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PROBABILITY THEORY
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Probability

Probability provides the language of data analysis.

Equiprobable outcomes definition:

Probability of event E is number of outcomes favorable to E

divided by the total number of outcomes. e.g. Probability of a

head = 1/2.

Long-run frequency definition:

If event E occurs n times in N identical experiments, the prob-

ability of E is the limit of n/N as N goes to infinity.

Subjective probability:

Probability is a measure of belief.
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First Law of Probability

Law says that probability can take values only in the range zero

to one and that an event which is certain has probability one.




0 ≤ Pr(E) ≤ 1

Pr(E|E) = 1 for any E

i.e. If event E is true, then it has a probability of 1. For example:

Pr(Seed is Round|Seed is Round) = 1
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Second Law of Probability

If G and H are mutually exclusive events, then:

Pr(G or H) = Pr(G) + Pr(H)

For example,

Pr(Round or Wrinkled) = Pr(Round) + Pr(Wrinkled)

More generally, if Ei, i = 1, . . . r, are mutually exclusive then

Pr(E1 or . . . or Er) = Pr(E1) + . . .+ Pr(Er)

=
∑

i

Pr(Ei)
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Complementary Probability

If Pr(E) is the probability that E is true then Pr(Ē) denotes the

probability that E is false. Because these two events are mutually

exclusive

Pr(E or Ē) = Pr(E) + Pr(Ē)

and they are also exhaustive in that between them they cover all

possibilities – one or other of them must be true. So,

Pr(E) + Pr(Ē) = 1

Pr(Ē) = 1 − Pr(E)

The probability that E is false is one minus the probability it is

true.
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Third Law of Probability

For any two events, G and H, the third law can be written:

Pr(G and H) = Pr(G) Pr(H|G)

There is no reason why G should precede H and the law can also

be written:

Pr(G and H) = Pr(H) Pr(G|H)

For example

Pr(Seed is round & is type AA) = Pr(Seed is round|Seed is type AA)

×Pr(Seed is type AA)

= 1 × p2A
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Independent Events

If the information that H is true does nothing to change uncer-

tainty about G, then

Pr(G|H) = Pr(G)

and

Pr(H and G) = Pr(H)Pr(G)

Events G,H are independent.
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Law of Total Probability

If G,H are two mutually exclusive and exhaustive events (so that

H = Ḡ = not −G), then for any other event E, the law of total

probability states that

Pr(E) = Pr(E|G)Pr(G) + Pr(E|H) Pr(H)

This generalizes to any set of mutually exclusive and exhaustive

events {Si}:

Pr(E) =
∑

i

Pr(E|Si)Pr(Si)

For example

Pr(Seed is round) = Pr(Round|Type AA)Pr(Type AA)

+ Pr(Round|Type Aa)Pr(Type Aa)

+ Pr(Round|Type aa)Pr(Type aa)

= 1 × p2A + 1 × 2pApa + 0 × p2a = pA(1 + pA)
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Bayes’ Theorem

Bayes’ theorem relates Pr(G|H) to Pr(H|G):

Pr(G|H) =
Pr(GH)

Pr(H)
, from third law

=
Pr(H|G) Pr(G)

Pr(H)
, from third law

If {Gi} are exhaustive and mutually exclusive, Bayes’ theorem

can be written as

Pr(Gi|H) =
Pr(H|Gi)Pr(Gi)∑
iPr(H|Gi)Pr(Gi)
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Mendel’s Data

Model: seed shape governed by gene A with alleles A, a:

Genotype Phenotype

AA Round
Aa Round
aa Wrinkled

Cross two inbred lines: AA and aa. All offspring (F1 generation)

are Aa, and so have round seeds.
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F2 generation

Self an F1 plant: each allele it transmits is equally likely to be A

or a, and alleles are independent, so for F2 generation:

Pr(AA) = Pr(A)Pr(A) = 0.25

Pr(Aa) = Pr(A)Pr(a) + Pr(a)Pr(A) = 0.5

Pr(aa) = Pr(a)Pr(a) = 0.25

Probability that an F2 seed (observed on F1 parental plant) is

round:

Pr(Round) = Pr(Round|AA)Pr(AA)

+ Pr(Round|Aa)Pr(Aa)

+ Pr(Round|aa)Pr(aa)

= 1 × 0.25 + 1 × 0.5 + 0 × 0.25

= 0.75
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F2 generation

What are the proportions of AA and Aa among F2 plants with

round seeds? From Bayes’ Theorem:

Pr(F2 = AA|F2 Round) =
Pr(F2 Round|AA)Pr(F2 AA)

Pr(F2 round)

=
1 × 1

4
3
4

=
1

3
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Sampling

Statistical sampling: The variation among repeated samples

from the same population is analogous to “fixed” sampling. In-

ferences can be made about that particular population.

Genetic sampling: The variation among replicate (conceptual)

populations is analogous to “random” sampling. Inferences are

made to all populations with the same history.
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Classical Model

Sample of
size n · · · Sample of

size n

�
�

�
�

�
��=

HHHHHHHHHHj

Time t
Population
of size N · · · Population

of size N

↓ ↓

... ...

↓ ↓

Time 2
Population
of size N · · · Population

of size N

↓ ↓

Time 1 Population
of size N · · · Population

of size N

↓ ↓

Reference population
(Usually assumed infinite and in equilibrium)
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Coalescent Theory

An alternative framework works with genealogical history of a

sample of alleles. There is a tree linking all alleles in a current

sample to the “most recent common ancestral allele.” Allelic

variation due to mutations since that ancestral allele.

The coalescent approach requires mutation and may be more

appropriate for long-term evolution and analyses involving more

than one species. The classical approach allows mutation but

does not require it: within one species variation among popula-

tions may be due primarily to drift.
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ALLELE FREQUENCIES
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Properties of Estimators

Consistency Increasing accuracy
as sample size increases

Unbiasedness Expected value is the parameter

Efficiency Smallest variance

Sufficiency Contains all the information
in the data about parameter
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Binomial Distribution

Most population genetic data consists of numbers of observa-

tions in some categories. The values and frequencies of these

counts form a distribution.

Toss a coin n times, and note the number of heads. There

are (n+1) outcomes, and the number of times each outcome is

observed in many sets of n tosses gives the sampling distribution.

Or: sample n alleles from a population and observe x copies of

type A.
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Binomial distribution

If every toss has the same chance p of giving a head:

Probability of x heads in a row is

p× p× . . .× p = px

Probability of n− x tails in a row is

(1 − p) × (1 − p) × . . .× (1 − p) = (1 − p)n−x

The number of ways of ordering x heads and n − x tails among

n outcomes is n!/[x!(n − x)!].

The binomial probability of x successes in n trials is

Pr(x|p) =
n!

x!(n − x)!
px(1 − p)n−x
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Binomial Likelihood

The quantity Pr(x|p) is the probability of the data, x successes

in n trials, when each trial has probability p of success.

The same quantity, written as L(p|x), is the likelihood of the

parameter, p, when the value x has been observed. The terms

that do not involve p are not needed, so

L(p|x) ∝ px(1 − p)(n−x)

Each value of x gives a different likelihood curve, and each curve

points to a p value with maximum likelihood. This leads to

maximum likelihood estimation.
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Likelihood L(p|x, n = 4)
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Binomial Mean

If there are n trials, each of which has probability p of giving a

success, the mean or the expected number of successes is np.

The sample proportion of successes is

p̃ =
x

n

(This is also the maximum likelihood estimate of p.)

The expected, or mean, value of p̃ is p.

E(p̃) = p
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Binomial Variance

The expected value of the squared difference between the num-

ber of successes and its mean, (x − np)2, is np(1 − p). This is

the variance of the number of successes in n trials, and indicates

the spread of the distribution.

The variance of the sample proportion p̃ is

Var(p̃) =
p(1 − p)

n
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Normal Approximation

Provided np is not too small (e.g. not less than 5), the binomial

distribution can be approximated by the normal distribution with

the same mean and variance. In particular:

p̃ ∼ N

(
p,

p(1 − p)

n

)

To use the normal distribution in practice, change to the standard

normal variable z with a mean of 0, and a variance of 1:

z =
p̃− p√

p(1 − p)/n

For a standard normal, 95% of the values lie between ±1.96.

The normal approximation to the binomial therefore implies that

95% of the values of p̃ lie in the range

p ± 1.96
√
p(1 − p)/n
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Confidence Intervals

A 95% confidence interval is a variable quantity. It has end-

points which vary with the sample. Expect that 95% of samples

will lead to an interval that includes the unknown true value pc.

The standard normal variable z has 95% of its values between

−1.96 and +1.96. This suggests that a 95% confidence interval

for the binomial parameter p is

p̃ ± 1.96

√
p̃(1 − p̃)

n
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Confidence Intervals

For samples of size 10, the 11 possible confidence intervals are:

p̃c Confidence Interval

0.0 0.0 ± 0.00 0.00,0.00

0.1 0.1 ± 2
√

0.009 0.00,0.29

0.2 0.2 ± 2
√

0.016 0.00,0.45

0.3 0.3 ± 2
√

0.021 0.02,0.58

0.4 0.4 ± 2
√

0.024 0.10,0.70

0.5 0.5 ± 2
√

0.025 0.19,0.81

0.6 0.6 ± 2
√

0.024 0.30,0.90

0.7 0.7 ± 2
√

0.021 0.42,0.98

0.8 0.8 ± 2
√

0.016 0.55,1.00

0.9 0.9 ± 2
√

0.009 0.71,1.00
1.0 1.0 ± 0.00 1.00,1.00

Can modify interval a little by extending it by the “continuity

correction” ±1/2n in each direction.
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Confidence Intervals

To be 95% sure that the estimate is no more than 0.01 from

the true value, 1.96
√
p(1 − p)/n should be less than 0.01. The

widest confidence interval is when p = 0.5, and then need

0.01 ≥ 1.96
√

0.5 × 0.5/n

which means that n ≥ 10,000. For a width of 0.03 instead of

0.01, n ≈ 1,000.

If the true value of p was about 0.05, however,

0.01 ≥ 2
√

0.05 × 0.95/n

n ≥ 1,900 ≈ 2,000
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Exact Confidence Intervals: One-sided

The normal-based confidence intervals are constructed to be

symmetric about the sample value, unless the interval goes out-

side the interval from 0 to 1. They are therefore less satisfactory

the closer the true value is to 0 or 1.

