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Going backwards in time: coalescent models

DNA sequences at the same locus from different individuals are
dependent:

I differing amounts of common ancestry;

I so differing levels of correlation among the sequences.

Valid inferences from DNA sequence data, e.g. about mutation
rates or about the location of a gene of interest, may require
modelling the relationships among the sequences.

I Incorrectly assuming independence can lead to understatement
of variances of estimators – the effect can be large.

I Sometimes the relationships among the sequences are crucial
e.g. for inferences about population histories.

A natural way to describe both the pattern of shared ancestry and
the resulting correlations is via a genealogical tree (similar to a
phylogenetic tree but for genes within a population, rather than
from different species).



Coalescent models

Possible genealogy of a sample of 6 homologous sequences, showing two

mutation events. The time arrow points backwards: e.g. t6 denotes the

most recent coalescent event, when the number of lineages decreased

(going back in time) from 6 to 5.
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The (standard) coalescent is a model for the genealogy underlying
a sample of n genes at a neutral, non-recombining locus drawn
from a large, random-mating, constant-size population.

I Leaves of the tree ⇔ observed DNA sequences;

I going up the tree ⇔ tracing the ancestry of the sequences;

I branches merge, or “coalesce”, when the descendant
sequences first share a common ancestor;

I the root of the tree corresponds to the Most Recent Common
Ancestor (MRCA) of all the sequences in the sample.

Under the coalescent model, the time during which the tree has j
distinct branches has the exponential distribution with parameter
j(j−1)/2 (we write Exp(j(j−1)/2), NB mean = 1/parameter).
The times for different j are independent. Here, one unit of
“coalescent” time corresponds to NG/σ2 years, where

N=(effective) population size,

G=generation time,

σ2=variance in number of offspring (below assume σ2 = 1).
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Let Tn and Ln denote the height and the total branch length of a
coalescent tree with n leaves. Then

E [Tn] = 2(1−1/n) E [Ln] =
n−1∑
j=1

2

j
≈ 1+2 log(n)

Var[Tn] =
n∑

j=2

8

j2
− 4

(
n−1

n

)2

Var[Ln] =
n−1∑
j=1

4

j2

n E[Tn] V[Tn] E[Ln] V[Ln]

2 1 1 2 4
3 1·33 1·11 3 5
4 1·5 1·14 3·66 5·44
5 1·6 1·15 4·16 5·69

10 1·8 1·16 5·65 6·16
100 1·98 1·16 10·35 6·54

1000 2·00 1·16 14·97 6·58
10000 2·00 1·16 19·58 6·58



Features of the coalescent model:

I the mean time in which the sample has exactly two ancestors
is more than half E[Tn], the mean total time since the MRCA
(this can lead to bimodality in datasets);

I the variance of Tn is large relative to its mean; the largest
contribution to Var[Tn] arises from the interval in which the
sample has just two ancestors;

I E[Ln], the mean total branch length of tree (which is roughly
the total amount of independent information in the data)
grows only like log(n), not n as would be the case for a
random sample.

I Although E[Ln] continues to increase with n, Var[Ln] does not.

These observations have big implications for patterns of DNA
sequence variation along the genome.
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Coalescent with mutation

Mutations occur along the branches of a coalescent tree uniformly
at random with rate θ/2, where θ = 2Nµ and µ is the mutation
rate per sequence per generation. Given Ln, the total branch
length of the tree, the number Sn of mutations has the Poisson
distribution with mean θLn/2. The unconditional expectation is

E [Sn] =
θ

2
E [Ln] = θ

n−1∑
j=1

1

j
.

If µ is small, it may be reasonable to assume the infinite sites
model: every mutation is at a distinct site. Then Sn is just the
number of variable sites and a natural estimator of θ is
Watterson’s estimator θ̂W = Sn/

∑n−1
j=1

1
j , which is unbiased but

the variance decreases like 1/ log(n), much slower than 1/n for
estimators obtained from random samples.

I Even very big samples don’t give very accurate estimates.
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I Extensions of the standard model can allow for changes in
population size, population subdivision, natural selection and
recombination.

I The simplest extension is to incorporate population growth.

I Suppose that the population size Nt generations ago was
Nλ(t), where N denotes the current effective population size,
so that λ(0) = 1. Scaling time by N as for the standard
coalescent, the waiting time for the jth coalescence event is
now given by

P(wj > t) = exp

(
− j(j−1)

2
Λ(t)

)
, (1)

where Λ(t) =
∫ t
0 ds/λ(s).

