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Genetic Drift: single locus

I Drift is the stochastic process by which some alleles are lost
from the population, while others increase in frequency,
because of the randomness of reproductive success.

I We can investigate the effects of drift using a simple
mathematical model: the Wright-Fisher (W-F) Model of a
constant-size, random mating population at a neutral locus.

I Although real populations don’t satisfy these assumptions, the
W-F model can give important insights into how gene
frequencies change over time in real populations.

I It’s easy to extend to a diploid model, but to keep things
simple we will consider a haploid model here, in which case an
individual corresponds to one allele copy;

I haploid models apply to humans at mtDNA and Y
chromosome.
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I The population size is N alleles (constant).

I Each allele has a type reflecting its DNA sequence.
I Each allele in generation k is chosen at random in gen. k−1;

I the new allele is the same type as its parent (probability 1−µ),
or is altered by mutation (probability µ).



Each allele has a binomial(N,1/N) number of offspring (mean = 1;
variance ≈ 1), but the offspring numbers of different alleles are not
independent.

When µ = 0, the probability Fk that two alleles in generation k are
identical by descent (IBD) from an allele in generation 0 satisfies:

Fk =
1

N
+

(
1− 1

N

)
Fk−1.

Whatever the value of F0, we have Fk → 1 as k →∞, i.e.
eventually all alleles are descendants of one ancestral allele, whose
allelic type becomes fixed. Questions:

1. What is the probability for an allelic type to become fixed if
initially there are x alleles of that type?

2. How long does this take?

It is possible to make some progress theoretically, and much more
can be inferred from simulation.
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Each plot shows five
haploid W-F simulations
over 500 generations, with
N = 100, µ = 0 and initial
frequencies of a particular
allele:

I top: 1;

I middle: 20;

I bottom: 50.



R code for WF simulations

wf = function(npop=5,ngen=500,nall=100,init=1,mu=0)

{

freq = matrix(init,npop,ngen)

for(i in 1:(ngen-1))

freq[,i+1] = rbinom(npop,nall,mu+(1-2*mu)*freq[,i]/nall)

matplot(t(freq),ty="l",lty=1,lwd=2,xlab="generations",ylab="allele \

count",main=paste("WF model in",npop," populations,mu = ",mu))

}

After entering the function above into R, plots similar to those on
the previous page can be obtained by entering

par(mfrow=c(3,1)); wf(); wf(init=20); wf(init=50)

Try varying some of the other parameters (npop, ngen and nall).
For example you could try:

par(mfrow=c(2,1)); wf(ngen=20,nall=10,init=5); wf(ngen=2000,nall=1000,init=500)

I How does the probability of fixation vary with init?
I How does the mean time to fixation or loss vary with init?



Time Scaling and Effective Population Size

The behaviour of the W-F model is similar for different N, but at a
“speed” that is proportional to 1/N. Population geneticists often
work with time scaled in units of N generations: then the same
results fit all population sizes. Much of classical population
genetics theory uses the “diffusion limit”, N →∞.

A population may be closely approximated by a W-F population of
a different size Ne , the effective population size. Examples:

I If variance in offspring number σ2 6= 1 then the W-F model
can be used with Ne = N/σ2.

I If a (diploid and dimorphic) population has sex ratio p/(1−p),
we have Ne = 4p(1−p)N.

In real populations Ne is often estimated as the value of N that
provides a best fit to the W-F model. Although powerful, this is
not always satisfactory, e.g. population growth can require a
non-linear change in time-scale and no W-F model gives a good fit.
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I Top: six haploid, µ = 0,
W-F simulations over 20
generations with N = 10
and initial allele count 5;

I Bottom: six haploid,
µ = 0, W-F simulations
over 2000 generations
with N = 1000 and initial
allele count 500.



For humans, Ne ≈ 10 000 breeding adults, surprisingly small
compared with census size of ≈ 4 billion (of breeding age), which
reflects the relatively low genetic diversity of our species. This in
turn is due to many factors, including some or all of:

I geographic dispersal over wide areas;
I high between-male variance in reproductive success;
I war and disease;
I bottlenecks/intense selection in changing environments.

NB This does not mean that there was an ancestral human
population of size 10 000.

The greatest human genetic variation occurs in Africa. Ignoring
recent mass migrations, e.g. to the “New World”, the genetic
variation within human populations declines roughly linearly with
their distance from Addis Abbaba. This reflects the relatively
recent (perhaps 60-70 KYBP) migration out of Africa of the
ancestors of most modern humans.