More accurate confidence limits follow from the binomial distri-

bution exactly. For events with low probabilities p, how large

could p be for there to be at least a 5% chance of seeing no

more than x (i.e. 0,1,2, . . . x) occurrences of that event among

n events. If this upper bound is pU ,

x∑

k=0

Pr(k) ≥ 0.05

x∑

k=0

(
n

k

)
pkU(1 − pU)n−k ≥ 0.05

If x = 0, then (1 − pU)n ≥ 0.05 or pU ≤ 1 − 0.051/n and this is

0.0295 if n = 100. More generally pU ≈ 3/n when x = 0.
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Exact Confidence Intervals: Two-sided

Now want to know how large p could be for there to be at

least a 2.5% chance of seeing no more than x (i.e. 0,1,2 . . . x)

occurrences, and in knowing how small p could be for there to be

at least a 2.5% chance of seeing at least x (i.e. x, x+1, x+2, . . . n)

occurrences then we need

x∑

k=0

(
n

k

)
pkU(1 − pU)n−k ≥ 0.025

n∑

k=x

(
n

k

)
pkL(1 − pL)

n−k ≥ 0.025

The second of these equations may be written as

x−1∑

k=0

(
n

k

)
pkL(1 − pL)

n−k ≤ 0.975

If x = n, then pnL ≤ 0.975 or pL ≤ 0.9751/n and this is 0.9997 if

n = 100. Interval is not symmetric if p 6= 0.5.
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Bootstrapping

An alternative method for constructing confidence intervals uses

numerical resampling. A set of samples is drawn, with replace-

ment, from the original sample to mimic the variation among

samples from the original population. Each new sample is the

same size as the original sample, and is called a bootstrap sam-

ple.

The middle 95% of the sample values p̃ from a large number of

bootstrap samples provides a 95% confidence interval.
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Multinomial Distribution

Toss two coins n times. For each double toss, the probabilities

of the three outcomes are:

2 heads pHH = 1/4
1 head, 1 tail pHT = 1/2
2 tails pTT = 1/4

The probability of x lots of 2 heads is (pHH)x, etc.

The numbers of ways of ordering x, y, z occurrences of the three

outcomes is n!/[x!y!z!] where n = x+ y+ z.

The multinomial probability for x of HH, and y of HT or TH

and z of TT in n trials is:

Pr(x, y, z) =
n!

x!y!z!
(pHH)x(pHT )y(pTT )z
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Multinomial Variances and Covariances

If {pi} are the probabilities for a series of categories, the sam-

ple proportions p̃i from a sample of n observations have these

properties:

E(p̃i) = pi

Var(p̃i) =
1

n
pi(1 − pi)

Cov(p̃i, p̃j) = −1

n
pipj, i 6= j

The covariance is defined as E[(p̃i − pi)(p̃j − pj)].

For the sample counts:

E(ni) = npi

Var(ni) = npi(1 − pi

Cov(ni, nj) = −npipj, i 6= j
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Allele Frequency Sampling Distribution

If a locus has alleles A and a, in a sample of size n the allele

counts are sums of genotype counts:

n = nAA + nAa + naa

nA = 2nAA + nAa

na = 2naa + nAa

2n = nA + na

Genotype counts in a random sample are multinomially distributed.

What about allele counts? Approach this question by calculating

variance of nA.
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Within-population Variance

Var(nA) = Var(2nAA + nAa)

= Var(2nAA) + 2Cov(2nAA, nAa) + Var(nAa)

= 2npA(1 − pA) + 2n(PAA− p2A)

This is not the same as the binomial variance 2npA(1−pA) unless

PAA = p2A. In general, the allele frequency distribution is not

binomial.

The variance of the sample allele frequency p̃A = nA/(2n) can

be written as

Var(p̃A) =
pA(1 − pA)

2n
+
PAA− p2A

2n
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Within-population Variance

It is convenient to reparameterize genotype frequencies with the

(within-population) inbreeding coefficient f :

PAA = p2A + fpA(1 − pA)

PAa = 2pApa − 2fpApa

Paa = p2a + fpa(1 − pa)

Then the variance can be written as

Var(p̃A) =
pA(1 − pA)(1 + f)

2n

This variance is different from the binomial variance of pA(1 −
pA)/2n.
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Bounds on f

Since

pA ≥ PAA = p2A + fpA(1 − pA) ≥ 0

pa ≥ Paa = p2a + fpa(1 − pa) ≥ 0

there are bounds on f :

−pA/(1 − pA) ≤ f ≤ 1

−pa/(1 − pa) ≤ f ≤ 1

or

max

(
−pA
pa
,−pa
pA

)
≤ f ≤ 1

This range of values is [-1,1] when pA = pa.
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Indicator Variables

A very convenient way to derive many statistical genetic results

is to define an indicator variable xij for allele j in individual i:

xij =

{
1 if allele is A
0 if allele is not A

Then

E(xij) = pA

E(x2ij) = pA

E(xijxij′) = PAA

If there is random sampling, individuals are independent, and

E(xijxi′j′) = E(xij)E(xi′j′) = p2A
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Intraclass Correlation

The inbreeding coefficient is the correlation of the indicator vari-

ables for the two alleles at a locus carried by an individual. This

is because:

Var(xij) = E(x2ij) − [E(xij)]2

= pA(1 − pA)

= Var(xij′), j 6= j′

and

Cov(xij , xij′) = E(xijxij′)− [E(xij)][E(xij′)], j 6= j′

= PAA− p2A
= fpA(1 − pA)

so

Corr(xij, xij′) =
Cov(xij , xij′)√

Var(xij)Var(xij′)
= f
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Maximum Likelihood Estimation: Binomial

For binomial sample of size n, the likelihood of pA for nA alleles

of type A is

L(pA|nA) = C(pA)nA(1 − pA)n−nA

and is maximized when

∂L(pA|nA)

∂pA
= 0 or when

∂ lnL(pA|na)
∂pA

= 0

Now

lnL(pA|nA) = lnC + nA ln(pA) + (n− nA) ln(1 − pA)

so

∂ lnL(pA|nA)

∂pA
=

nA
pA

− n− nA
1 − pA

and this is zero when pA = p̂A = nA/n.
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Maximum Likelihood Estimation: Multinomial

If {ni} are multinomial with parameters n and {Qi}, then the

MLE’s of Qi are ni/n. This will always hold for genotype pro-

portions, but not always for allele proportions.

For two alleles, the MLE’s for genotype proportions are:

P̂AA = nAA/n

P̂Aa = nAa/n

P̂aa = naa/n

Does this lead to estimates of allele proportions and the within-

population inbreeding coefficient?

PAA = p2A + fpA(1 − pA)

PAa = 2pA(1 − pA)− 2fpA(1 − pA)

Paa = (1 − pA)2 + fpA(1 − pA)
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Maximum Likelihood Estimation

The likelihood function for pA, f is

L(pA, f) =
n!

nAA!nAa!naa!
[p2A + pA(1 − pA)f ]nAA

×[2pA(1 − pA)f ]nAa[(1 − pA)2 + pA(1 − pA)f ]naa

and it is difficult to find, analytically, the values of pA and f that

maximize this function or its logarithm.

There is an alternative way of finding maximum likelihood esti-

mates in this case: equating the observed and expected values

of the genotype frequencies.
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Bailey’s Method

Because the number of parameters (2) equals the number of

degrees of freedom in this case, we can just equate observed and

expected (using the estimates of pA and f) genotype proportions

nAA/n = p̂2A + f̂ p̂A(1 − p̂A)

nAa/n = 2p̂A(1 − p̂A) − 2f̂ p̂A(1 − p̂A)

naa/n = (1 − p̂A)2 + f̂ p̂A(1 − p̂A)

Solving these equations (e.g. by adding the first equation to half

the second equation) for p̂A and f̂ :

p̂A =
2nAA + nAa

2n
= p̃A

f̂ =
4nAAnaa − n2

Aa

(2nAA + nAa)(2naa + nAa)
= 1 − P̃Aa

2p̃Ap̃a
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Three-allele Case

With three alleles, there are six genotypes and 5 df. To use

Bailey’s method, would need five parameters: 2 allele frequencies

and 3 inbreeding coefficients:

P11 = p21 + f12p1p2 + f13p1p3

P12 = 2p1p2 − 2f12p1p2

P22 = p22 + f12p1p2 + f23p2p3

P13 = 2p1p3 − 2f13p1p3

P23 = 2p2p3 − 2f23p2p3

P33 = p23 + f13p1p3 + f23p2p3

We would generally prefer to have only one inbreeding coefficient

f . It is a difficult numerical problem to find the MLE for f .
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Method of Moments

An alternative to maximum likelihood estimation is the method

of moments (MoM) where observed values of statistics are set

equal to their expected values. In general, this does not lead to

unique estimates or to estimates with variances as small as those

for maximum likelihood. (Bailey’s method is for the special case

where the MLEs are also MoM estimates.)
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Method of Moments

For the inbreeding coefficient at loci with m alleles, two different

MoM estimates are

f̂W =

∑m
u=1(P̃uu − p̃2u) + 1

2n

∑m
u=1(p̃u − P̃uu)

∑m
u=1 p̃u(1 − p̃u)− 1

2n

∑m
u=1(p̃u − P̃uu)

≈
∑m
u=1(P̃uu − p̃2u)∑m
u=1 p̃u(1 − p̃u)

f̂H =
1

m− 1

m∑

u=1

(
P̃uu − p̃2u

p̃u

)

For loci with two alleles, m = 2, the two moment estimates are

equal to each other and to the maximum likelihood estimate:

f̂W = f̂H = 1 − P̃Aa
2p̃Ap̃a
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Expectations of Moment Estimates

The expected values of the estimated inbreeding coefficients can

be found by using the results

E(P̃uu) = Puu = p2u + fpu(1 − pu)

E(p̃u) = pu

E(p̃2u) = p2u +
1

2n
pu(1 − pu)(1 + f)

Then, approximating the expectation of a ratio by the ratio of

expectations:

E(f̂W ) ≈
f n−1

n (1 −∑m
u=1 p

2
u)

n−1
n (1 −∑m

u=1 p
2
u)

= f

E(f̂H) ≈ 1

m− 1

m∑

u=1


pu(1 − pu)(f − 1+f

2n )

pu




= f − 1 + f

2n
≈ f
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MLE for Recessive Alleles

Suppose allele a is recessive to allele A. If there is Hardy-

Weinberg equilibrium, the likelihood for the two phenotypes is

L(pa) = (1 − p2a)
n−naa(p2a)

naa

ln(L(pa) = (n− naa) ln(1 − p2a) + 2naa ln(pa)

where there are naa individuals of type aa and n− naa of type A.

Differentiating wrt pa:

∂ lnL(pa)

∂pa
= −2pa(n− naa)

1 − p2a
+

2naa

pa

Setting this to zero leads to an equation that can be solved

explicitly: p2a = naa/n. No need for iteration.
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EM Algorithm for Recessive Alleles

An alternative way of finding maximum likelihood estimates when

there are “missing data” involves Estimation of the missing data

and then Maximization of the likelihood. For a locus with allele A

dominant to a the missing information is the frequencies (1−pa)2
of AA, and 2pa(1−pa) of Aa genotypes. Only the joint frequency

(1 − p2a) of AA+Aa can be observed.

Estimate the missing genotype counts (assuming independence

of alleles):

nAA =
(1 − pa)2

1 − p2a
(n− naa) =

(1 − pa)(n − naa)

(1 + pa)

nAa =
2pa(1 − pa)

1 − p2a
(n− naa) =

2pa(n− naa)

(1 + pa)
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EM Algorithm for Recessive Alleles

Maximize the likelihood (using Bailey’s method):

p̂a =
nAa + 2naa

2n

=
1

2n

(
2pa(n− naa)

(1 + pa)
+ 2naa

)

=
2(npa + naa)

2n(1 + pa)

An initial estimate pa is put into the right hand side to give an

updated estimated p̂a on the left hand side. This is then put

back into the right hand side to give an iterative equation for pa.