I When the population size is large (i.e. λ(t) is large), Λ(t)
increases only slowly with t, corresponding to the fact that
coalescences rarely occur.



Four realisations of the coalescent model with mutation;
sample size n = 6; exponential growth, R = 100.
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The time scaling has been chosen so that E[Ln] is approximately
the same as for the standard coalescent.



The standard coalescent arises in the case that λ(t) ≡ 1 and
Λ(t) = t. Exponential growth/decline forward in time at rate r per
generation corresponds to

λ(t) = exp(−Rt) Λ(t) =
exp(Rt)− 1

R
(2)

where R = Nr .

I Large R implies rapid growth forward in time ⇔ rapid decline
backward in time: relatively few coalescences occur in the
recent past because the population size is large.

I In the limit as R ↑ ∞ we obtain a “star genealogy”: all
coalescence events occur at about the same time and hence
observed haplotypes are independent given the ancestral
haplotype.

The following plots show histograms of the numbers of mutations
under 10 000 realisations of (a) standard coalescent model and (b)
coalescent with growth, in each case compared with expected
values under the Poisson distribution with matching mean.



Distribution of mutation count: standard coalescent
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Distribution of mutation count: coalescent with growth
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I Coalescent models without mutation specify a prior
distribution for the genealogy underlying a set of DNA
sequences, given the sample sizes but not the sequence data.

I Coalescent models with mutation can give predictive
distributions for properties of sequence data expected under
different models (with growth, structure, selection etc).

I However, often what we want to do is to infer properties of
the underlying model (such as the mutation rate or time since
most recent common ancestor (TMRCA)) given observed
data.

One way to proceed is to seek the posterior distribution of
parameters of interest, given the observed data, the coalescent
model as prior for the genealogical tree, and assumed prior
distributions for evolutionary parameters.

I To obtain the posterior from the prior, use Bayes Theorem:

Pr(θ|D) =
Pr(D|θ) Pr(θ)

Pr(D)
.

where Pr(D) =
∫

Pr(D|θ) Pr(θ)dθ.



Exact Inference for TMRCA when n = 2

I We assume the standard coalescent model with infinite-sites
mutation and suppose that θ is known;

I the unknown of interest is the coalescence time, or TMRCA of
the two sequences, let’s call it t2.

Given t2 = t, the number of segregating sites S has a Poisson
distribution with parameter θt:

Pr(S=s|t2=t) =
1

s!
(θt)s exp(−θt). (3)

By Bayes theorem we obtain the posterior pdf of t2:

p(t2=t|S=s) = C (θt)s exp(−(1+θ)t), (4)

where C is a constant (does not depend on t). The RHS of (4)
has the form of the Gamma(1+s, 1+θ) probability density
function, and it follows that (Tajima, 1983):



E[t2|S=s] =
1 + s

1 + θ
and Var[t2|S=s] =

1 + s

(1 + θ)2
, (5)

which may be compared with prior moments E[t2] = Var[t2] = 1.

I Noting that E[S ] = θ, we see that if s < E[S ] then
E[t2|S=s] < E[t2], and vice-versa.

I Data usually decreases the variance: Var[t2|S=s] < Var[t2]
unless s is very large (≥ 2 E[S ] + E[S ]2).

The prior density curve and posterior curves for several values of s
when θ = 1 are shown on next slide.
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Comparison with classical estimator

I A natural estimator of t2 within the framework of classical
statistics is the method-of-moments estimator

t̂2 = S/θ,

for which the mean square error (MSE) is

MSE(S/θ) = Et2 [ES |t2 [(S/θ−t2)2]] = 1/θ,

I Uniformly larger than 1/(1+θ), the MSE of E[t2|S ].

The use of prior distributions in statistical inference has been
controversial, but here the prior is based on solid ground: the
coalescent model that has been shown to provide a good
approximation in many real populations.

I Additional information from prior ⇒ more precise inferences.

An additional advantage of the Bayesian paradigm for statistical
inference is that we obtain a full posterior distribution which
summarises all available information about the unknown TMRCA,
rather than just a point estimator and its standard error.



Exact inference for TMRCA when S = 0

Dorit et al. (1995) sequenced a 729-bp fragment in n = 38 human
Y-chromosomes, observed S = 0 and reported a TMRCA estimate
of ˆt38 = 270K years before present.

I One of the first explicit uses of coalescent theory for
population genetics inference.

I A breakthrough! But unfortunately they made mistakes.

