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The standard coalescent model



Going backwards in time: coalescent models

DNA sequences at the same locus from different individuals are
dependent:

» differing amounts of common ancestry;
» so differing levels of correlation among the sequences.

Valid inferences from DNA sequence data, e.g. about mutation
rates or about the location of a gene of interest, may require
modelling the relationships among the sequences.

> Incorrectly assuming independence can lead to understatement
of variances of estimators — the effect can be large.

» Sometimes the relationships among the sequences are crucial
e.g. for inferences about population histories.

A natural way to describe both the pattern of shared ancestry and
the resulting correlations is via a genealogical tree (similar to a
phylogenetic tree but for genes within a population, rather than
from different species).



Coalescent models

Possible genealogy of a sample of 6 homologous sequences, showing two
mutation events. The time arrow points backwards: e.g. ts denotes the
most recent coalescent event, when the number of lineages decreased
(going back in time) from 6 to 5.
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The (standard) coalescent is a model for the genealogy underlying
a sample of n genes at a neutral, non-recombining locus drawn
from a large, random-mating, constant-size population.
> Leaves of the tree < observed DNA sequences;
> going up the tree < tracing the ancestry of the sequences;
» branches merge, or “coalesce”, when the descendant
sequences first share a common ancestor;
> the root of the tree corresponds to the Most Recent Common
Ancestor (MRCA) of all the sequences in the sample.

Under the coalescent model, the time during which the tree has j
distinct branches has the exponential distribution with parameter
J(j—1)/2 (we write Exp(j(j—1)/2), NB mean = 1/parameter).
The times for different j are independent. Here, one unit of
“coalescent” time corresponds to NG /o? years, where

N=(effective) population size,

G=generation time,

o?=variance in number of offspring (below assume 02 = 1).
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shown.



Let T, and L, denote the height and the total branch length of a
coalescent tree with n leaves. Then

n—1
E[T,] = 2(1—1/n) E[L,] = Z% ~ 1+2log(n)
j=1
"8 n—1\2 i
Var[Tn] = Z o 4 T Var[Ln] = Z )
= =
n E[T,] VITa] E[L.] VI[La]
2 1 1 2 4
3 | 133 111 3 5
4 15 114 366 544

5 1-6 1.15 416 569
10 1.8 1.16 565 6-16
100 1.98 116 1035 6-54
1000 | 2-:00 1-16 14.97 6-58
10000 | 2-00 1-16 19-58 6-58




Features of the coalescent model:

> the mean time in which the sample has exactly two ancestors
is more than half E[T,], the mean total time since the MRCA
(this can lead to bimodality in datasets);

» the variance of T, is large relative to its mean; the largest
contribution to Var[T,] arises from the interval in which the
sample has just two ancestors;

» E[L,], the mean total branch length of tree (which is roughly
the total amount of independent information in the data)
grows only like log(n), not n as would be the case for a
random sample.

» Although E[L,] continues to increase with n, Var[L,]| does not.

These observations have big implications for patterns of DNA
sequence variation along the genome.
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1 = mutant
nucleotide.



Coalescent with mutation

Mutations occur along the branches of a coalescent tree uniformly
at random with rate 6/2, where § = 2Ny and p is the mutation
rate per sequence per generation. Given L,, the total branch
length of the tree, the number S,, of mutations has the Poisson
distribution with mean 6L,/2. The unconditional expectation is

n—1

E[S,] = gf[L,,] —0Y 11

If 1 is small, it may be reasonable to assume the infinite sites
model: every mutation is at a distinct site. Then S, is just the
number of variable sites and a natural estimator of 8 is
Watterson's estimator Ay = S, /> ' 1 which is unbiased but
the variance decreases like 1/ log(n ) much slower than 1/n for
estimators obtained from random samples.

» Even very big samples don't give very accurate estimates.



The coalescent with population growth



» Extensions of the standard model can allow for changes in
population size, population subdivision, natural selection and
recombination.

» The simplest extension is to incorporate population growth.