This procedure also has explicit solution p̂a =
√

(naa/n).
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EM Algorithm for Two Loci

For two loci with two alleles each, the ten two-locus frequencies are:

Genotype Actual Expected Genotype Actual Expected

AB/AB PAB
AB p2AB AB/Ab PAB

Ab 2pABpAb

AB/aB PAB
aB 2pABpaB AB/ab PAB

ab 2pABpab

Ab/Ab PAb
Ab p2Ab Ab/aB PAb

aB 2pAbpaB

Ab/ab PAb
ab 2pAbpab aB/aB P aB

aB p2aB

aB/ab P aB
ab 2paBpab ab/ab P ab

ab p2ab
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EM Algorithm for Two Loci

Gamete frequencies are marginal sums:

pAB = PABAB +
1

2
(PABAb + PABaB + PABab )

pAb = PAbAb +
1

2
(PAbAB + PAbab + PAbaB)

paB = P aBaB +
1

2
(P aBAB + P aBab + P aBAb )

pab = P abab +
1

2
(P abAb + P abaB + P abAB)

Can arrange gamete frequencies as two-way table to show that

only one of them is unknown when the allele frequencies are

known:

pAB pAb pA
paB pab pa
pB pb 1
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EM Algorithm for Two Loci

The two double heterozygote frequencies PABab , PAbaB are “missing

data.”

Assume initial value of pAB and Estimate the missing counts:

nABab =
pABpab

pABpab + pAbpaB
nAaBb

nAbaB =
pAbpaB

pABpab + pAbpaB
nAaBb

and then Maximize the likelihood by setting

pAB =
1

2n

(
2nABAB + nABAb + nABaB + nABab

)
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Example

As an example, consider the data

BB Bb bb Total

AA nAABB = 5 nAABb = 3 nAAbb = 2 nAA = 10
Aa nAaBB = 3 nAaBb = 2 nAabb = 0 nAa = 5
aa naaBB = 0 naaBb = 0 naabb = 0 naa = 0

Total nBB = 8 nBb = 5 nbb = 2 n = 15

There is one unknown gamete count x = nAB = 2npAB for AB:

B b Total

A nAB = x nAb = 25 − x nA = 25
a naB = 21 − x nab = x− 16 na = 5

Total nB = 21 nb = 9 2n = 30

21 ≥ x ≥ 16
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Example

EM iterative equation:

x′ = 2nAABB + nAABb + nAaBB + nAB/ab

= 2nAABB + nAABb + nAaBB +
2pABpab

2pABpab + 2pAbpaB
nAaBb

= 10 + 3 + 3 + 2 × 2x(x − 16)

2x(x− 16) + 2(25 − x)(21 − x)

= 16 +
x(x− 16)

x(x− 16) + (25 − x)(21 − x)

Note that, if x = 16, then x′ = 16!
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Example

A good starting value would assume independence of A and B

alleles: x = 2n ∗ pA ∗ pB = (25 × 21/30) = 17.5.

Successive iterates are:

Iterate x value

0 17.5000
1 17.0000
2 16.6939
3 16.4893
4 16.3473
5 16.2472
... ...

The solution is actually x = 16. This particular example does

not have convergence to the MLE for some starting values for

x.
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ALLELIC ASSOCIATION
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Hardy-Weinberg Law

For a random mating population, expect that genotype frequen-

cies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

These are also the results of setting the inbreeding coefficient f

to zero.

For a locus with several alleles Ai:

PAiAi = (pAi)
2

PAiAj = 2pAipAj

59



Inference about HWE

Departures from HWE can be described by the within-population

inbreeding coefficient f . This has an MLE that can be written

as

f̂ =
4nAAnaa − n2

Aa

(2nAA + nAa)(2naa + nAa)

and we can use “Delta method” to find

E(f̂) = f

Var(f̂) ≈ 1

2npApa
(1 − f)[2pApa(1 − f)(1 − 2f) + f(2 − f)]

If f̂ is assumed to be normally distributed then, (f̂−f)/
√

Var(f̂) ∼
N(0,1). When H0 is true, the square of this quantity has a chi-

square distribution.
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Inference about HWE

Since Var(f̂) = 1/n when f = 0:

X2 =




f̂ − f√
Var(f̂)




2

=
f̂2

1/n

= nf̂2

is appropriate for testing H0 : f = 0. When H0 is true, X2 ∼ χ2
(1)

.

Reject HWE if X2 > 3.84.
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Significance level of HWE test
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Probability=0.05

X^2=3.84

The area under the chi-square curve to the right of X2 = 3.84

is the probability of rejecting HWE when HWE is true. This is

the significance level of the test.
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Goodness-of-fit Test

An alternative, but equivalent, test is the goodness-of-fit test.

Genotype Observed Expected (Obs.−Exp.)2

Exp.

AA nAA np̃2A np̃2af̂
2

Aa nAa 2np̃Ap̃a 2np̃Ap̃af̂
2

aa naa np̃2a np̃2Af̂
2

The test statistic is

X2 =
∑ (Obs.− Exp)2

Exp.
= nf̂2
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Goodness-of-fit Test

Does a sample of 6 AA, 3 Aa, 1 aa support Hardy-Weinberg?

First need to estimate allele frequencies:

p̃A = P̃AA +
1

2
P̃Aa = 0.75

p̃a = P̃aa +
1

2
P̃Aa = 0.25

Then form “expected” counts:

nAA = n(p̃A)2 = 5.625

nAa = 2np̃Ap̃a = 3.750

naa = n(p̃a)
2 = 0.625
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Goodness-of-fit Test

Perform the chi-square test:

Genotype Observed Expected (Obs.− Exp.)2/Exp.

AA 6 5.625 0.025

Aa 3 3.750 0.150

aa 1 0.625 0.225

Total 10 10 0.400

Note that f̂ = 1 − 0.3/(2 × 0.75 × 0.25) = 0.2 and X2 = nf̂2.
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Sample size determination

Although Fisher’s exact test (below) is generally preferred for

small samples, the normal or chi-square test has the advantage

of simplifying power calculations.

Assuming that f̂ is normally distributed, form the test statistic

z =
f̂ − f√
Var(f̂)

Under the null hypothesis H0 : f = 0 this is z0 =
√
nf̂ . For a two-

sided test, reject at the α% level if z0 ≤ zα/2 or z0 ≥ z1−α/2 =

−zα/2. For a 5% test, reject if z0 ≤ −1.96 or z0 ≥ 1.96.
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Sample size determination

If the hypothesis is false, the normal test statistic is

z =
f̂ − f√
Var(f̂)

≈
√
n(f̂ − f) = z0 −

√
nf

(using the null-hypothesis value of the variance in the denomina-

tor). Suppose f̂ > 0 so rejection occurs when z0 ≥ −zα/2. With

this rejection region, the probability of rejecting is ≥ (1 − β) if

the rejection region amounts to z = z0 −√
nf ≥ zβ. i.e.

−zα/2 −
√
nf = zβ

nf2 = (zα/2 + zβ)
2

For 5% significance level −zα/2 = 1.96, and for 90% power zβ =

−1.28 so we need nf2 ≥ (−1.96 − 1.28)2 = 10.5. i.e. n has to

be over 100,000 when f = 0.01.
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Sample size determination

More directly, when the Hardy-Weinberg hypothesis is not true,

the test statistic nf̂2 has a non-central chi-square distribution

with one degree of freedom (df) and non-centrality parameter

λ = nf2. To reach 90% power with a 5% significance level, for

example, it is necessary that λ ≥ 10.5.

In this one-df case, the non-centrality value follows from per-

centiles of the standard normal distribution. If zx is the xth

percentile of the standard normal, than for significance level α

and power 1 − β, λ = (zα/2 + zβ)
2.
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Power of HWE test
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The area under the non-central chi-square curve to the right

of X2 = 3.84 is the probability of rejecting HWE when HWE

is false. This is the power of the test. In this plot, the non-

centrality parameter is λ = 10.5.
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Significance Levels and p-values

The significance level α of a test is the probability of a false

rejection. It is specified by the user, and along with the null

hypothesis, it determines the rejection region. The specified, or

“nominal” value may not be achieved for an actual test.

Once the test has been conducted on a data set, the probability

of the observed test statistic, or a more extreme value, if the

null hypothesis is true is the p-value. The chi-square and normal

tests shown above give approximate p-values because they use a

continuous distribution for discrete data.

An alternative class of tests, “exact tests,” use a discrete distri-

bution for discrete data and provide accurate p-values. It may

be difficult to construct an exact test with a particular nominal

significance level.
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Exact HWE Test

The preferred test for HWE is an exact one. The test rests

on the assumption that individuals are sampled randomly from

a population so that genotype counts have a multinomial distri-

bution:

Pr(nAA, nAa, naa) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

This equation is always true, and when there is HWE (PAA = p2A
etc.) there is the additional result that the allele counts have a

binomial distribution:

Pr(nA, na) =
(2n)!

nA!na!
(pA)nA(pa)

na
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Exact HWE Test

Putting these together gives the conditional probability

Pr(nAA, nAa, naa|nA, na,HWE) =
Pr(nAA, nAa, naa, nA, na|HWE)

Pr(nA, na|HWE)

=

n!
nAA!nAa!naa!

(p2A)nAA(2pApa)
nAa(p2a)

naa

(2n)!
nA!na!

(pA)nA(pa)na

=
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this quantity, the prob-

ability of the genotypic array conditional on the allelic array under

HWE, is among the smallest of its possible values.
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Exact HWE Test

For convenience, write the probability of the genotypic array,

conditional on the allelic array and HWE, as Pr(nAa|n, nA). Re-

ject the HWE hypothesis for a data set if this value is among

the smallest probabilities.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays with those allele counts:

AA Aa aa Pr(nAa|n, nA)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99
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Exact HWE Test

The probability of the data (nAA = 1, nAa = 0, naa = 49), con-

ditional on the allele frequencies and on HWE, is 1/99 = 0.01

which is not nearly as small as the value suggested by the chi-

square statistic of 50. (Because P̃Aa = 0, f̂ = 1, X2 = n.)

Traditionally, the p-value is the (conditional) probability of the

data plus the probabilities of all the less-probable datasets. The

probabilities are all calculated assuming HWE is true. More re-

cently (Graffelman and Moreno, Statistical Applications in Ge-

netics and Molecular Biology 2013; 12:433-448) it has been

shown that the test has a significance value closer to the nomi-

nal value if the p-value is half the probability of the data plus

the probabilities of all datasets that are less probable under

the null hypothesis. For the previous slide then, the p-value

is 1/198=0.005. A 5% exact significance level is not achievable.
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Mid p-value

For this example:

AA Aa aa Pr(nAa|n, nA) p−value mid p−value

1 0 49 50!
1!0!49!

202!98!
100! = 1

99 0.0101 0.0051

0 2 48 50!
0!2!48!