Donnelly et al. Science 1996, reply to Dorit:

I Assume no mutations in the underlying genealogy, then

Pr(S=0|θ,w38,w37, . . . ,w2) =
38∏
j=2

exp(−jwjθ/2), (6)

wj = length of time that the coalescent has exactly j branches.

I The wj have independent Exp(j(j−1)/2) prior distributions;
from (6), posteriors are independent Exp(j(j−1+θ)/2).
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Fig. 1. Summary statistics for the conditional dis-
tribution, under the coalescent model, of the time
T (in years) since the common ancestor, given a
sample of 38 sequences which exhibit no variabil-
ity, as a function of N, the effective population size.
The generation time is assumed to be 20 years,
and the mutation rate of the sequenced region per
generation is taken to be 1.96 x 10-5. Condition-
al distribution of Tfollows from equation 5.2 in (7).

Table 1. Summary statistics of the posterior dis-
tributions illustrated in Fig. 2. SE of the means due
to the finite number of simulations (10,000) are
about 1 % of the values. Relative simulation errors
for the other statistics are broadly similar.

Prior Prior Posterior summary statistics
for SD
N for ,u Statistic* T N

Uniform 1 x 10-6 5th 10,600 370
median 142,000 4,800
mean 217,000 7,300
95th 673,000 22,600

Uniform 1 x 10-5 5th 13,500 460
median 199,000 6,600
mean 347,000 11,800
95th 1,180,000 39,000

Uniform 2 x 10-5 5th 21,200 720
median 391,000 13,100
mean 890,000 30,400
95th 3,430,000 113,000

Log- 1 x 10-6 5th 49,700 1,900
normal median 201,000 6,900

mean 254,000 8,400
95th 642,000 20,000

Log- 1 x 10-5 5th 53,000 2,100
normal median 234,000 7,900

mean 324,000 10,300
95th 891,000 26,400

Log- 2 x 10-5 5th 63,400 2,400
normal median 305,000 10,000

mean 460,000 13,900
95th 1,380,000 38,500

*5th and 95th percentiles are given.

Bayesian, with a uniform prior distribution
for T. Given N, the coalescent model spec-
ifies the distribution of T, so that the uni-
form prior is not appropriate. Nonetheless,
Bayesian inference is particularly valuable
in the presence of relatively little data, and
some information from other sources. The
probability densities for T, conditional on
the data, for various different assumptions
about the pre-data uncertainty in N and

1358

Fig. 2. The posterior probability
density function of T for various as-
sumptions about the mutation rate
,. and the effective population size
N. A lognormal distribution is used
to model the prior uncertainty about
,u (so that log(,u) has a normal dis-
tribution). The lognormal probability
density is

1 e ((log x-m)2
f(x) = Xs -/; exp 2S2 J
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density is at least half the modal value when N is in the interval 2,500 to 26,000. Each curve in the figure
is obtained using density estimation based on 10,000 simulated values.

are shown (Fig. 2). (Summary statistics of
each curve in Fig. 2 are given in Table 1).
If, initially, all possible values of N are

regarded as equally likely (up to some large
value), then a wide range of values for T is
plausible. The most likely values of T after
observing the data are small, around 15,000
years, a value which seems implausible in
the light of our knowledge of human histo-
ry. On the basis of a lognormal prior, which
gives a more realistic assessment of the in-
formation available about N, the most like-
ly, or modal, values of T are around 120,000
years. Again, a very wide range of values is
plausible. The effect on inferences about T
of uncertainty about the value of is shown
(Fig. 2): The greater this uncertainty, the
more plausible are large values of T. Intu-
itively, this is because the observed absence
of variation can be explained by a smaller
mutation rate, in which case the data con-

vey less information about N and T.
In the above analyses, T is the time until

the common ancestor of the sample. This
need not be the same as "Adam," the com-

mon ancestor of all existing Y chromo-
somes. Under the assumptions of the coa-
lescent model, and conditional on D, for
Np. = 7500 x 1.96 x 10'- 0.15 there is

a probability of 0.07 that Adam will occur
earlier than T (3). In this case, the addi-
tional time before T until Adam has mean
and SD approximately NG years, which is
likely to be substantial.

Under the coalescent model, N repre-
sents the "variance" effective population
size, calculated as the actual number of
breeding males divided by the variance of
the number of male offspring of a typical
male. This variance could be large if there
were disparities, perhaps for reasons of social
organization, in the reproductive success of
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different males in early human societies. If
this obtained, the value of N could be sub-
stantially smaller than the actual number of
breeding males in the population.