» Suppose that the population size Nt generations ago was
NX(t), where N denotes the current effective population size,
so that A\(0) = 1. Scaling time by N as for the standard
coalescent, the waiting time for the jth coalescence event is
now given by

Pl > 0) = ep (LU (1), &

where A(t) = [5 ds/A(s).

» When the population size is large (i.e. \(t) is large), A(t)
increases only slowly with t, corresponding to the fact that
coalescences rarely occur.



Four realisations of the coalescent model with mutation:

sample size n = 6; exponential growth, R = 100.
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The time scaling has been chosen so that E[L,] is approximately

the same as for the standard coalescent.
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The standard coalescent arises in the case that A\(t) =1 and
A(t) = t. Exponential growth/decline forward in time at rate r per
generation corresponds to

_exp(Rt) -1

Mt) =exp(=Rt)  A(t) = —F—— ()

where R = Nr.

> Large R implies rapid growth forward in time < rapid decline
backward in time: relatively few coalescences occur in the
recent past because the population size is large.

> In the limit as R 1 co we obtain a “star genealogy”: all
coalescence events occur at about the same time and hence
observed haplotypes are independent given the ancestral
haplotype.

The following plots show histograms of the numbers of mutations
under 10000 realisations of (a) standard coalescent model and (b)
coalescent with growth, in each case compared with expected
values under the Poisson distribution with matching mean.



Distribution of mutation count: standard coalescent
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Distribution of mutation count: coalescent with growth
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Statistical inference under the coalescent



» Coalescent models without mutation specify a prior
distribution for the genealogy underlying a set of DNA
sequences, given the sample sizes but not the sequence data.

» Coalescent models with mutation can give predictive
distributions for properties of sequence data expected under
different models (with growth, structure, selection etc).

» However, often what we want to do is to infer properties of
the underlying model (such as the mutation rate or time since
most recent common ancestor (TMRCA)) given observed
data.

One way to proceed is to seek the posterior distribution of
parameters of interest, given the observed data, the coalescent
model as prior for the genealogical tree, and assumed prior
distributions for evolutionary parameters.

» To obtain the posterior from the prior, use Bayes Theorem:
Pr(D|0) Pr(0)

Pr(D)

where Pr(D) = [ Pr(D|6) Pr(0)d6.

Pr(0]D) =



Exact Inference for TMRCA when n =2

» We assume the standard coalescent model with infinite-sites
mutation and suppose that 6 is known;

» the unknown of interest is the coalescence time, or TMRCA of
the two sequences, let's call it ty.

Given tp = t, the number of segregating sites S has a Poisson
distribution with parameter 6t:

1
Pr(S=s|t,=t) = E(Gt)s exp(—6t). (3)
By Bayes theorem we obtain the posterior pdf of t:
p(t=t|S=s) = C(0t)° exp(—(1+0)t), (4)

where C is a constant (does not depend on t). The RHS of (4)
has the form of the Gamma(1+s, 1+6) probability density
function, and it follows that (Tajima, 1983):



1+s 1+s
d Varty|S=s] = — > _
1+ " arltz] S=s] (1+0)2 (5)

Elto|S=s] =

which may be compared with prior moments E[t;] = Var[ty] = 1.
» Noting that E[S] = 0, we see that if s < E[S] then
E[t2|S=s] < E[t2], and vice-versa.
» Data usually decreases the variance: Var[ty|S=s] < Var[ty]
unless s is very large (> 2 E[S] + E[S]?).

The prior density curve and posterior curves for several values of s
when 6 =1 are shown on next slide.
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Density curves for TMRCA (t», in coalescent units) when n = 2,
6 = 1. Prior: Gamma(1,1) = Exp(1); posteriors: Gamma(1l+s,2).



Comparison with classical estimator

» A natural estimator of t, within the framework of classical
statistics is the method-of-moments estimator

th=35/0,
for which the mean square error (MSE) is
MSE(S/6) = Eq,[Es|,,[(S/0—12)]] = 1/0,
» Uniformly larger than 1/(1+86), the MSE of E[t|S].

