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@ Allele fractions in structured populations



@ Allele fractions vary across subpopulations due to a number of
factors, such as

o drift, e mutation,

e migration, o selection.

@ Here we do not focus on the causes but we wish to describe this
variation.

In the figure on the next slide we see allele counts in samples drawn from
three subpopulations of the UK human population.

@ The counts are at two multi-allelic Short Tandem Repeat (STR) loci
used in forensics.

@ The allele labels indicate the number of copies of the
(tetranucleotide) tandem repeat (not all allele labels are shown).

o An allele label of the form x.y means x full copies of the repeat unit
plus a y nucleotide fragment (usually 1 <y < 3).

e Soon full sequencing of STR alleles will distinguish all microvariants; to
date allele classification is based only on the number of nucleotides.

Which locus has the greater variance in allele fractions across these three
subpopulations?
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To define a variance of allele counts or fractions we need to have some
probabilities. To keep things simple let's assume a diallelic locus, and
focus on one allele, call it A.

@ What are the probabilities for the number X of A alleles obtained
when sampling n alleles at random in a given large subpopulation?

If we know the fraction 7 of A alleles in the subpopulation then the
probabilities are given by the binomial distribution:

Pr(X=m|r) = <,’;>7r"’(1—7r)"—m form=0,1,....n. (1)

In particular, when n=1, the probability that the allele is A is

Pr(X=1|r) = 7.



Now suppose that we don't know 7, but we assume that we know p, the
population fraction of A alleles.

@ A natural assumption is E () = p; i.e. allele fractions in
subpopulations vary about the population value.

Then the variance of 7, denoted V (), reaches its maximum value
V(7) = p(1—p) when Pr(7=1) = p and Pr(7=0) = 1—p.
It is therefore convenient to write

V(m) = Fp(1-p)
where F € [0, 1].

Our goal is to estimate F, a parameter introduced by Wright (1951) who
called it Fs1, where S is for subpopulation and T is for total population. It
is also sometimes called 6 (but 6 has several other meanings in population
genetics).



© Interpretations of Fst



Wright (1951) interpreted Fst as measuring the average progress of
subpopulations towards fixation, and hence he called it a fixation index.

@ Fst =1 implies that all subpopulations have reached fixation (7 =1
or 0) at the locus;

@ Fst = 0 implies that 7 = p in all subpopulations, and so the
population is homogeneous.

Wright also described Fst as
“the correlation between random gametes, drawn from the same
subpopulation, relative to the total”

This correlation is due to relatedness, and Fst can also be interpreted as
measuring the relatedness among individuals within sub-populations
relative to the total population (Crow and Kimura, 1970).

@ Thus it is often called a coancestry coefficient.

@ More relatedness within subpopulations means higher Fst and a
greater variation in allele fractions across subpopulations.
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The biggest factor affecting Fs in most structured populations is
migration, and in the past Fst was estimated as an indirect way to
estimate the migration rate, for example via the formula

1

Fsr = ———
ST = 11 2Nm

(replace 2 with 4 for diploid populations, N = population size) which holds
in a simple island model assuming symmetric migration at rate m between
all pairs of subpopulations.

In order to estimate Fs7 we have to deal with the problem that we don't
know p.

@ At first, we solve this problem by simply pretending we know it.



However we still need to keep in mind what p represents, and there are at
least two schools of thought:
@ p is the actual allele fraction among all individuals in all the
subpopulations; this means that the largest subpopulations dominate
the value of p.
@ p is the allele fraction in a hypothetical ancestral population from
which all the observed subpopulations are descended.

p is unknown in either case, but can be estimated.

In general p can be any reference value, but its definition affects the value
and interpretation of Fst.
@ In forensic applications p is the allele fraction in the population from
which the frequency database was drawn. Then Fg7 is defined in
terms of the mean square error (MSE) of 7 about the given reference

value,
MSE[r, p] = E ((7—p)®) = FsTp(1—p).



There are many methods for estimating Fs7; we won't review them all.

@ Some methods can be classified as “method of moments” estimation,
which is based on equating sample moments (mean, variance, etc) to
their expected values under the assumed probability model

@ it isn't necessary to specify a full probability distribution for 7.

@ Some of these methods are based on the idea of partitioning the
variance in the sample allele counts into within- and
between-subpopulation components of variance.

@ Because there is little information in a single allele count, it is
necessary to “share information” across different alleles at a
multi-allelic locus, or across subpopulations or across loci.

e This can require assuming that Fst is constant.