The coalescent model may be extended
to allow for variation in population size and
non-random mating resulting from geo-
graphical population structure. We investi-
gated the effects of recent population expan-
sion (4) for a population that was of constant
size N1 before 50,000 years ago, when it
began exponential growth. For the range of
parameters considered, the time to the most
recent common ancestor of the sample be-
haves like the corresponding time for the
(constant-sized) population of size NJ, plus
about 42,000 years. Therefore, the model
(Fig. 1) may be used to find the distribution
of T. Informally, the effect of geographical
structure is to increase coalescence times,
often very substantially. It is thus likely that,
conditional on D, non-random mating will
also increase T, and the time since Adam, in
contrast to the statement by Dorit et al. (1).

The analyses discussed here deal with
inference for coalescence times when the
data display no variability. For other data
sets, for example that presented by Hammer
(5), alternative computer-intensive meth-
ods are available (6).

Peter Donnelly
Departments of Statistics,

and Ecology and Evolution,
University of Chicago,

5734 University Avenue,
Chicago, IL 60637, USA

Simon Tavare
Departments of Mathematics

and Biological Sciences,
University of Southern Califomia,

Los Angeles, CA 90089-1113, USA
E-mail: stavare@gnome.usc.edu

SD(gI) = 1.0 x 10-6
* -. \ ----SD(p) = 1.0 x10-5
----- SD(ji)=2.0x10-5

m

r-

 o
n 

Fe
br

ua
ry

 7
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

Thus posterior mean
and variance of
t38 =

∑38
j=2 wj are:

E[t38|θ,S=0] =∑38
j=2

2
j(j−1+θ)

Var[t38|θ,S=0] =∑38
j=2

4
j2(j−1+θ)2

.

The observation of
S = 0 reduced the
mean of t38 by only
around 20% to 40%
from its prior mean
for plausible N
values.



Inference about θ, N and µ

I Integrating over the wj in (6) we obtain the likelihood for θ:

Pr(S=0|θ) =
n∏

j=2

j−1

j−1+θ
. (7)

The MLE is θ̂ = 0, which is non-sensical a priori.

I This defect of the MLE can be avoided by reporting a
posterior 95% highest-density interval, using either an
improper uniform prior for θ or a proper, informative prior.

I An additional advantage to a Bayesian approach is that it
becomes possible to report inferences about N and µ
separately (recall θ = 2Nµ).

I The likelihood (7) only depends on N and µ through their
product. So the data do not help distinguish them, but an
informative prior distribution, if available, can.



Donnelly et al. Science 1996: reply to Dorit
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Fig. 1. Summary statistics for the conditional dis-
tribution, under the coalescent model, of the time
T (in years) since the common ancestor, given a
sample of 38 sequences which exhibit no variabil-
ity, as a function of N, the effective population size.
The generation time is assumed to be 20 years,
and the mutation rate of the sequenced region per
generation is taken to be 1.96 x 10-5. Condition-
al distribution of Tfollows from equation 5.2 in (7).

Table 1. Summary statistics of the posterior dis-
tributions illustrated in Fig. 2. SE of the means due
to the finite number of simulations (10,000) are
about 1 % of the values. Relative simulation errors
for the other statistics are broadly similar.

Prior Prior Posterior summary statistics
for SD
N for ,u Statistic* T N

Uniform 1 x 10-6 5th 10,600 370
median 142,000 4,800
mean 217,000 7,300
95th 673,000 22,600

Uniform 1 x 10-5 5th 13,500 460
median 199,000 6,600
mean 347,000 11,800
95th 1,180,000 39,000

Uniform 2 x 10-5 5th 21,200 720
median 391,000 13,100
mean 890,000 30,400
95th 3,430,000 113,000

Log- 1 x 10-6 5th 49,700 1,900
normal median 201,000 6,900

mean 254,000 8,400
95th 642,000 20,000

Log- 1 x 10-5 5th 53,000 2,100
normal median 234,000 7,900

mean 324,000 10,300
95th 891,000 26,400

Log- 2 x 10-5 5th 63,400 2,400
normal median 305,000 10,000

mean 460,000 13,900
95th 1,380,000 38,500

*5th and 95th percentiles are given.