The use of prior distributions in statistical inference has been
controversial, but here the prior is based on solid ground: the
coalescent model that has been shown to provide a good
approximation in many real populations.

» Additional information from prior = more precise inferences.
An additional advantage of the Bayesian paradigm for statistical
inference is that we obtain a full posterior distribution which
summarises all available information about the unknown TMRCA,
rather than just a point estimator and its standard .error.



Exact inference for TMRCA when S =0

Dorit et al. (1995) sequenced a 729-bp fragment in n = 38 human
Y-chromosomes, observed S = 0 and reported a TMRCA estimate
of t3g = 270K years before present.

» First explicit use of coalescent theory for pop genet inference.

» A breakthrough! But unfortunately they made mistakes.
Donnelly et al. Science 1996, reply to Dorit:

» Assume no mutations in the underlying genealogy, then

Pr(5=0|6, wsg, ws7,...,wn) = Hexp(—jvvj6/2), (6)
j=2
w; = length of time that the coalescent has exactly j branches.

» The w; have independent Exp(j(j—1)/2) prior distributions;
from (6), posteriors are independent Exp(j(j—1+46)/2).

Thus posterior mean and variance of t3g = 21382 w; are:
E[t38‘6 5 0] ZJ 2](} 1+9) Var[t3g|0 S O] ZJ ZW
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Fig. 1. Summary statistics for the conditional dis-
tribution, under the coalescent model, of the time
T (in years) since the common ancestor, given a
sample of 38 sequences which exhibit no variabil-
ity, as a function of N, the effective population size.
The generation time is assumed to be 20 years,
and the mutation rate of the sequenced region per
generation is taken to be 1.96 X 10~5. Condition-
al distribution of T follows from equation 5.2 in (7).

The observation of
S = 0 reduced the
mean of t3g by ~
20% — 40% from
prior mean for
plausible N values.

Also used coalescent
theory to obtain
probability 7% that
the TMRCA of these
38 males = TMRCA
of all human males.
If so, global TMRCA
is expected to be NG
years further back in
time.



Donnelly et al. Science 1996: reply to Dorit
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» Here, 1 = 1.96 x 107> (from Dorit) and gen time G = 20 yrs.
» Modal values of t3g are around 120K years; variance is wide.

» More uncertainty about p leads to more uncertainty about
t3g: p may be very small in which case the data are as
expected, and provide little information.



Inference about 6, N and p

> Integrating over the w; in (6) we obtain the likelihood for 6:

r(S=0[) = H —1+0 (7)

The MLE is § = 0, which is non—senS|caI a priori.

» This defect of the MLE can be avoided by reporting a
posterior 95% highest-density interval, using either an
improper uniform prior for 6 or a proper, informative prior.

» An additional advantage to a Bayesian approach is that it
becomes possible to report inferences about N and p
separately (recall 6 = 2Np).

» The likelihood (7) only depends on N and p through their
product. So the data do not help distinguish them, but an
informative prior distribution, if available, can.

> Inferences about N and p are always sensitive to the prior
assumptions, whereas in the presence of sufficient data
inferences about 6 will be robust to the prior.



Simulation-based inference under the coalescent



Rejection sampling

In most cases of interest exact inference under the coalescent is
infeasible, but there are approximate methods based on simulation.
A general approach to inference about 6 given a sample of n DNA
sequences is as follows:

1.
2.
3.

Simulate a coalescent tree with n leaves,

simulate 6 under an appropriate prior model,

simulate mutations along the branches of the tree according
to a mutation model.

. If the n resulting sequences are sufficiently close to the

observed sequences, accept the simulated 6, otherwise reject.
The set of accepted 0 values is approximately a sample from
the posterior distribution of 6 given the sequence data.

This is the core of the Approximate Bayesian Computation (ABC)
method that has revolutionised population genetics over the past
15 years, allowing approximate inference under sophisticated
models e.g. for population growth and structure.

» A key problem is to define “sufficiently close”.



> In some settings the number of
segregating sites S captures
most of the information in the
sequence data.

» Conditional on L, the total
branch length of the coalescent
tree, S has approximately a
Poisson distribution with mean
6L/2.