For further details see: “Human Evolutionary Genetics” by Jobling
et al. (2004).



The greatest human genetic variation occurs in Africa. Ignoring
recent mass migrations, e.g. to the “New World”, the genetic
variation within human populations was found to decline with their
distance from Addis Ababa. This reflects the relatively recent
(perhaps 70 KYBP) migration of modern humans out of Africa to
found the populations of other continents.

From: Pemberton et al. G3 Vol 3 pp 891–907, 2013.



Mutation-drift equilibrium

For µ > 0 in the W-F model we have

Fk = (1−µ)2
[

1

N
+

(
1− 1

N

)
Fk−1

]
.

For any value of F0, the value of Fk approaches (approximately):

F∞ =
1

1 + 2Nµ
.

The value of F∞ measures a balance, known as mutation-drift
equilibrium, between loss of variation due to drift and creation of
variation through new mutants.

At equilibrium when 0 < µ� 1/N, there is a U-shaped
distribution of allele frequencies: most allelic variants are rare.
This holds for humans and many other species. The allele
frequency distribution for markers used in genetic epidemiology
may not be U-shaped, because of a bias favouring common alleles.
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Top: Three haploid W-F
simulations over 2× 105

generations with N = 100 and
µ = 2× 10−5.

Middle: Allele count
distribution over the whole
simulation. From this we can
compute F ≈ 0·9962,
compared with a theoretical
value of 1/(1+2Nµ) = 0·9960.

Bottom: same as middle
except that the counts at 0
and 100 are removed to better
see the other values.

The histograms should
become symmetric about 50
as the number of generations
increases.



R simulations for mutation-drift equilibrium

I The genome-wide average mutation rate per site per
generation is about µ = 10−8 (one per hundred million).

I Since a haploid human genome has about 3× 109 sites, that
means about 30 mutations per meiosis per genome.

I The rate is too low for efficient simulation in class, but time
scaling can help: µ = 10−8 with Ne = 2× 104 generates a
similar pattern of diversity to µ = 10−6 with Ne = 200 (it’s
the product µNe that matters).

I The simulation on previous slide used a higher µ to generate
more diversity:

wf(npop=3,nall=100,mu=2*10^-5,ngen=2*10^5)



To generate the histograms, we need to run wf for large values of
npop (at least 103, preferably 104) in which case we don’t want
the plots, so you should comment out (with #) the matplot

command and add a final line return(freq[,ngen]) which
returns the vector of allele counts in each population. Then run

res = wf(npop=10^3,nall=100,mu=2*10^-5,ngen=2*10^5)

hist(res,n=100)

hist(res[(res>0)&(res<100)],n=100)

Finally, to find F , the probability that two alleles drawn from a
random population are the same, we compute:

mean((res/100)^2 + (1-res/100)^2)

For our simulations is about 2Nµ = 0.002, which is about an order
of magnitude larger than for humans and consequently the genetic
diversity is much greater in the simulations than in human
genomes.



Subpopulation differentiation and migration - FST

In a subdivided population with no migration, mutation-selection
equilibrium may be established but with different alleles in different
subpopulations. If µ is small, a given allele may be near fixation in
some subpopulations and nearly lost in others.

Although migration does not generate new variation, from a local
perspective in geographically-structured populations, new migrants
can be the most important source of genetic variation. Globally,
migration tends to reduce inter-population differences in allele
fractions.

The parameter FST measures the variation in allele fractions
between subpopulations. If p̃ denotes the subpopulation fraction of
an allele, and p denotes a reference (“global”) value, then

FST =
Var[p̃]

p(1−p)
.



I if FST = 1 all subpopulations have reached fixation (low/no
migration),

I if FST = 0 allele fractions are the same in all subpopulations
(high migration).

Can also estimate FST as 1− HS/HT , where HS is the observed
heterozygosity in a subpopulation (or averaged over several
subpopulations) and HT is the expected heterozygosity, given the
allele fractions, in a panmictic population.

In simple models of a large population divided into k
subpopulations each of size N/k , with m migrants in/out of each
island in each generation, the equilibrium value of FST is

FST ≈
1

1 + 2N(m+µ)
.

(the 2 becomes a 4 for diploids).

FST depends on local population size, migration and mutation.
Typical SNP-based value is ≤ 1% for comparisons of (large)
European populations, 10-15% for intercontinental comparisons.
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2-locus W-F model

The basic entity is a haplotype consisting of two loci A and B, with
possible alleles A, a, and B, b. Each individual has two haplotypes,
for example AB and aB, which may be written AB/aB.