Bayesian, with a uniform prior distribution
for T. Given N, the coalescent model spec-
ifies the distribution of T, so that the uni-
form prior is not appropriate. Nonetheless,
Bayesian inference is particularly valuable
in the presence of relatively little data, and
some information from other sources. The
probability densities for T, conditional on
the data, for various different assumptions
about the pre-data uncertainty in N and
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Fig. 2. The posterior probability
density function of T for various as-
sumptions about the mutation rate
,. and the effective population size
N. A lognormal distribution is used
to model the prior uncertainty about
,u (so that log(,u) has a normal dis-
tribution). The lognormal probability
density is
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are shown (Fig. 2). (Summary statistics of
each curve in Fig. 2 are given in Table 1).
If, initially, all possible values of N are

regarded as equally likely (up to some large
value), then a wide range of values for T is
plausible. The most likely values of T after
observing the data are small, around 15,000
years, a value which seems implausible in
the light of our knowledge of human histo-
ry. On the basis of a lognormal prior, which
gives a more realistic assessment of the in-
formation available about N, the most like-
ly, or modal, values of T are around 120,000
years. Again, a very wide range of values is
plausible. The effect on inferences about T
of uncertainty about the value of is shown
(Fig. 2): The greater this uncertainty, the
more plausible are large values of T. Intu-
itively, this is because the observed absence
of variation can be explained by a smaller
mutation rate, in which case the data con-

vey less information about N and T.
In the above analyses, T is the time until

the common ancestor of the sample. This
need not be the same as "Adam," the com-

mon ancestor of all existing Y chromo-
somes. Under the assumptions of the coa-
lescent model, and conditional on D, for
Np. = 7500 x 1.96 x 10'- 0.15 there is

a probability of 0.07 that Adam will occur
earlier than T (3). In this case, the addi-
tional time before T until Adam has mean
and SD approximately NG years, which is
likely to be substantial.

Under the coalescent model, N repre-
sents the "variance" effective population
size, calculated as the actual number of
breeding males divided by the variance of
the number of male offspring of a typical
male. This variance could be large if there
were disparities, perhaps for reasons of social
organization, in the reproductive success of
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different males in early human societies. If
this obtained, the value of N could be sub-
stantially smaller than the actual number of
breeding males in the population.

The coalescent model may be extended
to allow for variation in population size and
non-random mating resulting from geo-
graphical population structure. We investi-
gated the effects of recent population expan-
sion (4) for a population that was of constant
size N1 before 50,000 years ago, when it
began exponential growth. For the range of
parameters considered, the time to the most
recent common ancestor of the sample be-
haves like the corresponding time for the
(constant-sized) population of size NJ, plus
about 42,000 years. Therefore, the model
(Fig. 1) may be used to find the distribution
of T. Informally, the effect of geographical
structure is to increase coalescence times,
often very substantially. It is thus likely that,
conditional on D, non-random mating will
also increase T, and the time since Adam, in
contrast to the statement by Dorit et al. (1).

The analyses discussed here deal with
inference for coalescence times when the
data display no variability. For other data
sets, for example that presented by Hammer
(5), alternative computer-intensive meth-
ods are available (6).
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SD(gI) = 1.0 x 10-6
* -. \ ----SD(p) = 1.0 x10-5
----- SD(ji)=2.0x10-5

m

r-

I Here, µ = 1.96× 10−5 and the generation time G = 20 years.
I Modal values of N are around 120K years, but variance is

wide.
I Note that inferences about N and µ are always sensitive to

the prior assumptions, whereas in the presence of sufficient
data inferences about θ will be robust to the prior.
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Rejection sampling

In most cases of interest exact inference under the coalescent is
infeasible, but there are approximate methods based on simulation.
A general approach to inference about θ given a sample of n DNA
sequences is as follows:

1. Simulate a coalescent tree with n leaves,

2. simulate θ under an appropriate prior model,

3. simulate mutations along the branches of the tree according
to a mutation model.

4. If the n resulting sequences are sufficiently close to the
observed sequences, accept the simulated θ, otherwise reject.

5. The set of accepted θ values is approximately a sample from
the posterior distribution of θ given the sequence data.

This is the core of the Approximate Bayesian Computation (ABC)
method that has revolutionised population genetics over the past
15 years, allowing approximate inference under sophisticated
models e.g. for population growth and structure.

I A key problem is to define “sufficiently close”.



I In some settings the number of
segregating sites S captures
most of the information in the
sequence data.

I Conditional on L, the total
branch length of the coalescent
tree, S has approximately a
Poisson distribution with mean
θL/2.

I Therefore, the accept/reject
step can be performed more
efficiently using Poisson
probabilities, without simulating
a value of S (Tavaré et al. 1997,
Genetics).

I Coalescent tree and θ still need
to be simulated unless S = 0.