@ In the past it was common to assume Fs7 constant across populations,
which is rarely true due to different N, and demographic histories.

o Now we usually have many markers genome-wide and Fst can be
estimated for individual populations or for pairs of populations by
averaging over markers; however selection can cause some markers to
have discrepant Fst values.

o Bhatia et al. (2013) is a recent reference focussing on genome-wide
human data and the effect of many rare variants on estimates of Fsr.



© A sampling formula: the Beta-Binomial likelihood



We will focus here on likelihood-based estimation of Fst.

@ | developed some of this approach, see particularly Balding (2003)
and also my DNA forensics book Steele and Balding (2015).

To proceed, we need to specify a probability distribution for 7 (remember,
we are assuming that p is known). For a diallelic locus, a natural candidate
is the beta distribution, which has probability density function (pdf)?:

f(x) = exPL(1—x)M1=P) L, (2)

where ¢ is a normalising constant whose value is known but not needed

here, 0 < x <1, and .
A= — —1.
Fst

The expectation and variance of the beta are, respectively, p and
Fstp(1-p).

INB This parametrisation of the beta is not standard, the usual parametrisation has
a = Ap and 8 = A(1—p). Then the mean is a/(a+3) = p and variance is
aB/((a+B)*(a+B)+1) = p(1—p)Fsr.
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Beta pdf when p = 0.01 (previous page, top), p = 0.05 (previous page,
bottom), p = 0.20 (above), and A = 99, 49, and 19, so that Fst = 1%,
2%, 5%.

The beta distribution applies exactly under some theoretical models, both
of pure drift and of weak selection in large populations (Ewens, 2004). It
allows the essential features of genetic differentiation to be modelled and
estimated in actual populations.
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To obtain the probability distribution for the allele count X in a
subpopulation, we need to integrate the binomial probabilities (1) over the
beta distribution for m. Remarkably, this integration can be done exactly
and the result is the Beta-Binomial (BB) distribution, which we can
represent schematically as

BB(X) = / binomial(X|)beta(r)dr

The BB is like the binomial but with higher variance, controlled by an
additional parameter: BB variance is np(1—p)(1+(n—1)Fst), which
equals the binomial variance np(1—p) when Fst =0or n=1.

Sampling formula: There is a simple recursive formula for the BB
probabilities. Suppose that n alleles have been sampled in the
subpopulation, of which m are A. Then the probability that the next allele
sampled in the subpopulation is also A is:

mFst + (1-FsT)pa

1+ (n—1)Fst (3)



When m = n = 0, we obtain probability pa that the first allele drawn is A.
The probability that the first two alleles drawn are both A is

pa(Fst + (1—FsT)pa) = pa + FsTpa(l—pa).

Increasing Fst thus increases the probability of two A alleles, but
decreases the probability of an A allele followed by a B, which is:

(1—FsT)paps. (4)

The probability of an A and a B in an unordered sample of size two is
obtained by multiplying (4) by two.

Non-recursive form of the sampling formula (3): the probability of an
unordered sample of size n containing m copies of allele A is

n) Fr(A) F(m+Ap)T(n—m+ A(1—p)) (5)
m)T(n+A) T(Ap) rA1-p)

Pr(X=m) = (

where I is the gamma function, which satisfies I'(x+1) = xI'(x).
Replacing A with 1/Fst—1 we obtain the likelihood formula for Fst.



The multi-allelic case: Formula (3) still holds for a locus with > 2
alleles. The multivariate extension of the beta distribution is the Dirichlet,
which has pdf:

K
Apx—1
f(xl,xz,...,xK):ckap" , (6)
k=1
where c is a constant, pi, p2, ..., pk denote the population allele fractions,

with Z,’le px = 1, and similarly the x, are all positive and sum to one. If
K = 2 then pp = 1—p; and x = 1—xy and the beta pdf (2) is recovered.

The non-recursive form of the multinomial-Dirichlet is

K
nll(\) F(my + Apk)
Pr(X=m) = , 7
r(X=m) = Fy kH:1 me T(\pe) @
where m = (my, my, ..., mg) denotes the sample count vector so that

=35y my.
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locus in 3 subpopulations, 100 alleles sampled per subpopulation and

Fst = 1% (left) and 5% (right).



R code to simulate from the beta-binomial

Function BB generates a histogram of counts of A allele in samples of size
nall from each of npop populations, for given Fst and p. The standard
deviation of the allele count is also returned.