222!98!
100! = 98

99 1.0000 0.5051

The average mid-p value is exactly 0.5, as for a uniform distri-

bution on [0,1].
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Mid-p values
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Example

For a sample of size n = 100 with minor allele count of 14, there

are 8 sets of possible genotype counts:

Exact Chi-square

nAA nAa naa Prob. Mid p-value X2 p-value

93 0 7 0.0000 0.0000∗ 100.00 0.0000∗
92 2 6 0.0000 0.0000∗ 71.64 0.0000∗
91 4 5 0.0000 0.0000∗ 47.99 0.0000∗
90 6 4 0.0002 0.0001∗ 29.07 0.0000∗
89 8 3 0.0051 0.0028∗ 14.87 0.0001∗
88 10 2 0.0602 0.0354∗ 5.38 0.0204∗
87 12 1 0.3209 0.2260 0.61 0.4348
86 14 0 0.6136 0.6932 0.57 0.4503

So, for a nominal 5% significance level, the actual significance

level is 0.0204 for a chi-square test that rejects when nAa ≤ 10

and is 0.0354 for an exact test that also rejects when nAa ≤ 10.
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Effect of Minor Allele Frequency

The minor allele frequency (MAF) in the previous example was

14/200 = 0.07. How does the exact test behave with other MAF

values?

In particular, what is the size of the actual significance level

when the nominal value is α = 0.05? In other words, we decide

to reject HWE for any sample with a p-value of 0.05 or less and

choose the rejection region accordingly, what are the probabilities

of rejecting? We would hope that the empirical significance level

would be close to the nominal value, but we find that it may not

be.
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na = 16 minor alleles

When the minor allele frequency is 0.08, for a nominal 5% signif-

icance level, the actual significance level is 0.0070 for an exact

test that rejects when nAa ≤ 10.

nAA nAa naa Pr(nAa|na) Mid p−value

92 0 8 .0000 .0000
91 2 7 .0000 .0000
90 4 6 .0000 .0000
89 6 5 .0000 .0000
88 8 4 .0008 .0004
87 10 3 .0123 .0070
86 12 2 .0974 .0618
85 14 1 .3681 .2946
84 16 0 .5215 .7392
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na = 15 minor alleles

When the minor allele frequency is 0.075, for a nominal 5%

significance level, the actual significance level is 0.0474 for an

exact test that rejects when nAa ≤ 11.

nAA nAa naa Pr(nAa|na) Mid p−value

92 1 7 .0000 .0000
91 3 6 .0000 .0000
90 5 5 .0000 .0000
89 7 4 .0004 .0002
88 9 3 .0081 .0045
87 11 2 .0776 .0474
86 13 1 .3464 .2594
85 15 0 .5675 .7163
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na = 13 minor alleles

When the minor allele frequency is 0.065, for a nominal 5%

significance level, the actual significance level is 0.0483 for an

exact test that rejects when nAa ≤ 9.

nAA nAa naa Pr(nAa|na) Mid p−value

93 1 6 .0000 .0000
92 3 5 .0000 .0000
91 5 4 .0001 .0000
90 7 3 .0030 .0016
89 9 2 .0452 .0257
88 11 1 .2923 .1945
87 13 0 .6595 .6704
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na = 12 minor alleles

When the minor allele frequency is 0.06, for a nominal 5% signif-

icance level, the actual significance level is 0.0344 for an exact

test that rejects when nAa ≤ 8.

nAA nAa naa Pr(nAa|na) Mid p−value

94 0 6 .0000 .0000
93 2 5 .0000 .0000
92 4 4 .0000 .0000
91 6 3 .0017 .0009
90 8 2 .0327 .0181
89 10 1 .2612 .1650
88 12 0 .7045 .6479
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Graffelman and Moreno, 2013
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Power of Exact Test

If there is not HWE:

Pr(nAa|nA, na) =
n!

nAA!nAa!naa!
(PAA)nAA(PAa)

nAa(Paa)
naa

=
n!

nAA!nAa!naa!
(PAA)

nA−nAa
2 (PAa)

nAa(Paa)
na−nAa

2

=
n!

nAA!nAa!naa!
(
√
PAA)nA(

√
Paa)

na

(
PAa√
PAAPaa

)nAa

=
CψnAa

nAA!nAa!naa!

where ψ = PAa/(
√
PAAPaa) measures the departure from HWE.

The constant C makes the probabilities sum to one over all

possible nAa values: C = 1/[
∑
nAa

ψnAa/(nAA!nAa!naa!)].
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Power of Exact Test

Once the rejection region has been determined, the power of the

test (the probability of rejecting) can be found by adding these

probabilities for all sets of genotype counts in the region. HWE

corresponds to ψ = 2. What is the power to detect HWE when

ψ = 1, the sample size is n = 10 and the sample allele counts

are nA = 15, na = 5. Note that C = 1/[1/(5!5!0!)+ 1/(6!3!1!)+

1/(7!1!2!)].

Pr(nAa|nA, n)
nAA nAa naa ψ = 2 ψ = 1

5 5 0 0.520 0.262
6 3 1 0.433 0.364
7 1 2 0.047 0.374

The ψ = 2 column (i.e. HWE) shows that the rejection region is

nAa = 1. The ψ = 1 column (not HWE) shows that the power

(the probability nAa = 1 when ψ = 1) is 37.4%.
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Power when na = 16

The rejection region of nAa ≤ 10 is determined from null hypoth-

esis, and the power is determined from the multinomial distribu-

tion. Rejection is unlikely if f < 0.

Pr(nAa|na = 16, n = 100)
ψ .250 .500 1.000 2.000 4.000 8.000 16.000

nAa f .631 .398 .157 .000 −.062 −.081 −.085

0 .0042 .0000 .0000 .0000 .0000 .0000 .0000
2 .0956 .0026 .0000 .0000 .0000 .0000 .0000
4 .3172 .0349 .0003 .0000 .0000 .0000 .0000
6 .3568 .1569 .0056 .0000 .0000 .0000 .0000
8 .1772 .3116 .0441 .0008 .0000 .0000 .0000

10 .0433 .3047 .1725 .0123 .0003 .0000 .0000

12 .0054 .1506 .3411 .0974 .0098 .0007 .0000
14 .0003 .0356 .3223 .3681 .1485 .0422 .0109
16 .0000 .0032 .1142 .5214 .8414 .9571 .9890

Power .9943 .8107 .2225 .0131 .0003 .0000 .0000
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Graffelman and Moreno, 2013

θ in this plot is ψ2.
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Multiple Testing

When multiple tests are performed, each at significance level α,

a proportion α of the tests are expected to cause rejection even

if all the hypotheses are true.

Bonferroni correction makes the overall (experimentwise) signif-

icance level equal to α by adjusting the level for each individual

test to α′. If α is the probability that at least one of the L tests

causes rejection, it is also 1 minus the probability that none of

the tests causes rejection:

α = 1 − (1 − α′)L

≈ Lα′

provided the L tests are independent.

If L = 15, need α′ = 0.0033 in order for α = 0.05.
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Combining p-values

There is also the issue that if the same hypothesis is tested L

times and just fails to cause rejection each time, there is some

overall evidence against the hypothesis.

Suppose that tests have been conducted for each of L hypotheses

Hi, i = 1,2, . . . , L. For each test the p-value pi is calculated: if

Hi is true, this is the probability of observing a test statistic

as extreme as or more extreme than the observed value in the

direction of rejection.

Methods for combining p-values rest on p having a uniform dis-

tribution when the hypothesis is true.
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QQ-Plots

A convenient approach to considering multiple-testing issues is

to use QQ-plots. If all the hypotheses being tested are true then

the resulting p-values are uniformly distributed between 0 and 1.

For a set of n tests, we would expect to see p values at 1/(n+

1),2/(n+1), . . . , n/(n+1). We plot the observed p-values against

these expected values: the smallest against 1/(n + 1) and the

largest against n/(n+ 1). It is more convenient to transform to

− log10(p) to accentuate the extremely small p values. The point

at which the observed values start departing from the expected

values is an indication of “significant” values in a way that takes

into account the number of tests.
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QQ-Plots

The results for 9208 SNPs on human chromosome 1 for the

AMD controls. Bonferroni would suggest rejecting HWE when

p ≤ 0.05/9205 = 5.4 × 10−6 or − log10(p) ≥ 5.3.
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QQ-Plots

The same set of results as on the previous slide except now that

any SNP with any missing data was excluded. Now 7446 SNPs

and Bonferroni would reject if − log10(p) ≥ 5.2. All five outliers

had zero counts for the minor allele homozygote and at least 32

heterozygotes in a sample of size 50.
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HWE Testing for X-linked Markers

Usual procedure is to ignore males and test for HWE with male

data only.

If there is HWE, the allele frequencies at X-linked markers are

the same in males and females.

Different allele frequencies for males and females suggest a de-

parture from HWE.
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HWE Testing for X-linked Markers

Sample sizes: nm males, nf females, n = nm + nf .

Male allele counts: mA,mB.

Female genotype counts: fAA, fAB, fBB.

Total sample allele counts: nA, nB.

Probability of data, under HWE for females and equal male and

female allele frequencies:

Pr(mA, fAB|n, nA, nm) =
nA!nB!nm!nf !2

fAB

mA!mB!fAA!fAB!fBB!

An exact test for the joint hypotheses of female HWE and equal

male and female allele frequencies was constructed from this

probability, as described in version 1.5.6 of the HardyWeinberg

package.
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Graffelman and Weir, 2016
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KING-robust Kinship Estimates

The influence of all members of a sample is eliminated by the

KING-robust∗ estimates for pairs of individuals:

θ̂Kjj′ =
N(AB,AB)jj′ − 2N(AA,BB)jj′

N(AB)j +N(AB)j′

where the N ’s are the numbers of loci with the indicated

genotypes for individuals j and individual pairs j, j′. The

expected values of these estimates are

E(θ̂Kjj′) =
θjj′ − 1

2(Fj + Fj′)

1 − 1
2(Fj + Fj′)

These estimates for a pair of individuals are relative to the

average inbreeding coefficients of those individuals.

[∗ Manichaikul et al., Bioinformatics 26:2867-2873, 2010.]
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Heredity 116:558–568.



Graffelman and Weir, 2016

Scatter plots of P-values in original and -log10 scale for exact test for HWE

using females only and using both males and females for 4158 SNPs at the X

chromosome of the venous thrombosis database. The horizontal and vertical

black lines correspond to a significance level of 5%. Points colored according

to their significance level in Fisher’s test for equality of allele frequencies

(range 0-1 from red to green).
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Linkage Disequilibrium

This term reserved for association between pairs of alleles – one

at each of two loci.

When gametic data are available, could refer to gametic disequi-

librium.

When genotypic data are available, but gametes can be inferred,

can make inferences about gametic and non-gametic pairs of

alleles.