With probability ρ, a haplotype in the new generation is obtained
by choosing alleles independently from those in the previous
generation at the corresponding locus, otherwise it is a copy of a
haplotype from the previous generation. In either case, each allele
is subject to mutation occurring independently with probability µ.

mutation

Wright Fisher model: 2 locus, haploid, n=4

recombination

denotesX

X

Generation 0

Generation 1

Generation 2
denotes



Linkage disequilibrium (LD)

Linkage equilibrium (LE), also called “gametic equilibrium”, is the
statistical independence of the alleles at two polymorphic loci on
the same chromosome (or in the same gamete).

Let pAB denote the population fraction of AB haplotypes, while pA
and pB denote the A and B allele fractions. If DAB = pAB − pApB
then LE corresponds to DAB = 0, otherwise we have Linkage
Disequilibrium (LD).

The range of values of DAB (or just D) depends on the allele
fractions: a value that arises for one pair of loci may be impossible
at another pair given their allele fractions, making cross-locus
comparisons difficult. To overcome this problem we define

D− ≡ min{papb, pApB}
D+ ≡ min{papB , pApb)}.

and



Measures of LD

D ′ =

{
D/D+ if D ≥ 0
D/D− if D < 0

,

which ranges between −1 and 1. Another measure of LD is the
squared correlation coefficient:

r2 =
D2

pApapBpb
.

The population allele and haplotype fractions must be estimated
via sample counts, denoted n. For example, r2 can be estimated
from

r̂2 =
(nABnab − nAbnaB)2

nAnBnanb

Although haplotype counts such as nAB are not usually directly
observed, if LD is high they can be inferred reliably from
multilocus genotype data.



Example: haplotype counts from a sample of size 1 000:

A a

B 400 150
b 300 150

The maximum likelihood estimators (MLEs) of the haplotype and
allele fractions are p̂AB = 0·4, p̂Ab = 0·3, p̂aB = 0·15, p̂ab = 0·15,
p̂A = 0·7, p̂a = 0·3, p̂B = 0·55, p̂b = 0·45, and:

I D̂AB = 0·4− 0·7× 0·55 = 0·015.

I D̂+ = min{0·3× 0·55, 0·7× 0·45} = 0·165;

I D̂ ′ = 15/165 ≈ 0·091;

I r̂2 =
(400× 150− 300× 150)2

550× 450× 700× 300
≈ 0·0043.

All these measures suggest a weak positive association between the
0 alleles at the two loci.



D ′ versus r 2

I D ′. Advantage: sensitive to few recombinations between the
loci since the most recent mutation at one of them.
Disadvantage: we can have |D ′| = 1 when one of the alleles is
extremely rare, which is usually of little practical interest.

I r2 is only large when the LD is likely to be statistically
detectable, since r2 is the Pearson’s test statistic for
independence in a 2× 2 contingency table. Thus, the larger is
r2 the more likely we are able to detect LD using this, or a
related statistical test. Put another way, every increase in r2

permits a corresponding decrease in sample size n required to
detect the statistical association.



Factors that affect LD: recombination

In the 2-locus WF model, we expect in every generation a fraction
1−ρ of haplotypes to avoid recombination, while the recombinant
haplotypes are generated in LE proportions. Thus, LD reduces over
time under random mating. Population genetics textbooks often
derive the relationship

Dk = (1−ρ)kD0

where the superscript indicates generation number.

In practice this formula is of little use unless the population size is
very large. Then, any LD decays to approximate LE after roughly
1/ρ generations. If the LD is initially high then for a short period
D and D ′ decay approximately exponentially.

Measures of the breakdown of LD along a genome can be used to
estimate recombination rates: high LD between markers suggests
low recombination between them. However such inference can be
confounded by other factors described below.
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Factors that affect LD: mutation

Suppose that initially everyone carries the A allele, but then a
mutant a arises in a gamete that also carries the B allele, to create
the following haplotype counts:

A a

B 599 1
b 400 0

Then

D ′ =
0·599− 0·999× 0·6

min{0·001× 0·4, 0·999× 0·6}
= −1.

In fact, |D ′| = 1 whenever any haplotype is absent from the
population while both loci are polymorphic. However,

r2 =
(599× 0− 400× 1)2

600× 400× 1× 999
=

2

3× 999
≈ 0.

Thus, according D ′ we have maximal LD, but according to r2 we
have almost no LD.
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I If the novel mutant increases in frequency, D ′ will quickly
decline to zero unless the recombination fraction is small.