Inferring  Coalescence  Times 509 

I I I I I I I 
0 1 2 3 4 5 6 

Time (coalescent units) 

FIGURE 2.-Pre- and postdata density curves for Tlo with 0 
= 1. -, predata density; * e ,  SI, = 1; ---, SI, = 3; - - -, Slo 
= 5.  

The resulting value  of T, is a sample of  size one 
from the  required distribution. The algorithm can be 
repeated arbitrarily often, to estimate quantities of in- 
terest as accurately as desired. Let t l ,  . . . , t, be the 
times returned from m iterations of Algorithm 1. The 
density fT,( tI S, = k )  may be estimated from a histo- 
gram of the observations t l ,  . . . , t,, or by using more 
sophisticated density estimation methods. Moments of 
the distribution can be estimated from the  correspond- 
ing sample moments. For example, ( tl + * * - + t,) / 
m approximates the post-data mean of the coalescence 
time. 

Notice that  the  denominator of (14) satisfies 

Po ( k ,  k )  = max  Po ( k ,  A ) .  

This constant can  be  replaced with  any larger value, for 
example, 1. The resulting  algorithm will be  valid, but less 
efficient,  since  smaller  values of u increase the chance that 
T, is rejected.  Algorithm 1 belongs  to a class  of simulation 
methods known as acceptancerejection sampling (RIPLEY 
1987). When the acceptance probability u is small,  these 
algorithms  can be time  consuming. One might then use 
a Markov chain Monte  Carlo method. A natural choice 
is the independence sampler with the predata distribu- 
tion as the proposal (6 GILKS et aZ. 1996, Chapter 1). 

Figure 2 illustrates results from Algorithm 1 with n 
= 10 and 0 = 1. The solid cume indicates fTn ( t )  , the 

X 2 0  

pre-data pdf of the coalescence time Tlo. The  other 
curves  in the figure show the post-data density curves 
for Tlo gwen three  different observed  values for Slo. 
Moments of each of the distributions for TI ,  are given 
in the first two columns of Table 1. From ( 2 ) and ( 3 ) , 
the pre-data distribution of the  length of the  tree Llo 
has mean 5.66 and variance 6.16.  Given the value  of 
Llo, the  number of segregating sites Slo has the Poisson 
distribution with mean Llo/2. It follows that Slo has 
mean 2.83 and variance 4.12. A feature of Algorithm 1 
is that it is usually  very  fast: the simulations underlying 
Figure 2 and Table 1 require only a few seconds on a 
desktop workstation. 

5.2. The  case S, = 0: A set of sequences displaying 
no variation was presented in DORIT et al. (1995)  and 
discussed further in DONNELLY et al. ( 1996)  (see also 
the accompanying discussion and  authors'  response) . 
In this case, the  data  are fully summarized by the event 
S, = 0. Although the simulation algorithms described 
earlier can be used, there is no  need; exact results  have 
been available for some time ( TAVARP 1984) . No segre- 
gating sites occur in the sample if and only if there 
are no mutations in the coalescent tree of the sample. 
Conditional on D = [ S, = 01, it follows that  the time 
q during which the sample has j distinct ancestors has 
probability density proportional to 

Y 2 j ( j -  1)  e x p ( - j ( j -   l ) w / 2 ) . ( e x p ( - 8 ~ / 2 ) ) j .  

Hence %has an exponential distribution with parameter 
j (  j + 0 - 1 ) / 2, and (since mutations are independent 
in different branches of the tree) the %are independent 
random variables. Thus the post-data  distribution of T, 
is that of T,, defined by 

T,= w,+ . . .  + w 2 ,  (15) 

which  has probability density function 
12 

j r n ( t l  s, = 0 )  = (-1)J 
1=2  

w h e r e x ( i ) = x ( x + l ) * - - ( x + j - l ) a n d x , , ~ = x ( x  
- 1 ) * - - ( x - j + 1 ) . This follows directly from equa- 
tion 5.2 of  TAVARI? (1984). 

It is clear that  the mean time to the most recent 
common ancestor, given S, = 0, is smaller than its pre- 
data  mean, since 

Furthermore, given that  the sample has no variability, 
the time to  the most recent common ancestor of the 
sample is, as expected, stochastically smaller than  the 
unconditional distribution. 