When genotypic data are available, but gametes cannot be in-

ferred, can work with composite measures of disequilibrium.
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Linkage Disequilibrium

For alleles A and B are two loci, the usual measure of linkage

disequilibrium is

DAB = PAB − pApB

Whether or not this is zero does not provide a direct state-

ment about linkage between the two loci. For example, consider

marker YFM and disease DTD:

A N Total

+ 1 24 25
YFM

− 0 75 75

Total 1 99 100

DA+ =
1

100
− 1

100

25

100
= 0.0075, (maximum possible value)
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Gametic Linkage Disequilibrium

For loci A, B define indicator variables x, y that take the value

1 for allele A,B and 0 for any other alleles. If gametes within

individuals are indexed by j, j = 1,2 then for expectations over

samples from the same population

E(xj) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x2j ) = pA, j = 1,2 , E(y2j ) = pB j = 1,2

E(x1x2) = PAA , E(y1y2) = PBB

E(x1y1) = PAB , E(x2y2) = PAB

The variances of xj, yj are pA(1− pA), pB(1− pB) for j = 1,2 and

the covariance and correlation coefficients for x and y are

Cov(x1, y1) = Cov(x2, y2) = PAB − pApB = DAB

Corr(x1, y1) = Corr(x2, y2) = DAB/
√

[pA(1 − pA)pB(1 − pB)] = ρAB
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Estimation of LD

With random sampling of gametes, gamete counts have a multi-

nomial distribution:

Pr(nAB, nAb, naB, nab) =
n!(PAB)nAB(PAb)

nAb(PaB)naB(Pab)
nab

nAB!nAb!naB!nab!

=
n!(pApB +DAB)nAB(pApb −DAB)nAb

nAB!nAb!naB!nab!

× (papB −DAB)naB(papb +DAB)nab

and this provides the maximum likelihood estimates of DAB and

ρAB:

D̂AB =
nAB
n

− nAB + nAb
n

× nAB + naB
n

= P̃AB − p̃Ap̃B

ρ̂AB = rAB =
D̂AB√
p̃Ap̃ap̃Bp̃b
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Testing LD

Write MLE of DAB as

D̂AB =
nABnab − nAbnaB

(nAB + nAb)(naB + nab)(nAB + naB)(nAb + nab)

and use “Delta method” to find

Var(D̂AB) ≈ 1

n
[pA(1 − pA)pB(1 − pB)

+ (1 − 2pA)(1 − 2pB)DAB −D2
AB]

When DAB = 0, Var(D̂AB) = pA(1 − pA)pB(1 − pB)/n.

If D̂AB is assumed to be normally distributed then

X2
AB =

D̂2
AB

Var(D̂AB)
= nρ̂2AB = nr2AB

is appropriate for testing H0 : DAB = 0. When H0 is true,

X2
AB ∼ χ2

(1)
. Note the analogy to the test statistic for Hardy-

Weinberg equilibrium: X2 = nf̂2.
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Goodness-of-fit Test

The test statistic for the 2 × 2 table

nAB nAb nA
naB nab na
nB nb n

has the value

X2 =
n(nABnab − nAbnaB)2

nAnanBnb

For DTD/YFM example, X2 = 3.03. This is not statistically

significant, even though disequilibrium was maximal.
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Composite Disequilibrium

When genotypes are scored, it is often not possible to distinguish

between the two double heterozygotes AB/ab and Ab/aB, so that

gametic frequencies cannot be inferred.

Under the assumption of random mating, in which genotypic fre-

quencies are assumed to be the products of gametic frequencies,

it is possible to estimate gametic frequencies with the EM algo-

rithm. To avoid making the random-mating assumption, how-

ever, it is possible to work with a set of composite disequilibrium

coefficients.
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Composite Disequilibrium

Although the separate digenic frequencies pAB (one gamete) and

pA,B (two gametes) cannot be observed, their sum can be since

pAB = PABAB +
1

2
PABAb +

1

2
PABaB +

1

2
PABab

pA,B = PABAB +
1

2
PABAb +

1

2
PABaB +

1

2
PAbaB

pAB + pA,B = 2PABAB + PABAb + PABaB +
PABab + PAbaB

2

Digenic disequilibrium is measured with a composite measure

∆AB defined as

∆AB = pAB + pA,B − 2pApB

= DAB +DA,B

which is the sum of the gametic (DAB = pAB−pApB) and nonga-

metic (DA,B = pA,B − pApB) coefficients.
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Composite Disequilibrium

If the counts of the nine genotypic classes are

BB Bb bb
AA n1 n2 n3
Aa n4 n5 n6
aa n7 n8 n9

the count for pairs of alleles in an individual being A and B,

whether received from the same or different parents, is

nAB = 2n1 + n2 + n4 +
1

2
n5

and the MLE for ∆ is

∆̂AB =
1

n
nAB − 2p̃Ap̃B
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Composite Linkage Disequilibrium

For loci A, B define indicator variables x, y that take the value

1 for allele A,B and 0 for any other alleles. If gametes within

individuals are indexed by j, j = 1,2 then for expectations over

samples from the same population

E(xj) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x2j ) = pA, j = 1,2 , E(yj) = pB j = 1,2

E(x1x2) = PAA , E(y1y2) = PBB

E(x1y1) = PAB , E(x2y2) = PAB

E(x1y2) = PA,B , E(x2y1) = PA,B

Write

DA = PAA − p2A , DB = PBB − p2B

DAB = PAB − pApB , DA,B = PA,B − pApB

∆AB = DAB +DA,B
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Composite Linkage Disequilibrium

Now set X = x1 + x2, Y = y1 + y2 to get

E(X) = 2pA , E(Y ) = 2pB

E(X2) = 2(pA + PAA) , E(Y 2) = 2(pB + PBB)

Var(X) = 2pA(1 − pA)(1 + fA) , Var(Y ) = 2pB(1 − pB)(1 + fB)

and

E(XY ) = 2(PAB + PA,B)

Cov(X,Y ) = 2(PAB − pApB) + 2(PA,B − pApB)

= 2(DAB +DA,B) = 2∆AB

Corr(X,Y ) =
∆AB√

pA(1 − pA)(1 + fA)pB(1 − pB)(1 + fB)
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Composite Linkage Disequilibrium

∆̂AB = nAB/n− 2p̃Ap̃B

where

nAB = 2nAABB + nAABb + nAaBB +
1

2
nAaBb

This does not require phased data.

By analogy to the gametic linkage disequilibrium result, a test

statistic for ∆AB = 0 is

X2
AB =

n∆̂2
AB

p̃A(1 − p̃A)(1 + f̂A)p̃B(1 − p̃B)(1 + f̂B)

This is assumed to be approximately χ2
(1)

under the null hypoth-

esis.
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Example

For the data on slide 74:

BB Bb bb Total

AA nAABB = 5 nAABb = 3 nAAbb = 2 nAA = 10
Aa nAaBB = 3 nAaBb = 2 nAabb = 0 nAa = 5
aa naaBB = 0 naaBb = 0 naabb = 0 naa = 0

Total nBB = 8 nBb = 5 nbb = 2 n = 15

nAB = 2 × 5 + 3 + 3 +
1

2
(2) = 17

nA = 25, p̃A = 5/6

nB = 21, p̃B = 7/10
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Example

The estimated composite disequilibrium coefficient is

∆̂AB =
17

15
− 2

25

30

21

30
= − 1

30
= −0.033

Previous work on EM algorithm estimated pAB as 16/30 so

D̂AB =
16

30
− 25

30

21

30
= − 1

20
= −0.050
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LD vs Composite LD Estimates
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A comparison of gametic LD estimates from the EM algorithm

assuming HWE vs composite LD with no HWE assumption.
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Reality Check: HWE for AMD Data

SNP AA AB BB

rs10492941
Case 0 17 79
Control 1 5 44

rs380390
Case 50 35 11
Control 6 25 19
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HWE for AMD Data

f̂ = 1 − P̃AB
2p̃Ap̃B

rs10492941 Control n =
nA = (2nAA + nAB)/(2n) =
nB = (2nBB + nAB)/(2n) =

f̂ = 1 − (2nnAB)/(nAnB) =

X2 = nf̂2 =

rs380390 Conrol n =
nA = (2nAA + nAB)/(2n) =
nB = (2nBB + nAB)/(2n) =
f̂ = 1 − (2nnAB)/(nAnB) =

X2 = nf̂2 =

114



POPULATION STRUCTURE
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Population Data

Individuals from several populations are scored at a series of

marker loci. At each locus, an individual has two alleles, one

from each parent, and these can be identified. For example, at

locus D3S1358:

Allele AFC NSC QLC SAC TAC VIA WAB
11 .000 .001 .002 .001 .000 .000 .000
12 .004 .003 .001 .001 .000 .000 .010
13 .008 .003 .002 .002 .000 .000 .001
14 .123 .098 .159 .125 .152 .008 .075
15 .261 .264 .365 .252 .244 .385 .353
16 .250 .270 .250 .265 .241 .277 .242
17 .187 .198 .123 .202 .197 .246 .190
18 .154 .152 .091 .144 .157 .077 .122
19 .012 .011 .006 .007 .010 .008 .007
20 .002 .000 .000 .000 .000 .000 .000
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Questions of Interest

• How much genetic variation is there? (animal conservation)

• How much migration (gene flow) is there between popula-

tions? (molecular ecology)

• How does the genetic structure of populations affect tests for

linkage between genetic markers and human disease genes?

(human genetics)

• How should the evidence of matching marker profiles be

quantified? (forensic science)

• What is the evolutionary history of the populations sampled?

(evolutionary genetics)
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Statistical Analysis

Possible to approach these data from purely statistical viewpoint.

Could test for differences in allele frequencies among populations.

Could use various multivariate techniques to cluster populations.

These analyses may not answer the biological questions.
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The Genetic Problem

• How do we describe the genetic similarity between popula-

tions or between individuals?

• Do our methods need changing now that we have detailed

sequence data?

• What do we do with estimated genetic similarities?
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Identity by descent

We describe relatedness and population structure with the con-

cept of identity by descent (ibd): two alleles at a locus are ibd

if they have both descended from the same allele at some time

in the past.

We write θ for the probability of two alleles being ibd.
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Half siblings

For example, for half siblings X,Y with a common parent V :

V(e,f)

X(a,b) Y(c,d)

@
@

@
@

@
@R

a
�

�
�

�
�

�	

b
@

@
@

@
@

@R

c
�

�
�

�
�

�	

d

The alleles b, c received by X,Y have a 50% chance of both being

a copy of an allele, e or f , carried by parent V and so being ibd.
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Coancestry of Half sibs

The coancestry coefficient of two individuals is the probability a

random allele from one is ibd to a random allele from the other.

A random allele from X is a or b, each with probability of 0.5,

and random allele from Y is c or d, each with probability of 0.5.

Only one pair, b, c can be ibd and that event also has probability

0.5. Setting these out in a 2 × 2 table:

Y
0.5 0.5

Pr(ibd) c d
X 0.5 a 0 0

0.5 b 0.5 0

The coancestry of X,Y is θXY = 0.5 × 0.5 × 0.5 = 0.125.
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Actual vs Predicted Coancestry

For any particular gene, the two alleles received by half siblings

from their common parent either are, or are not, ibd. The “ac-

tual” kinship θ̈ is either 1 or 0, even though the predicted value is

θ = 0.5. This plot shows the actual kinship coefficients, averaged

over 10,000 loci:

Half sibling kinship

Theta

F
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q
u
e
n
c
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0.46 0.48 0.50 0.52 0.54

0
2
0
0

4
0
0

6
0
0

8
0
0
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Path Counting

The inbreeding coefficient F of an individual is the probability

that its two alleles are ibd: i.e. that an allele chosen randomly

from one parent is ibd to an allele chosen randomly from the

other parent.

