ1(t) for -1 < t < 1. 
More generally, any k-th degree polynomial can be written as 
Σκ ai φi(t)  
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1 t t2 t3 t4 t5 

In matrix form, 

j-th row of M are the coefficients for the jth Legendre polynomial 

φ0(t) = 0.7071 
φ1(t) =  1.2247 t 
φ2(t) = -0.7906 + 2.3717 t2 
φ3(t) = -2.8062 t + 4.6771 t3 

φ4(t) = 0.7955 - 7.9550 t2 + 9.2808 t4 
φ5(t) = 4.2973 t - 20.5205 t3 + 18.4685 t5 

Row 4 = 
coefficients  

for φ4. 
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How do we write the following 5th order polynomial in terms of 
Legendre polynomials? 

Note that y = aTx, where 

Giving x = M-1φ.  Since y = aTx = aTM-1φ,  weights on Legendre 
polynomials are  given by  aTM-1 
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Weights are given by  aTM-1 

R returns 

Giving y = 26.51006*φ0(x) -32.1633 *φ1(x)  + 24.06409 *φ2(x)  
 -21.01970 *φ3(x) + 5.387467 *φ4(x) -5.956087 *φ5(x)  

More generally, any k-degree polynomial y = aTxk can be expressed as a  
weighted series of the first k+1 Legendre polynomials φ0, .., φk, where the  
weights are  aTM-1. M is (k+1) x (k+1), with the jth row being the  
coefficients on x for the j-th order Legendre polynomial. 
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The Covariance function in terms of 
Legendre polynomials 

•  Express the trait breeding value for individual i at time tj by an 
m-th order polynomial,   
–   Ai(tj) = Σk

m aik φk(tj), where ai ~ 0, CG 
–  Define the vectors 

•   φm(t) = (φ0(t), φ1(t), …, φm(t) )T, which we often write as 
just φm  or φ  for brevity 

•   ai = ( ai0, ai1, …., aim )T. 
•  Hence Ai(tj) = φm(t)Tai = ai

Tφm(t). 
•  Cov[Ai(t1), Ai(t2) ] = Cov[ai

T φm(t1), ai
T φm(t2)]  

•   Cov[Ai(t1), Ai(t2) ] = φm(t1)T CG φm(t2) 
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Covariance function (cont) 
•  Cov[Ai(t1), Ai(t2)] = φm(t1)T CG φm(t2) 
•  Recall for tm = (1, t, t2, …, tm)T that 

–   φm(t) = Mtm,  where M is the (m+1) x (m+1) matrix 
of coefficients for the first (m+1) Legendre 
polynomials 

•  Substituting in φ(t) = Mt  yields  
–  Cov[Ai(t1), Ai(t2) ] =  t1

T MTCGM t2, or 

–  Cov[Ai(t1), Ai(t2) ] = t1
T H t2, with H = MTCGM 

•  This allows us to express the covariance function in 
terms t1 and t2 directly 
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From G to CG 
•  The key component to the covariance function is the 

covariance matrix CG for the additive genetic random 
regression coefficients.  How do we obtain this? 

•  We start with what Kirkpatrick called the “full 
estimate”  
–  Given an estimated G matrix of the trait measured 

at m time points, we can describe trait breeding 
value as an m-1 degree polynomial 

–  This is done as a weighted combination of the first 
m Legendre polynomials, φ0, φ1, … φm-1. 

–  Gij = Cov[A (ti), A (tj) ] = φm(ti) CG φm(tj)T 
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The full estimate does an element-by-element matching of G  

to functions of φm(ti) (which are known constants) and CG. 
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Note that Φ is a matrix of constants --- the Legendre 
polynomials evaluated at the sample time points.  Note 
that time points are scaled to be within (-1, 1), so 
ordering time on the original scale as T1 < … <Tm, scaled 
values are given by ti = 2(Ti - T1)/(Tm - T1) -1 

-1 
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Example:  Riska’s data 

4 weeks, t = 1 

2 weeks, t = -1 
3 weeks, t = 0 
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-1 
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The resulting covariance function becomes 

This bilinear form expresses the covariance function 
in terms of the Legendre polynomials.  Usually we 
would like to express this as a polynomial in t1 & t2: 

One could do this by first substituting in the polynomial form 
for φi(t), expanding and collecting terms.  However, much 
easier to do this in matrix form.  Recall the coefficient 
matrix M from earlier in the notes, where φ = Mt. Writing the 
covariance function as  φ1