» Therefore, the accept/reject
step can be performed more
efficiently using Poisson
probabilities, without simulating
a value of S (Tavaré et al. 1997,
Genetics).

» Coalescent tree and 6 still need
to be simulated unless S = 0.
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grej = function(nacc=10000,nblk=round(nacc/2) ,nsamp=6,nsit=5,s=3)
# rejection inference about N, mu and TMRCA given
# s segregating sites in nsamp sequences of length nsit
{
count = 0
nsl = nsamp-1
rate = (nsl:1)*(nsamp:2)/2
acc = matrix(0,1,3)
while(nrow(acc)<nacc+1)
{
count = count + nblk
w = matrix(rexp(nsl*nblk,rate),nsl,nblk)
TMRCA = apply(w,2,sum)
L = apply((nsamp:2)*w,2,sum)
u = runif (nblk)
N = rgamma(nblk,5,10°-3)
mu = rgamma(nblk,2,2*1074)
ind = u<dbinom(s,nsit,l-exp(-L*N*mu/nsit))/dbinom(s,nsit,s/nsit)
acc = rbind(acc,matrix(c(N[ind] ,mul[ind],TMRCA[ind]),,3))
}
list(count,acc[-1,])

}



Rejection-sampling inference: exercise

Use the R code grej (for quick rejection sampling) to perform
inferences under the coalescent when S segregating sites (default
= 3) are observed in n sequences (default = 6). qrej assumes:

» gamma(5,103) prior for N (mean = 5000, SD = 2236); and

» gamma(2,2x10%) prior for y (mean 1074, SD = 7.07x107°).
qrej returns a list of length 2:

1. the number of iterations (must exceed nacc);

2. a matrix with 3 cols: accepted values of N, x and TMRCA.
To obtain a density plot e.g. for N, you can do:

plot(density(res[[2]][,1]),fro=0,t0=15000)

and you should add an x1ab to label the x-axis. You can also add
a prior density:

lines(x,dgamma(x,5,0.001) ,1ty=2)

where x is a vector of grid points between 0 and 15,000.



Posterior scatter plot Density curves for N
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» The plot shows some
results from inference
using qrej with default
settings.

» Dashed curves: prior,
» Solid curves: posterior.
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Example: the Irish giant and AIP acromegaly mutation



Radian et al. Human Mutation (2016). Coalescent-based

estimate of number of carriers of AIP risk allele in Ireland.

AIP mutations cause autosomal dominant familial isolated pituitary
adenomas (FIPA), most commonly manifesting as acromegaly or
gigantism. Due to incomplete penetrance, the disease can also
manifest as apparently sporadic pituitary adenoma (PA).

» Chahal et al. NEJM (2011): 5 carriers identified in mid-Ulster,
including a proband case: a C18 “Irish giant”.

» Coalescent simulation-based analysis predicted a large number
of carriers concentrated in mid-Ulster

Population screening in mid-Ulster for AIP mutations:
» 81 carriers (30 affected, 18 pedigrees) identified in mid-Ulster.

» Low prevalence in Belfast (n = 1000), no carriers found in
Republic of Ireland (n = 2000).

» Haplotype conservation suggested a recent TMRCA.

Now we seek to update predictions of the TMRCA and
consequently the number of carriers not yet identified.
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Radian et al. (2016): Methods

» Haplotypes inferred from genotypes using PHASE.

» We performed exact coalescent inference for the fully
conserved haplotype, the result of which became a prior for
ABC inference of the varyingly-shared haplotypes.

» Since we were concerned only with conserved haplotypes,
recombination and mutation have the same effect (of
destroying conservation) and so we treated recombination
events like mutations and combined the two rates.

» The statistic used to compare simulated and observed datasets
was the number of haplotypes sharing each genome segment
(defined by consecutive short tandem repeat markers).

Results:

» TMRCA estimated at 2550 (1275 — 5000) years.

» Forward simulations using TMRCA distribution predicted 432
(90 — 5175) current carriers, including 86 affected assuming
20% penetrance.
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