BB = function(Fst=0.01,npop=50,nall=10,p=0.2){
if (Fst>0){
lam = 1/Fst-1
pi = rbeta(npop,lamxp,lam*(1-p))
}
else pi = rep(p,npop)
dat = rbinom(npop,nall,pi)
hist(dat,n=20)
return(sd(dat))
}

Use BB to compare the distribution of the allele count for different values
of FsT when nall = 100 and p = 0.2.



Computing multinomial-Dirichlet probabilities under the sampling
formula: Suppose that there are three alleles with population fractions ps,
p2, and ps3, so that p; + p2 + p3 = 1. Using (3) repeatedly, or (7), the
probability P(1,1,1) that an unordered sample of size three from the
subpopulation consists of one copy of each allele is

3
6 (1—Fs7)?
Pr(1,1,1) = (1—Fs7)px = 6 LTFsT)
( ) (1-Fs7)(1+FsT) ,1_11 ST)Pk = 8pLP2ps 1+ Fst
Similarly,
(Fst+(1—FsT)p1)
Pr(2,1,0) = 3 1-F, )
( ) P1P2( ST) 1+ FST
(2FsT + (1=FsT)p1)

Pr(3,0,0) = pi(Fst+ (1—FsT)p1) 1+ Fsr

These two formulas are the same whether the locus is diallelic or
multi-allelic.



The multinomial-Dirichlet (or BB if diallelic) is not exact. Marchini et al.
(2004) found that the BB provided an excellent fit for a genome-wide
study of SNP markers. However STR mutant alleles usually differ from
their parents by exactly one repeat unit, and this makes it unlikely that the
Dirichlet assumption will be strictly valid.

@ For inferences about variances it can be shown to give a good
approximation.

@ Alternative distributions are the multivariate Gaussian (Weir and Hill,
2002) and multivariate Gaussian log-ratios (Aitchison, 2003).



@ Likelihood inference for the inbreeding coefficient



The multinomial-Dirichlet gives probabilities for a sample of alleles drawn
from a subpopulation in terms of Fs1 and the population allele fractions
(the p). If we know the latter, this specifies a likelihood function for Fsr.

Likelihood-based inference has many advantages. We can start to
illustrate these using observed diploid genotypes (samples of size two from
the subpopulation) to infer the inbreeding coefficient f, or Fj1 in Wright's
notation. He also derived in a simple island model

1—Fr=(1-Fis)(1 - FsT)

where Fs is the inbreeding coefficient when the 7 are known.

Under the inbreeding model, the genotype probabilities are

Pr(AA) = pi+ foepa
Pr(AB) = 2(1-f)pgpa
Pr(BB) = pg + fpepa;

where max(—pg/pa, —pa/pe) < f < 1.



Then the likelihood of a sample with genotype counts naa, nag, ngs is
L(f) = cPr(AA)"™ Pr(AB)™& Pr(BB)"z8 ,

where ¢ is a constant.

@ We can choose ¢ such that L(f) takes value one at the HWE value
f =0, in which case we obtain, for max(—pa/pg, —pg/pa) < f < 1,

L(F) = (1-+ foa/pa)"™ (1=1)"* (1 + foa/ pe) ™.

Maximising over f gives the Maximum Likelihood Estimator (MLE),
but there is more information in the likelihood than just its maximum.

@ If we choose ¢ so that the integral over f is one, then the likelihood
also specifies the posterior pdf for f given a uniform prior (see plot
next slide for an illustration).

The uniform prior for f isn't appropriate when we have information about
reasonable values (e.g. close to 0), but when n is large the choice of prior
has little impact. We discuss choice of prior for Fs1 below.



posterior density
0.5 1.0 15
1

0.0
L

-05 0‘.0 05 1.0
inbreeding coefficient, f

Posterior pdf for the inbreeding coefficient f given sample genotype counts

naa = 10, nag =5, and ngg =5, pa = 0.6, pg = 0.4, and a uniform

prior.



R code for likelihood inference of f

inbflik computes a posterior pdf for f given genotype counts nAA, nAB,
and nBB at a diallelic locus. If pA is unknown, enter a —ve value and it
will be estimated from the genotype data:

inbflik = function(nAA=10,nAB=5,nBB=5,pA=-1){
if (pA<O0) pA = (nAA+nAB/2)/(nAA+nAB+nBB)
pB = 1-pA
minf = max(-pA/pB,-pB/pA)
f=seq(minf,1,by=0.001)
lik = (1 + f*pB /pA) "nAA * (1-f) "nAB * (1+f*pA/pB) nBB
plot(f,1lik,ty="1",xlab="£f",ylab="1likelihood")
return(f [which.max(1ik)])

@ Use inbflik to obtain the plot on previous page (NB y axis scale
differs).

o Now repeat but assuming that pA is unknown.

e What are the approximate MLEs f in each case.

o Find a set of genotvpe counts that give a —ve value of f.