T GC φ2 =  (Mt1)T GC(Mt2) = t1
T MTGC M t2  = 

t1
T H t2, where  H = MTCGM. 
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Expanding this out gives 
Cov(A1,A2) = 808 + 71.2(t1 + t2) + 36.4 t1 t2  

         - 40.7(t1
2 t2 + t1t2

2) -215.0(t1
2 + t2

2)  
                      + 81.6t1

2t2
2 

The covariance function becomes t1
T H t2, with H = MTCGM 

Since the first three Legendre polynomials are used, M is 3 x 3 

H = MTCGM gives  

More generally, the coefficient on t1
i-1 t2

j-1 in the covariance 
expansion is given by Hij. -- the (i,j)-th element of H. 
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The Eigenstructure of CG 
•  The variance-covariance matrix CG of the random regression 

coefficients is extremely information on the nature of variation 
for the function-valued trait. 

•  The function-valued analogue of the eigenvector is the 
eigenfunction, which also has an associated eigenvalue.  Akin 
to the eigvenvector associated with the largest eigenvalue 
accounting for the largest single direction of variation, the 
eigenfunction associated with the largest eigenvalue is the 
functional curve associated with the most variation. 

•  The eigenvalues of CG are the same as those for the covariance 
function, while the associated eigenvectors of CG give the 
weights on the orthogonal polynomials that recover the 
eigenfunctions of the covariance function. 
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Back to Riska’s data 

First eigenvector 

-1 
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Linear  

Log  

CG has a dominant
 eigenvalue --- most of the
 variation in 
the breeding value for growth
 is along one curve 
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Associated eigenfunctions for CG for the Riska dataset 
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Eigenfunctions of CG 
•  If ei denotes the eigenvector associated with 

the ith eigenvalue λi of CG, then for the 
covariance function 
–   λi is the ith eigenvalue 
–  associated eigenfunction is φm(t)T ei 

–  = ei1φ0(t) + ei2φ1(t) + … + eimφm-1(t)    
–  Since φ = Mt, we have   (Mt)T ei =  tT (MT ei) , 

giving the weights on (1, t, t2, .. ,tm-1) as  MT ei   
–  For Riska’s data, the leading eigenfunction is 
–   ψ1(t) = 0.7693 - 0.0617 t - 0.1971 t2 
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Eigenfunctions: ψi(t) = tT (MTei) 

ψ2(t) = 0.256 + 1.121*t - 0.937*t2 

ψ3(t) = -0.684 + 0.490*t +2.170*t2 



35 Meyer’s data on Cattle Weight 
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Over-fitting GC? 

Meyer’s data showing how increasing the degree of polynomial used 
results in over-fitting.  In her words: “surfaces become ‘wiggly’ “ 
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Reduced estimation of CG 
•  While the full estimate (rank CG = rank of observed G) is 

(relatively) straightforward, this likely results in an overfit of the 
data, as the covariance function is forced to exactly fit the 
observed values for all t1, t2, some of which are sampling noise 
–  Results in a less smooth covariance function than one based 

on using a reduced dimension. 
–  Kirkpatrick originally suggested a least-squares approach, 

while Meyer & Hill suggested a REML-based approach 
–  Key breakthrough, first noticed by Goddard, and fully 

developed by Meyer, is the connection between covariance 
functions and random regressions. 

–  This should not be surprising given that we started with 
random regressions to motivate covariance functions. 

–  The key is that standard BLUP approaches (for multivariate 
traits) can be used for random regressions. 
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Mixed-Models (BLUPs) for Longitudinal traits 

•  Simplest setting is the repeatability model, the trait breeding 
and residual (permanent environmental) values are assumed 
constant over time.  The jth observation on i is 
–  yij = u + ai + pei + eij 
–  a ~ 0, Var(A)A 

•  At the other extreme is the multiple-trait approach, where each 
sampled time point is considered as a separate, but correlated, 
trait.  Here yij is the jth “trait” (sampled time point) for individual 
i. 
–  yij = u + aij + eij 
–  a ~ 0,  G X A 