If the parents X,Y of an individual I have ancestor A in common,

and if there are n individuals (including X,Y, I) in the path linking

the parents through A, then the inbreeding coefficient of I, or

the coancestry of X and Y , is

FI = θXY =

(
1

2

)n
(1 + FA)

If there are several ancestors, this expression is summed over all

the ancestors.
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First cousins

A B C D E G
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The common ancestors of cousins X and Y are C and D. The

paths linking X,Y to their common ancestors are XJCKY and

XJDKY and these each have n = 5 individuals. Therefore

θXY =

(
1

2

)5

+

(
1

2

)5

=
1

16

Actual kinships will vary around this expected value.
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“Relative to”

“There is no absolute measure of ibd: ibd is always relative to

some reference population.” [Thompson, Genetics, 2013.]

Imagine a large group of first cousins, who pair randomly and

have children. Are the children inbred?

Within that group, the parents are not related and because they

pair randomly the children are not inbred.

From the perspective of an observer from outside the group,

however, the parents are related with kinships of θ = 1/16 and

their children are inbred with F = 1/16. These values are relative

to those in the rest of the population.
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Population Structure

The coancestry coefficient for two individuals is the probability

that two alleles, one taken randomly from each individual, are

ibd.

We can extend this idea to the coancestry for a population: the

probability that two alleles taken randomly from the population

are ibd. If the population is in Hardy-Weinberg equilibrium, we

can draw alleles randomly without regard to which individuals in

which they are carried.

A further extension is when two alleles are drawn randomly, one

from one population and one from another population.
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Several Populations

Population 1

B
B

B
B

B
BBM

�
�
�
�
�
���

θ1

. . .

HHHHHHHHHY

���������*

θ1r

Population r

B
B

B
B

B
BBM

�
�
�
�
�
���

θr

θ’s are statements about pairs of alleles: the probabilities the

pairs are identical by descent.

θW is the average of the within-population coancestries θi.

θB is the average of the population-pair coancestries θii
′
, i 6= i′.
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Population Structure

The usual measure of genetic population structure is written as

FST . We can define this quantity for a set of populations as

FST =
θW − θB

1 − θB

and we might prefer to write it as βW to avoid confusion with

the usual definitions that refer to allele frequencies.

We also have such a quantity for each population:

βi =
θi − θB

1 − θB
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Genetic Drift

If a population has a constant size N diploid individuals, and there

are no evolutionary forces such as mutation or migration, then

with completely random mating two alleles in a generation have

a probability 1/2N of coming from the same allele in the previous

generation and so are ibd. With probability (1−1/2N) they come

from different alleles in the previous generation and are ibd with

probability equal to the coancestry in that generation:

θ(t+ 1) =
1

2N
+

(
1 − 1

2N

)
θ(t)

If the founding population has coancestry θ(0), then t genera-

tions later

θ(t) = 1 − [1 − θ(0)]

(
2N − 1

2N

)t

and this tends to 1 as t becomes large.
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Genetic Drift and Mutation

If the loss of genetic variation is opposed by mutation introducing

variation, then θ has a value between 0 and 1. If every mutation

gives a new allelic type (“infinite alleles mutation”) then the

transition equation is changed to

θ(t+ 1) = (1 − µ)2
[

1

2N
+

(
1 − 1

2N

)
θ(t)

]

and the equilibrium coancestry is

θ =
1

1 + 4Nµ
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Genetic Drift, Mutation and Migration

Now suppose there are two populations, each undergoing drift

and mutation but with migration between them. If a fraction mi

of the alleles forming a generation in population i come from the

other population in the previous generation, then

θ1(t+ 1) = (1 − µ)2
[
(1 −m1)

2φ1(t) + 2m1(1 −m1)θ
12(t) +m2

1φ
2(t)

]

θ2(t+ 1) = (1 − µ)2
[
(1 −m2)

2φ2(t) + 2m2(1 −m2)θ
12(t) +m2

2φ
1(t)

]

θ12(t+ 1) = (1 − µ)2
[
(1 −m1)m2φ

1(t) + [(1 −m1)(1 −m2) +m1m2]θ
12(t)

+m1(1 −m2)φ
2(t)

]

where φi(t) = 1/(2Ni) + (2Ni − 1)θi(t)/(2Ni), i = 1,2.

A consequence of these equations is that θ1(t)+ θ2(t) ≥ 2θ12(t),

or that θW ≥ θB and so βW = FST is positive. However, it is not

necessary that each of θ1, θ2 exceeds θ12.
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Drift Only
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Allele Frequencies

If a sample of ni alleles from population i has niu copies of allele

u, sample allele frequencies are p̃iu = niu/ni and

niu ∼ Binomial (ni, p̈iu)

The binomial distribution describes variation among replicate

samples from the same population. “Statistical sampling.”

A wide class of evolutionary models leads to the beta distribution

describing variation of actual allele frequencies in a population

among replicates of the evolutionary process from a founding

population:

p̈iu ∼ Beta

(
(1 − θi)pu

θi
,
(1 − θi)(1 − pu)

θi

)

“Genetic sampling.”
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Several Populations

Population 1

p̈1

?

p̃1

. . .

Population r

p̈r

?

p̃r
p
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Total Mean and Variance

Taking expectations over replicate samples from a population

and over replicates of the population:

E(p̃i) = p

Var(p̃i) = p(1 − p)

(
θi +

1 − θi
ni

)
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Allelic Matching

The θ’s refer to identity by descent (ibd), whereas what we see

is identity in state (ibs).

We work with the proportions M̃ of pairs of alleles, within or be-

tween individuals, or within or between populations, that match

(i.e. are ibs).

We have a genetic model that says the expected value of an M̃

is θ+ (1 − θ)H where θ refers to the same set of alleles as does

M̃ and H is the sum of squares of allele frequencies in the whole

population from which the observations are drawn.
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Matching Proportions for Individuals

Two distinct alleles from individual j in population i

M̃ i
j = 1

2

∑
uX

i
ju(X

i
ju − 1), E(M̃ i

j) = H + (1 −H)F ij

Average over individuals in population i

M̃ i
W = 1

ni

∑ni
j=1 M̃

i
j, E(M̃ i

W ) = H + (1 −H)F iW

One allele from each of individuals j, j′ in population i†

M̃ i
jj′ =

1
4

∑
uX

i
juX

i
j′u, E(M̃ i

jj′) = H + (1 −H)θijj′

Average over pairs of individuals in population i

M̃ i
B = 1

ni(ni−1)

∑ni
j=1

∑ni
j′=1,j′ 6=j M̃

i
jj′, E(M̃ i

B) = H + (1 −H)θiB
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Matching Proportions for Populations

Two distinct alleles from population i

M̃ i = 1
2ni(2ni−1)

(
2
∑ni
j=1 M̃

i
j + 4

∑ni
j=1

∑ni
j′=1,j′ 6=j

M̃ i
jj′
)

E(M̃ i) = H + (1 −H)

(
F iW

2ni−1 +
(2ni−2)θiB

2ni−1

)

or M̃ i = 2ni
2ni−1

∑
u p̃

2
iu − 1

2ni−1, E(M̃ i) = H + (1 −H)θi

Average over populations

M̃W = 1
r

∑r
i=1 M̃

i, E(M̃W = H + (1 −H)θW

One allele from each of populations i, i′

M̃ ii′ =
∑
u p̃iup̃i′u, E(M̃ ii′ = H + (1 −H)θii

′

Average over pairs of populations

M̃B = 1
r(r−1)

∑r
i=1

∑r
i′=1,i′ 6=i M̃

ii′, E(M̃B) = H + (1 −H)θB
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Matching Proportions for Individuals

For individuals i with genotypes AA,AB,BB the allelic matching

proportions M̃i are 1,0,1 respectively.

For pairs of individuals i, i′, each with genotypes AA,AB,BB, the

matching proportions M̃ii′ are

i′
M̃ii′ AA AB BB
AA 1 0.5 0

i AB 0.5 0.5 0.5
BB 0 0.5 1
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Notation

For SNPs:

M̃ i
j = (Xi

j − 1)2

M̃ i
jj′ =

1

2
[1 + (Xi

j − 1)(Xi
j′ − 1)]

Averages:

F iW =
1

ni

ni∑

j=1

F ij

θiB =
1

ni(ni − 1)

ni∑

j=1

ni∑

j′=1,j′ 6=j

θijj′

θW =
1

r

r∑

i=1

θi

θB =
1

r(r − 1)

r∑

i=1

2∑

i′=1,i′ 6=i

θii
′
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Estimates for Individuals

Two distinct alleles from individual j in population i

β̂ij =
M̃ i
j−M̃ i

B

1−M̃ i
B

, E(β̂ij) = βij =
F ij−θiB
1−θiB

Average over individuals in population i

β̂iW =
M̃ i
W−M̃ i

B
1−M̃ i

B

, E(β̂iW ) = F iIS = βiW =
F iW−θiB
1−θiB

One allele from each of individuals j, j′ in population i

β̂ijj′ =
M̃ i
jj′−M̃

i
B

1−M̃ i
B

, E(β̂ijj′) = βijj′ =
θi
jj′−θ

i
B

1−θiB

Average over pairs of individuals in population i

β̂iB =
M̃ i
B−M̃ i

B
1−M̃ i

B

, E(β̂iB) = βiB = 0
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Estimates for Populations

Two distinct alleles from population i

β̂i = M̃ i−M̃B

1−M̃B , E(β̂i) = βi = θi−θB
1−θB

Average over populations

β̂W = M̃W−M̃B

1−M̃B , E(β̂W ) = FST = βW = θW−θB
1−θB

One allele from each of populations i, i′

β̂ii
′
= M̃ ii′−M̃B

1−M̃B , E(β̂ii′) = βii
′
= θii

′−θB
1−θB

Average over populations

β̂B = M̃B−M̃B

1−M̃B , E(β̂B) = βB = 0
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Multiple Loci

The unweighted estimators for locus l are of the form

Estimatorl =
M̃x
l − M̃B

l

1 − M̃B
l

, x = i,W, ij

Here x can refer to population i, the average W over populations,

or the pair of populations i, j. With several loci, these can be

extended to

Estimator =

∑
l(M̃

x
l − M̃B

l )
∑
l(1 − M̃B

l )
x = i, ij,W

and these estimate (θx− θB)/(1− θB) if each locus has the same

value of the θ’s. Otherwise they estimate a weighted average

of the different θ values, where the weights are functions of the

allele frequencies at the loci in the sum.
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Effect of Number of Loci
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Weir and Cockerham 1984 Estimator

The WC84 estimate assumed all θi were the same and all θii
′
were

zero. If those assumptions are relaxed, the WC84 estimator has

expectation

E(θ̂WC) =
θW∗ − θB∗ +Q

1 − θB∗ +Q

where

θW∗ =

∑
i n
c
iθ
i

∑
i n
c
i

, θB∗ =

∑
i 6=i′ nini′θ

ii′

∑
i 6=i′ nini′

nci = ni −
n2
i∑
i ni

, nc =
1

r − 1

∑

i

nci

Q =
1

(r − 1)nc

∑

i

(
ni
n̄

− 1

)
θi

If the WC84 model holds (θii = θ), or if ni = n, or if nc is large,

then Q = 0 and E(θ̂WC) = (θW − θB)/(1 − θB).
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HapMap III SNP Data

Sample
Code Population Description size
ASW African ancestry in Southwest USA 142
CEU Utah residents with Northern and Western 324

European ancestry from CEPH collection
CHB Han Chinese in Beijing, China 160
CHD Chinese in Metropolitan Denver, Colorado 140
GIH Gujarati Indians in Houston, Texas 166
JPT Japanese in Tokyo, Japan 168
LWK Luhya in Webuye, Kenya 166
MXL Mexican ancestry in Los Angeles, California 142
MKK Maasai in Kinyawa, Kenya 342
TSI Toscani in Italia 154
YRI Yoruba in Ibadan, Nigeria 326
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Weighted vs Unweighted Estimators β̂ii′
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Right hand plot ignores SNPs with less than 5 observed copies

in a population.
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Multiple Populations: Detecting Selection

β̂i in LCT Region: i = 1,2,3.
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These plots are for β̂i’s, averaged over several SNPs. Little signal

in the average β̂W .
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β̂i in LCT Region: i = 1,2, . . .11.
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MKK Population

“The Maasai are a pastoral people in Kenya and Tanzania, whose

traditional diet of milk, · · · is rich in lactose · · · . In spite of this,

they have low levels of blood cholesterol, and seldom suffer from

gallstones or cardiac diseases.