© Likelihood inference for FsT



Consider a sample of 10 alleles, with ny = 6 and pg = 0.2.

@ The sample proportion 6/10 is > pp, suggesting that Fst is large,
but any inferences must be weak with so little data. To make this
precise, from (7) we obtain:

[1;_o(iFst + (1=Fs7)/5) x IT}_o(iFsT + 4(1—Fs1)/5)
(1—Fs7) [T5-y (1 + iFsT)

@ This curve is plotted in next slide (solid line) scaled so that it can be
interpreted as a posterior density given a uniform prior for Fsr.

L(FsT) =

@ As expected, a wide range of Fs1 values is supported: the 95%
highest posterior density (hpd) interval for Fst is (0.027,0.83).

@ Increasing the sample size by a factor of 10, the 95% hpd interval is
0.099 < Fs7 < 0.84, excluding a larger interval near zero.

@ Stepping up by a further factor of 10 (dotted curve), the pdf is
almost unchanged. Once we get a good fix on =, there is no
additional benefit from increasing the sample size for that
subpopulation and locus.
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Cheating simulation study (p assumed known)

| True FsT [ 02% 05% 1% 2% 4% 8% |
n=100 MoM [ 52 66 87 132 224 404
MLE 36 53 74 114 184 317
n=200 MoM | 31 43 67 110 198 377
MLE 23 37 57 91 159 288
n=400 MoM [ 19 33 56 101 192 376
MLE 16 28 46 83 150 276

Standard deviations (x10%) of MoM and MLE estimators of FsT when
the multinomial-Dirichlet assumption is valid. There were 10*
simulations of samples of size n from each of five subpopulations, typed at
a locus with K = 4 alleles. The population allele fraction vector p was
sampled uniformly randomly, independently for each simulation, and was
regarded as known for the estimation of Fgr.



R code to simulate data and generate Fst likelihood curves

fstsim = function(Fst,nloc,nall,p=0.2){
npop = length(nall);
afcur = matrix(p,nloc,npop);
if (Fst > 0){
alph = (1/Fst-1)*p; beta = (1/Fst-1)*(1-p);
for(i in 1:npop) afcur[,i] = rbeta(nloc,alph,beta)
s
ac = afcur;
for(i in 1:npop) acl,i] = rbinom(nloc,nalllil,afcur[,il);
return(list(nall,ac))
}
fstlik = function(nall=dat[[1]],ac=dat[[2]],p=0.2,fststep=100){
nloc = nrow(ac);
Fst = seq(0.001,0.99,len=fststep);
loglik = rep(0,fststep);
for(i in 1:nloc){
alph = (1/Fst-1)*p; beta = (1/Fst-1)*(1-p);
loglik = loglik+lgamma(alph+ac[i,1])+1lgamma(beta+nall[1]-ac[i,1])+1lgamma(alph+beta);
loglik = loglik-lgamma(alph)-lgamma(beta)-lgamma(alph+beta+nall[1]);
}
lik = exp(loglik-max(loglik));
lik = lik*fststep/sum(lik);
plot(Fst,lik,type="1",ylim=c(0,1.5*max(1ik)));
return(Fst [which.max(1ik)])

}

fstsim simulates BB data at nloc loci in npop subpopulations with given
Fst, then fstlik plots a likelihood curve and returns its approximate
maxmimum. First run the following commands

£=0.1; dat=fstsim(£f,20,c(20,20)); fstlik()

Then try other values for £, nloc, and nall.



Fst (%)

11
T

—— Informative
—— Uniform

H

| |
TT

I
10

T
10

T
50

T
50

T T T T
100 100 500 500

Sample size (alleles)

T T
1000

5000

Effect of prior,
single locus, p
known: Fsr
posterior 95%
interval using:
(red) a beta prior
with median 2.3%
and 95% ClI
(0.26%, 8.0%) );
(blue) the uniform
prior. Data were
simulated at a
multiallelic locus
with Fs7 = 1%.
The vertical lines
indicate the 95%
equal-tailed Cl,
and medians are
indicated with
horizontal
segments.