•  In the middle are random-regressions, where for the jth 
observation (time tj) on individual i is  
–  yij = u + Σk

n aikφk(tj) + Σk
m peikφk(tj) + eij 

–  ai ~  0,  CG   and     pi ~  0,  CE 
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The repeatability model 
•  The repeatability model assumes that the trait is unchanging 

between observations, but multiple observations (records) are 
taken over time to smooth out sampling noise (e) 

•  Such a record for individual k has three components 
–  Breeding value ak 
–  Common (permanent) environmental value pk 
–  Residual value for ith observation eki 

•  Resulting observation is thus  
–  zki = µ + ak + pk +eki 

•  The repeatability of a trait is r = (σA
2+σp

2)/σz
2 

•  Resulting variance of the residuals is σe
2  = (1-r) σz

2 
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y = Xβ + Za + Zp + e 

Mixed-model equations 

Mixed-model   
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The multiple-trait model 
•  With a clearly discrete number of stages (say k), a 

longitudinal trait could be modeled as k correlated 
traits, so that individual i has values yi1, yi2, .., yik. 

•  In this case, there is no need for permanent 
environmental effects, as these now appear in 
correlations among the residuals, the within-
individual environmental correlations (which are 
estimated by REML). 

•  This can be put into standard Mixed Model 
equations by simply “stacking” the vectors for each 
trait to create one vector for each random effect. 
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For trait j (1 < j < k), the mixed model becomes 

We can write this as y = Xβ + Za + e, where  

Again, the BLUP for the vector of all EBVs is given by 

With V the covariance structure for this model  
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Covariance structure for EBVS 

The genetic variance-covariance matrix G accounts 
for the genetic covariances among traits.  G has k  
variances and k(k-1)/2 covariances, which must be 
estimated (REML) from the data. 
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Covariance structure for residuals 

Here the matrix E accounts for within-individual correlations in the
 environmental (or residual) values. 
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Random regressions 
•  Random regression models are basically a hybrid 

between repeated records models and multiple-trait 
models.  
–  The basic structure of the model is that the trait at time t is 

the sum of potentially time-dependent fixed effects µ(t), a 
time-dependent breeding value a(t), a time-dependent 
permanent environmental effect p(t), and a residual error e.  
These last three are random effects 

–  y(t) = µ(t) + a(t) + p (t) + e 
–   a(t) and p (t) are both approximated by random regressions, 

of order n and m, respectively (usually n = m)  
–  ai(tj) = Σk

n aikφk(tj)  and pi(tj) = Σk
m bikφk(tj) 

–  The vectors ai and bi for individual i are handled in a multiple-trait 
framework, with covariance matrices CG and CE for the within-
individual vectors of additive and permanent environmental 
effects.  
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To build up the random regression model, consider the qi observations 
from different times for individual i  

Here are fitting m-degree polynomials (m < qi) for both the breeding value
 and permanent environmental value regressions.  We also assume that any
 fixed-effects are not time dependent. Both of these assumptions are easily
 relaxed.   
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Model & covariance structure for vector yi of 
observations from individual i 

Covariance structure 
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The design matrix for the regression coefficients 
on the breeding values is very information 

Zi1 is a qi x (m+1) matrix of fixed constants that depend on the   
values of order zero through m Legendre polynomials, where  
the jth row represents these evaluated at time tij.   
A KEY FEATURE is that this set of times could be different 
for each individual, yet the mixed model does all the bookkeeping 
to fully account for this.   
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As with the multiple trait model, stacking the individual vectors 
allows us to put this model in standard form.  Note that while the 
vectors stacked for the multiple trait model represented the 
vectors for each trait separately, here the stacked vectors are 
the observations for each individual. 

Z1, Z2 Block diagonal 
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Full Model & covariance structure   

Covariance structure 

More generally, we can replace σe
2 I by R. 
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Mixed-model equations (slightly more 
generalized covariance structure) 

where 
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Model-fitting issues 

•  A central issue is what degree m of 
polynomials to use.  

•  Standard likelihood tests can be used 
(compare m = k with m = k + 1). 

•  Meyer suggests that tests should be 
comparing k with k + 2, as often going from 
odd to even does not improve fit, but going 
from even to even (k+2) does, and vice-versa. 
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Response to selection 

•  Standard BLUP selection can be used, based 
on some criteria for an optimal functional 
value (curve) in the offspring. 

•  The expected response in the offspring is 
simply obtained by substituting the average 
of the parental breeding values into the 
polynomial regression for the breeding value 
to generate an expected offspring curve.   