Analysis of HapMap 3 data using Fixation Index (Fst) identified

genomic regions and single nucleotide polymorphisms (SNPs)

as strong candidates for recent selection for lactase persistence

· · · from the Maasai population in Kinyawa, Kenya (MKK). The

strongest signal identified by all three metrics was a 1.7 Mb re-

gion on Chr2q21. This region contains the gene LCT (Lactase)

involved in lactase persistence.”

[Wagh et al., PLoS One 7: e44751, 2012.]
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Two Populations: β̂W as Geographic Distance

[Wasser et al., Science 349:84–87, 2015.]
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Two Populations: General

For loci, such as SNPs, with two alleles, the β estimates for two

populations can be written as

β̂1 =
(p̃1 − p̃2)(2p̃1 − 1)

p̃1(1 − p̃2) + p̃2(1 − p̃1)

β̂2 =
(p̃2 − p̃1)(2p̃2 − 1)

p̃1(1 − p̃2) + p̃2(1 − p̃1)

β̂W =
(p̃1 − p̃2)

2

p̃1(1 − p̃2) + p̃2(1 − p̃1)

Each estimate reflects difference of the two sample allele fre-

quencies. Either β̂1 or β̂2 can be negative, but β̂W is positive.

The two populations could be cases and controls for a disease.
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Two Populations: Case-Control Test

A 2 × 2 contingency table statistic for marker allele counts in

cases and controls can be used as an allelic case-control test

statistic for marker-trait association. This quantity is

X2 =
n1n2(p̃1 − p̃2)

2

(n1 + n2)2p̄(1 − p̄)

where p̄ = (n1p̃1 + n2p̃2)/(n1 + n2).
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AMD Data
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Private Alleles

Now suppose the reference allele is private to population 1: p̃1 =

ε and p̃i = 0, i 6= 1:

β̂1 = 1 − r(1 − ε) < 0

β̂i = 1, i 6= 1

β̂W = ε > 0
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Human History: model

Used N0 = 10,000;N1 = 9,000; eN1 = 1,800; t1 = 4,600; t2 =

45,000,M = 7 in simulations.

157



Human History: data

Data on left, simulations on right.
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Forensic Application

A key issue in forensic genetics is to determine the matching

probability.

The probability an unknown person has a genotype, given that

the suspect has been seen to have that type is

Pr(AA|AA) =
[3θ+ (1 − θ)pA][2θ+ (1 − θ)pA]

(1 + θ)(1 + 2θ)

Pr(AB|AB) =
23θ+ (1 − θ)pA][θ+ (1 − θ)pB]

(1 + θ)(1 + 2θ)

Here θ refers to the population to which the unknown person

and the suspect belong.
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Effect of Reference Group of Populations

Buckleton et al. (2016) gave population-specific FST estimates
for a set of 446 populations, using published data for 24 mi-
crosatellite loci collected for forensic purposes.

For a set of African populations, the average within-population
matching proportion was M̃W = 0.1884 and the average between-
population-pair averages were M̃B = 0.1691 within the African
region and M̃B = 0.1726 for all pairs of populations in the
study. There is a larger FST for the set of African popula-
tions (β̂W = 0.0082) with Africa as a reference set than there is
(β̂W = 0.0020) with the world as a reference set.

For a set of Inuit populations, the average within-population
matching proportion was M̃W = 0.4379 whereas the average
between-population-pair matching proportions were M̃B = 0.1726
for pairs within the Inuit group and M̃B = 0.0090 for all pairs of
populations in the study. There is a smaller FST (β̂W = 0.0205)
with Inuit as a reference set than with the world as a reference
set (β̂W = 0.1057).
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Effect of Reference Group of Populations
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Plots of β̂i. For the white box plots, M̃B is for all pairs of popu-

lations. For the grey box plots, M̃B is for all pairs of populations

in that group. [Buckleton et al. 2016. Forensic Science Inter-

national:Genetics 23:91-100.]
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Worldwide Autosomal-STR Survey

Buckleton et al, Forensic Sci Int, 2016 compiled a survey of 250

published papers showing allele frequencies at 24 forensic STR

markers from 446 populations in 8 ancestral groups. Represents

data from 494,473 individuals.

The ancestral groups were identified by a combination of clus-

tering and geographic criteria.

Moment estimates were obtained for each locus l in each popu-

lation i from

β̂il =
M̃ i
l − M̃B

l

1 − M̃B
l
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STR Survey: β̂W Values for Groups and Loci

Geographic Region
Locus Africa AusAb Asian Cauc Hisp IndPK NatAm Poly Aver.
CSF1PO 0.003 0.002 0.008 0.008 0.002 0.007 0.055 0.026 0.011
D1S1656 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.011
D2S441 0.000 0.000 0.002 0.003 0.021 0.000 0.000 0.000 0.020
D2S1338 0.009 0.004 0.011 0.017 0.013 0.003 0.023 0.005 0.031
D3S1358 0.004 0.010 0.009 0.006 0.012 0.040 0.079 0.001 0.025
D5S818 0.002 0.013 0.009 0.008 0.014 0.018 0.044 0.007 0.029
D6S1043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016
D7S820 0.004 0.021 0.010 0.007 0.007 0.046 0.030 0.005 0.026
D8S1179 0.003 0.007 0.012 0.006 0.002 0.031 0.020 0.008 0.019
D10S1248 0.000 0.000 0.000 0.002 0.004 0.000 0.000 0.000 0.007
D12S391 0.000 0.000 0.000 0.003 0.020 0.000 0.000 0.000 0.010
D13S317 0.015 0.016 0.013 0.008 0.014 0.025 0.050 0.014 0.038
D16S539 0.007 0.002 0.015 0.006 0.009 0.005 0.048 0.004 0.021
D18S51 0.011 0.012 0.014 0.006 0.004 0.010 0.033 0.003 0.018
D19S433 0.009 0.001 0.009 0.010 0.014 0.000 0.022 0.014 0.023
D21S11 0.014 0.012 0.013 0.007 0.006 0.023 0.067 0.018 0.021
D22S1045 0.000 0.000 0.007 0.001 0.000 0.000 0.000 0.000 0.015
FGA 0.002 0.009 0.012 0.004 0.007 0.016 0.021 0.006 0.013
PENTAD 0.008 0.000 0.012 0.012 0.002 0.017 0.000 0.000 0.022
PENTAE 0.002 0.000 0.017 0.006 0.003 0.012 0.000 0.000 0.020
SE33 0.000 0.000 0.012 0.001 0.000 0.000 0.000 0.000 0.004
TH01 0.022 0.001 0.022 0.016 0.018 0.014 0.071 0.017 0.071
TPOX 0.019 0.087 0.016 0.011 0.007 0.018 0.064 0.031 0.035
VWA 0.009 0.007 0.017 0.007 0.012 0.022 0.028 0.005 0.023
All Loci 0.006 0.014 0.010 0.007 0.008 0.018 0.043 0.011 0.022
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Relatedness Estimates from Simulated Data

Change estimates to be relative to average of least related values.

Before (left) and after (right) change.
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Standard Estimates

The quantities θ̂jj′ (e.g. Astle and Balding, 2009, Statistical

Science 24:451-471)

θ̂jj′ =
(Xj − 2p)(Xj′ − 2p)

4p(1 − p)

are unbiased for θjj′ if the reference allele frequencies p are

known.

As the allele frequencies are not known, it is usual to replace

p with p̃, the sample allele frequency for the set of individuals

being studied. Then, for large sample sizes,

E(θ̂jj′) =
θjj′ − ψj − ψj′ + θB

1 − θB
6= θjj′

where ψj =
∑
j′ 6=j θjj′/(r − 1).
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KING-robust Kinship Estimates

The influence of all members of a sample is eliminated by the

KING-robust∗ estimates for pairs of individuals:

θ̂Kjj′ =
N(AB,AB)jj′ − 2N(AA,BB)jj′

N(AB)j +N(AB)j′

where the N ’s are the numbers of loci with the indicated geno-

types for individuals j and individual pairs j, j′. The expected

values of these estimates are

E(θ̂Kjj′) =
θjj′ − 1

2(Fj + Fj′)

1 − 1
2(Fj + Fj′)

These estimates for a pair of individuals are relative to the av-

erage inbreeding coefficients of those individuals.

[∗ Manichaikul et al., Bioinformatics 26:2867-2873, 2010.]
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Inbreeding Standard Estimates

For inbreeding, the quantities θ̂jj

θ̂jj′ =
(Xj − 2p)2)

4p(1 − p)

are unbiased for θjj = (1+Fj)/2 if the reference allele frequencies

p are known.

As the allele frequencies are not known, it is usual to replace

p with p̃, the sample allele frequency for the set of individuals

being studied. Then, for large sample sizes,

E(θ̂jj) =
θjj − 2ψj + θB

1 − θB
6= θjj′

where ψj =
∑
j′ 6=j θjj′/(r − 1).
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Inbreeding Standard Estimates

Then the standard estimator (e.g. Astle and Balding, 2009,

Statistical Science 24:451-471) is formed by averaging over loci

l, l = 1,2, . . . L:

F̂1 =
1

L

L∑

l=1

(Xl − 2pl)
2

2pl(1 − pl)
− 1

Another one (Yang et al, Nature Genetics 42:565-569, 2010) is

F̂2 =
1

L

L∑

l=1

X2
l − (1 + 2pl)Xl + 2p2l

2pl(1 − pl)

=
1

L

L∑

l=1

(X − 2pl)
2 − (1 − 2pl)(X − 2pl)

2pl(1 − pl)
− 1

If the pl are known, both these are unbiased. The second one

has a smaller variance.
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Alternative MOMs for Individual Inbreeding Co-
efficients

The variances can be reduced by an alternative weighting over

loci:

F̂3 =

∑L
l=1(Xl − 2pl)

2

∑L
l=1 2pl(1 − pl)

− 1

F̂4 =

∑L
l=1[X

2
l − (1 + 2pl)Xl + 2p2l ]∑L
l=1 2pl(1 − pl)
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Toy Example

Suppose five loci have genotypes

MM,Mm,mm,Mm,MM

.