Effect of prior on Fst, ten multi-allelic
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Figure 3 Fg posterior densities (solid lines) using the direct method, given a uniform prior (blue) and an informative beta
prior (red). Dotted red lines show the beta prior density. The subpopulations analysed are (left) Iran and (right) Afghanistan, with
the reference populations being EA6 (Middle East/North Africa) and EA4 (South Asia), respectively.



@ Most examples above use only a single population and a single locus.
e It's an advantage of the likelihood approach that some inference is
possible even with so little information.
@ But in practice, to obtain better inferences about Fs7 we need to
combine information across loci and/or across subpopulations.
o Another advantage of likelihood is that we can do this in many
different ways using hierarchical models.
@ With collaborators, | have developed the BayesFST software? which
assumes the model
Fi exp(aj+bj)

= PRSI 8
ST 1—%exp(ar+b0’ ( )

where / indicates the locus and j the population.

BayesFST also deals with the fact that we often we don't know the p:
@ Integrate over the p with respect to a prior, by default uniform.

o Different assumptions about p can have a big impact on inferences.
e Uniform prior not appropriate for SNPs: a U-shaped distribution of
allele fractions is common, and can be modelled by a beta prior.

2yww.reading.ac.uk/Statistics/genetics/software.html



@ Fst estimates in worldwide human populations for forensics



In forensic DNA analysis, the weight of evidence depends on the
coancestry of alleged and alternative contributors of DNA to a sample.

We can’t know the right Fst in any given case but we can use large
values relative to the observed range.

The reference population is that of the frequency database

o this leads to larger values than typical population-genetics estimates,
for which the reference population is either an ancestral population or a
(weighted) mean of the subpopulations.

Conversely, most human population genetic studies are of distinct
populations, often geographically or socially isolated from other
populations

o this leads to higher Fst estimates than for the heterogeneous,
cosmopolitan populations that are often appropriate in forensic work.
Fst is also affected by the mutation rate.
o We might guess that higher mutation causes greater divergence among
populations.
o In practice this doesn't seem to be true: Fst at (high-mutation) STR
loci tends to be lower than at (low-mutation) SNPs.



We obtained worldwide allele count data for 16 (multi-allelic) forensic STR
loci from UK migration applicants.

e We grouped then into 5 continental-scale regions IC1 to I1C6 (map).

@ We assumed (after checking) that Fst is constant over loci.

Results in following slides are a sample from Steele et al. (2014).



Fst posterior median + 95% interval in Africa/Caribbean?

Direct Indirect
IC3 n 25 50 975 2.5 50 97.5
Ghana 214 0.8 1.1 1.6 0.2 03 0.5
Jamaica 166 0.5 0.7 1.0 0.0 0.1 0.2
Kenya 51 0.7 1.2 1.9 0.8 1.3 1.9
Nigeria 444 0.9 1.2 1.5 0.2 03 0.3
Sierra Leone 41 0.7 1.3 2.2 0.1 0.3 0.8
Uganda 63 0.3 0.5 1.0 0.0 0.2 0.4

Fst values are expressed in %.
Direct means relative to a forensic database;

Indirect reference population is a hypothetical ancestral population.

3A preliminary analysis indicated that Somalia fit better with Middle East/North
Africa and is not shown here.



Inter-continental Fs1

Global n EA1 EA3 EA4 EA5 EA6 Indirect
IC1 3582 0.4 3.1 1.9 1.9 0.9 2.7
IC3 2032 1.7 0.7 1.7 1.4 11 1.0
IC4 285 1.4 3.1 0.7 1.3 0.8 2.3
IC5 304 3.1 4.2 2.4 0.5 2.0 3.3
IC6 604 1.8 1.7 1.9 1.7 0.9 1.4
EA1/IC1 European EA refers to an older
EA3/IC3 Afro-Caribbean 10-locus database, IC is a
EA4/IC4 South Asian newer 16-locus database.

Above results use the 10

EA5/IC5 East Asian _
common loci.

EA6/1C6 Middle East/North African



Conclusions

@ I've highlighted several advantages of a flexible likelihood-based
approach to inference based on Fsr.
@ The main disadvantage is that the assumed likelihood may not be
exactly correct, but
o it has been shown to fit well for SNP data;
e validity of inferences can be checked by simulation.
@ Another disadvantage of likelihood methods is computational speed
for very large numbers of loci, but some calculations are still feasible.
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