5.3. The  case S, = k > 0: When 0 is assumed known 
and  the  population size  is assumed constant, some ex- 



qrej = function(nacc=10000,nblk=round(nacc/2),nsamp=6,nsit=5,s=3)

# rejection inference about N, mu and TMRCA given

# s segregating sites in nsamp sequences of length nsit

{

count = 0

ns1 = nsamp-1

rate = (ns1:1)*(nsamp:2)/2

acc = matrix(0,1,3)

while(nrow(acc)<nacc+1)

{

count = count + nblk

w = matrix(rexp(ns1*nblk,rate),ns1,nblk)

TMRCA = apply(w,2,sum)

L = apply((nsamp:2)*w,2,sum)

u = runif(nblk)

N = rgamma(nblk,5,10^-3)

mu = rgamma(nblk,2,2*10^4)

ind = u<dbinom(s,nsit,1-exp(-L*N*mu/nsit))/dbinom(s,nsit,s/nsit)

acc = rbind(acc,matrix(c(N[ind],mu[ind],TMRCA[ind]),,3))

}

list(count,acc[-1,])

}



Rejection-sampling inference: exercise

Use the R code qrej (for quick rejection sampling) to perform
inferences under the coalescent when S segregating sites (default
= 3) are observed in n sequences (default = 6). qrej assumes:

I gamma(5, 10−3) prior for N (mean = 5 000, SD = 2 236); and

I gamma(2, 2×104) prior for µ (mean 10−4, SD = 7.07×10−5).

qrej returns a list of length 2:

1. the number of iterations (must exceed nacc);

2. a matrix with 3 cols: accepted values of N, µ and TMRCA.

To obtain a density plot e.g. for N, you can do:

plot(density(res[[2]][,1]),fro=0,to=15000)

and you should add an xlab to label the x-axis. You can also add
a prior density:

lines(x,dgamma(x,5,0.001),lty=2)

where x is a vector of grid points between 0 and 15,000.



I The plot shows some
results from inference
using qrej with default
settings.

I Dashed curves: prior,
I Solid curves: posterior.

I You should try to replicate
these plots and obtain a
similar plot for TMRCA.

I Explore the effects of
choosing different values
for nsamp or s.

I Also try altering the prior
distributions (you will
need to edit the rgamma

commands in the R code).
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Fig. 6. Inferences about N , µ, and ✓ = 2Nµ based on an observation of s = 3 segre-

gating sites in a sample of size n = 6. Solid curves show the posterior pdf obtained by
Gaussian kernel density estimation, implemented via the S density command, applied

to the output from a run of qrej with default settings. The dashed curves show the prior

pdf; for N and µ these were created using the S dgamma command, whereas that for ✓ is
based on a direct simulation of size 105.
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Radian et al. Human Mutation (2016). Coalescent-based
estimate of number of carriers of AIP risk allele in Ireland.

AIP mutations cause autosomal dominant familial isolated pituitary
adenomas (FIPA), most commonly manifesting as acromegaly or
gigantism. Due to incomplete penetrance, the disease can also
manifest as apparently sporadic pituitary adenoma (PA).

I Chahal et al. NEJM (2011): 5 carriers identified in mid-Ulster,
including a proband case: a C18 “Irish giant”.

I Coalescent simulation-based analysis predicted a large number
of carriers concentrated in mid-Ulster

Population screening in mid-Ulster for AIP mutations:

I 81 carriers (30 affected, 18 pedigrees) identified in mid-Ulster.

I Low prevalence in Belfast (n = 1 000), no carriers found in
Republic of Ireland (n = 2 000).

I Haplotype conservation suggested a recent TMRCA.

Now we seek to update predictions of the TMRCA and
consequently the number of carriers not yet identified.



Figure 2. Microsatellite haplotypes of chromosome 11q12.2–13.3 of R304∗–positive pedigrees. Irish (first two rows) and non–Irish pedigrees
(third row) are shown. Marker alleles are displayed as amplicon sizes. Dark shading: haploblock shared between all Irish pedigrees (0.2–1.95
Mbp long); light shading: additional shared haploblocks. Thick horizontal lines represent AIP alleles (black = wild–type, yellow = R304∗); intervals
between markers are not drawn to scale. Sp, sporadic PA. Haplotypes of 18th century patient, FIPA 1, 2, 3, 6, 7, FIPA UK, Romania, US (Italian), Sp
India and Sp Mexico pedigrees have been previously published (Chahal et al., 2011; Stals et al., 2011; Ramirez-Renteria et al., 2016).