I In that case D ′ can remain high for many generations, and
meanwhile r2 can become large.

I Perfect LD in the sense of r2 = 1 can only arise if the two loci
are perfectly correlated, which means that only two
haplotypes exist in the population, AB and ab.

I This can arise if the founding mutation events occurred on the
same branch of the coalescent tree (and so occurred at about
the same time).



Factors that affect LD: population structure

Two equally-large populations with:

pA pB pAB D ′ r2

Pop. 1 0·5 0·1 0·05 0 0
Pop. 2 0·2 0·6 0·12 0 0

Both pops are in LE for these loci, but in the combined pop:

pA pB pAB D ′ r2

0·35 0·35 0·085 -0·306 0·027

Intuition: the observation of a haplotype bearing, say, the A allele,
suggests that the haplotype originates from population 1, in which
case the haplotype is likely to also carry the B allele.
LD due to population structure is “spurious” if we are interested in
LD as a means to detect linkage.



2-locus WF linkage disequilibrium simulation code

ldsim = function(ngen=10000,nhap=2000,init=c(5,2,1,2),rho=0.5,mu=0){

hp = matrix(0,ngen,4); p = rep(0,4); hp[1,] = init/sum(init);

ldstat = matrix(0,ngen,2);

p1 = hp[1,1]+hp[1,2]; p2 = hp[1,1]+hp[1,3];

for(i in 2:ngen){

# haplotype proportions in next generation after recombination:

pp = hp[i-1,]*(1-rho)+rho*c(p1*p2,p1*(1-p2),(1-p1)*p2,(1-p1)*(1-p2));

# now let’s have some mutation:

p[1] = sum(pp*c((1-mu)^2,mu*(1-mu),mu*(1-mu),mu^2));

p[2] = sum(pp*c(mu*(1-mu),(1-mu)^2,mu^2,mu*(1-mu)));

p[3] = sum(pp*c(mu*(1-mu),mu^2,(1-mu)^2,mu*(1-mu)));

p[4] = sum(pp*c(mu^2,mu*(1-mu),mu*(1-mu),(1-mu)^2));

# sample haplotypes in next generation and record counts

tmp = sample(1:4,nhap,repl=T,prob=p);

hp[i,] = hist(tmp,br=seq(0.5,4.5,1),plot=F)$c/nhap;

p1 = hp[i,1]+hp[i,2]; p2 = hp[i,1]+hp[i,3]; # allele prop at loc 1 and 2

# compute D’_00

D00 = hp[i,1]-p1*p2;

if(D00>0) ldstat[i,1] = D00/min(p1*(1-p2),p2*(1-p1))

else ldstat[i,1] = -D00/min(p1*p2,(1-p2)*(1-p1));

# compute r^2_00

ldstat[i,2] = (hp[i,1]*hp[i,4]-hp[i,2]*hp[i,3])^2/p1/p2/(1-p1)/(1-p2);

}

cbind(hp[-1,],ldstat[-1,])

}

plotld = function(tmp,ngen=10000,nhap=2000,rho=0.5,mu=0){

par(mfrow=c(2,1),mar=c(3,2,2,1));

matplot(tmp[,1:4],type="l",xlim=c(0,ngen*1.2),ylim=c(0,1),lty=1,lwd=2,xlab="",ylab="haplotype \

proportion",main=paste("LD sim: pop size=", nhap," rho=",rho,", mu=",mu));

legend(ngen,1,leg=c("AB","Ab","aB","ab"),lty=1,col=1:4,lwd=2,cex=1.4);

matplot(tmp[,5:6],type="l",xlim=c(0,ngen*1.2),ylim=c(0,1),lty=1,lwd=2,col=5:6,xlab="",ylab="");

legend(ngen,1,leg=c("|D’|","r^2"),lty=1,col=5:6,lwd=2,cex=1.4)

}



After reading the ldsim and plotld functions into R, you can
perform a run with default settings using:

res = ldsim()

plotld(res)

By default, rho=0.5 corresponding to unlinked loci, and mu=0 (no
mutation). Since there is also no population structure and no
selection in these simulations, levels of LD are low, varying only
due to fluctuations in haplotype fractions due to finite population
size. In most default simulations one allele will reach fixation and
D ′ is then undefined.

Run some further simulations varying rho, mu and nhap to
investigate their effects on D ′ and r2.

I Any parameters set in ldsim should also be set to the same
values in plotld, but they are only used for the plot legends.
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