developed a novel coalescent-based approach, combining analytical
calculations with haplotype simulation in an approximate Bayesian
computation [Beaumont et al., 2002] framework (Supp. Methods).
The tMRCA estimates of the Irish R304∗ haplotypes were 102 (51–
200) generations—median (95% CI)—based on HapMap and 101
(50–179) generations based on Rutgers map genetic distances (Supp.
Fig. S3A and B). These tMRCA distributions, for example, 51–200
generations (HapMap-based) overlap substantially with those previ-
ously estimated: 17–150 generations [Chahal et al., 2011] (Pr(X>Y)
= 0.79). Assuming a generation time of 25 years [Chahal et al., 2011],
current estimates translate to 2,550 (1,275-5,000) years (HapMap)
and 2,525 (1,250-4,475) years (Rutgers). To estimate the number
of living subjects carrying the Irish R304∗ allele, forward simula-
tions conditioned on the number of observed carriers predicted 144
(30–1,725) and 141 (30–1,430) carriers per generation—median
(95% CI)—based on HapMap and Rutgers distances, respectively
(Supp. Fig. S3C and D). For three overlapping generations alive at
present, we estimate the current number of carriers as 3 × 144 =

432 (90-5,175; HapMap-based), corresponding to 86 (18–1,035) PA
patients, assuming 20% penetrance [Beckers et al., 2013].

Historical Irish Giants

The medical literature, as well as Irish folklore, holds numerous
descriptions of Irish giants. For some of these presumed pituitary
gigantism individuals there is historical and medical evidence for
the diagnosis (Supp. Table S7). We have tested DNA samples from
two historical giants for AIP-derived alleles: Charles Byrne (1,761–
1,783), born in Mid Ulster, who carried the Irish R304∗ allele [Cha-
hal et al., 2011] and Cornelius Magrath (1,736–1,760), born in
the Southern coast of Ireland and whose skeleton is conserved at

Trinity College, Dublin [Cunningham, 1892], who was R304∗-
negative. Five additional giants related to known R304∗ carriers
were presumed R304∗-positive: Subjects 6, 7, 11, 13, and 19 (Supp.
Table S7). Two unrelated Mid Ulster screening participants, R304∗-
negative themselves, provided photographic evidence of their ex-
tremely tall relatives, whom we included as historical Irish giants
(Fig. 3 and Supp. Table S7).

Discussion
In this study we demonstrated that the R304∗ AIP allele is present

in the general population of Ireland and its frequency varies ge-
ographically, from a high of 6/936 in Mid Ulster to 1/1,000 in the
Greater Belfast region (both in NI), while absent in a ROI population
sample. These differences were paralleled by the geographical dis-
tribution of R304∗-positive somatotrophinoma cases, representing
a significantly higher proportion of the somatotrophinoma patient
population in NI (12.6%), than in large published somatotrophi-
noma cohorts (maximum 2.41%) [Tichomirowa et al., 2011; Caz-
abat et al., 2012; Preda et al., 2014; Schöfl et al., 2014], while in the
ROI (Dublin center) this proportion was intermediate (6.8%). Fur-
thermore, the number of R304∗ carriers, both patients with soma-
totrophinomas and unaffected carriers, was highest in Mid Ulster.
These data strongly support our hypothesis that Mid Ulster has an
elevated R304∗ carrier frequency. However, 32% of the Irish R304∗

allele carriers were identified outside of Ireland, an observation
attributable to emigration. Another consequence of the increased
R304∗ carrier frequency in Ireland is that a large proportion (8 of
21, 38%) of Irish FIPA families are due to R304∗—the only AIPmut
identified in Irish FIPA so far.

HUMAN MUTATION, Vol. 00, No. 0, 1–8, 2016 5

Haplotypes on chromosome 11q12.2–13.3 of individuals carrying AIP R304*.
Dark shading: haploblock shared by all Irish pedigrees; light shading: addi-
tional shared haploblocks. AIP alleles (black = wild-type, yellow = R304*).



Radian et al. (2016): Methods

I Haplotypes inferred from genotypes using PHASE.

I We performed exact coalescent inference for the fully
conserved haplotype, the result of which became a prior for
ABC inference of the varyingly-shared haplotypes.

I Since we were concerned only with conserved haplotypes,
recombination and mutation have the same effect (of
destroying conservation) and so we treated recombination
events like mutations and combined the two rates.

I The statistic used to compare simulated and observed datasets
was the number of haplotypes sharing each genome segment
(defined by consecutive short tandem repeat markers).

Results:

I TMRCA estimated at 2 550 (1 275 – 5 000) years.

I Forward simulations using TMRCA distribution predicted 432
(90 – 5 175) current carriers, including 86 affected assuming
20% penetrance.
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