The preferred moment estimate F̂3 is

F̂3 =
(2 − 2p1)

2 + (1 − 2p2)
2 + (2p3)

2 + (1 − 2p4)
2 + (2 − 2p5)

2

2[p1(1 − p1) + p2(1 − p2) + p3(1 − p3) + p4(1 − p4) + p5(1 − p5)]

− 1

If all five M allele frequencies were 0.5,

F̂3 =
1 + 0 + 1 + 0 + 1

2[1/4 + 1/4 + 1/4 + 1/4 + 1/4]
− 1 = 0.2
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MLE for Individual Inbreeding Coefficients

To avoid having to choose among MOMs can set up an MLE

although there is more numerical work needed. An iterative

method makes use of Bayes’ theorem. If F represents the prob-

ability the individual in question has two IBD alleles at a locus,

i.e. is inbred at that locus,

Pr(AlAl|inbred) = pl , Pr(AlAl|Not inbred) = p2l
Pr(Alal|inbred) = 0 , Pr(Alal|Not inbred) = 2pl(1 − pl)

Pr(alal|inbred) = 1 − pl , Pr(alal|Not inbred) = (1 − pl)
2

From Bayes’ theorem then

Pr(inbred|AlAl) =
Pr(AlAl|inbred)Pr(inbred)

Pr(AlAl)
=

plF

p2l + Fpl(1 − pl)

Pr(inbred|Alal) =
Pr(Alal|inbred)Pr(inbred)

Pr(Alal)
= 0

Pr(inbred|alal) =
Pr(alal|inbred)Pr(inbred)

Pr(alal)
=

(1 − pl)F

(1 − pl)
2 + Fpl(1 − pl)
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MLE for Individual Inbreeding Coefficients

This suggests an iterative scheme: assign an initial value to

F , and then average the updated values over loci. If Gl is the

genotype at locus l, the updated value F ′ is

F ′ =
1

L

L∑

l=1

Pr(inbred|Gl)

This value is then substituted into the right hand side and the

process continues until convergence.
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Toy Example

Suppose 5 loci have genotypes

MM,Mm,mm,Mm,MM

.

Then the updated estimate is

F ′ =
1

5

(
F

p1 + F (1 − p1)
+ 0 +

F

(1 − p3) + Fp3
+ 0 +

F

p5 + (1 − p5)F

)

If all the pl = 0.5,

F ′ =
1

5

(
2F

1 + F
+ 0 +

2F

1 + F
+ 0 +

2F

1 + F

)
=

6F

5(1 + F )

and this converges to F = 0.2.
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Realistic Example

Using 1369 SNPs spread out along chromosome 22, Xiuwen

Zheng found that

Minimum MAF .000

Average of ratios MOM mean and sd .0484 .2851

Ratio of averages MOM mean and sd .0272 .0874

MLE mean and sd .0381 .0576

Minimum MAF .050

Average of ratios MOM mean and sd .0359 .1516

Ratio of averages MOM mean and sd .0264 .0860

MLE mean and sd .0380 .0576

Minimum MAF .100

Average of ratios MOM mean and sd .0358 .1585

Ratio of averages MOM mean and sd .0260 .0864

MLE mean and sd .0382 .0577
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Method of Moments for Relatedness Coefficients

PLINK (Purcell, S., Neale, B., Todd-Brown, K., Thomas, L.,

Ferreira, M.A.R,Bender, D., Maller, J., Sklar, P., de Bakker,

P.I.W., Daly, M.J., & Sham, P.C. 2007. PLINK: A tool set for

whole-genome association and population-based linkage analy-

ses. American Journal of Human Genetics 81,559–575.) uses

MOM to estimate three IBD coefficients k0, k1, k2 for non-inbred

relatives. Two individuals are scored as being in IBS states 0,1,2.

State : Genotypes Probability

2 : (MM,MM), (mm,mm), (Mm,Mm) (p4M + 4p2Mp
2
m + p4m)k0

+ k1(p3M + pMpm + p3m) + k2

1 : (MM,Mm), (Mm,MM), (mm,Mm), (Mm,mm) 4pMpm(p2M + p2m)k0 + 2pMpmk1

0 : (MM,mm), (mm,MM) 2p2Mp
2
mk0
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MOM Approach: k0

Count the number of loci in IBS state i; i = 0,1,2. These num-

bers are N0, N1, N2. The previous table gives the probabilities of

IBS state i given IBD state j. From

Pr(IBS = 0) = Pr(IBS = 0|IBD = 0)Pr(IBD = 0)

sum over loci l to get

N0 =
∑

l

2p2l (1 − pl)
2 Pr(IBD = 0)

This gives a moment estimate

Pr(IBD = 0) =
N0∑

l 2p
2
l (1 − pl)

2
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MOM Approach: k1

From

Pr(IBS = 1) = Pr(IBS = 1|IBD = 0)Pr(IBD = 0)

+ Pr(IBS = 1|IBD = 1)Pr(IBD = 1)

sum over loci to get

N1 = Pr(IBD = 0)
∑

l

4pl(1 − pl)[p
2
l + (1 − pl)

2]

+ Pr(IBD = 1)
∑

l

2pl(1 − pl)

but we already have an estimate of Pr(IBD = 0). Therefore

Pr(IBD = 1) =
N1 −∑

l 4pl(1 − pl)[p
2
l + (1 − pl)

2] Pr(IBD = 0)
∑
l 2pl(1 − pl)
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MOM Approach: k2

Having estimated k0 and k1, find k̂2 as 1 − k̂0 − k̂1.

Could then estimate θ as k̂2/2 + k̂1/4 or could go to a direct

estimate.
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PLINK Example
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MLE for Relatedness Coefficients

For any SNP there are six distinct pairs of genotypes with prob-
abilities depending on allele frequencies for that SNP and on a
set of three k parameters that are assumed to be the same for all
SNPs. If G is the observed pair of genotypes, we know the condi-
tional probabilities Pr(G|Di) where the Di represent the identity
states (with probabilities ki).

G Pr(G) =
∑

iPr(G|Di)ki
MM,MM k2p2M + k1p3M + k0p4M

mm,mm k2p2m + k1p3m + k0p4m

MM,mm 2k0p2Mp
2
m

MM,Mm 2k1p2Mpm + 4k0p3Mpm

mm,Mm 2k1pMp2m + 4k0pMp3m

Mm,Mm 2k2pMpm + k1pMpm + 4k0p2Mp
2
m
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MLE for Relatedness Coefficients

An iterative algorithm for estimating the k’s from observed geno-

types Gl at SNP l is based on Bayes’ theorem for the probability

of descent state Di, i = 0,1,2:

Pr(Di|Gl) =
Pr(Gl|Di)Pr (Di)

Pr(Gl)

The procedure begins with initial estimates of the ki = Pr(Di)’s.

The updated estimates are obtained by averaging over L loci:

k′i =
1

L

L∑

l=1

(
Pr(Gl|Di)ki∑
j Pr(Gl|Dj)kj

)
, i = 0,1,2

These updated values are then substituted into the right hand

side until they no longer change (or change by less than some

specified small amount).
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Toy Example

Suppose the 5-locus genotypes for U, V are:

MM,Mm,mm,Mm,MM

and

MM,mm,Mm,Mm,Mm

The updating equations are:

k′2 =
1

5

(
p21k2

p21k2 + p32k1 + p41k0
+ 0 + 0

+
2p4(1 − p4)k2

2p4(1 − p4)k2 + p4(1 − p4)k1 + 4p24(1 − p4)2k0
+ 0

)
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Toy Example

k′1 =
1

5

(
p31k1

p21k2 + p32k1 + p41k0
+

2p2(1 − p2)
2k1

2p2(1 − p2)2k1 + 4p2(1 − p2)3k0

+
2p3(1 − p3)

2k1
2p3(1 − p3)2k1 + 4p3(1 − p3)3k0

+
p4(1 − p4)k1

2p4(1 − p4)k2 + p4(1 − p4)k1 + 4p24(1 − p4)2k0

+
2p25(1 − p5)k1

2p25(1 − p5)k1 + 4p35(1 − p5)k0

)
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Toy Example

k′0 =
1

5

(
p41k0

p21k2 + p32k1 + p41k0
+

4p2(1 − p2)
3k0

2p2(1 − p2)2k1 + 4p2(1 − p2)3k0

+
4p3(1 − p3)

3k0
2p3(1 − p3)2k1 + 4p3(1 − p3)3k0

+
4p24(1 − p24)k0

2p4(1 − p4)k2 + p4(1 − p4)k1 + 4p24(1 − p4)2k0

+
4p35(1 − p5)k0

2p25(1 − p5)k1 + 4p35(1 − p5)k0

)
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“RELPAIR” calculations

This approach compares the probabilities of two genotypes un-

der alternative hypotheses; H0: the individuals have a specified

relationship, versus H1: the individuals are unrelated. The alter-

native is that k0 = 1, k1 = k2 = 0 so the likelihood ratios for the

two hypotheses are:

LR(MM,MM) = k0 + k1/pM + k2/p
2
M

LR(mm,mm) = k0 + k1/pm + k2/p
2
m

LR(Mm,Mm) = k0 + k1/(4pMpm) + k2/(2pMpm)

LR(MM,Mm) = k0 + k1/(2pM)

LR(mm,Mm) = k0 + k1/(2pm)

LR(MM,mm) = k0
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Reality Check: Inbreeding and Relatedness

Inbreeding and relatedness estimates most easily expressed as

allele dosages. For individual i the number of reference alleles A

is Xi: these are 2,1,0 for AA,AB,BB.

The allelic matching proportions are:

M̃i = (Xi − 1)2

M̃ii′ =
1

2
[1 + (Xi − 1)(Xi′ − 1)]

M̃B =
1

r(r − 1)

r∑

i=1

r∑

i′=1
i 6=i′

M̃B

The estimates and their expectations are

β̂i =
M̃i − M̃B

1 − M̃B
, E(β̂i) =

Fi − θB
1 − θB

β̂ii′ =
M̃ii′ − M̃B

1 − M̃B
, E(β̂ii′) =

θii′ − θB
1 − θB
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Example

What are the inbreeding and kinship estimates for individuals

P,Q:

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10

P AA AA AA AB AB AB BB BB BB BB

Q AB AB AA AB AB AB AB BB BB BB

M̃P =

M̃Q =

M̃PQ =

β̂P =

β̂Q =

β̂PQ =
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Reality Check: Population Structure

First need to calculate allelic matching proportions within popu-

lations i. We start here from published reference allele frequen-

cies p̃i:

M̃i = p̃2i + (1 − p̃i)
2 , M̃W =

1

r

r∑

i=1

M̃i

Then we need the allelic matching proportions between pairs of

populations i and i′:

M̃ii′ = p̃ip̃i′ + (1 − p̃i)(1 − p̃i′) , M̃B =
1

r(r − 1)

r∑

i=1

r∑

i′=1
i 6=i′

M̃B

The population-specific FST estimates are

β̂i =
M̃i − M̃B

1 − M̃B
, β̂W = FST =

M̃W − M̃B

1 − M̃B
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HapMap Data

ASW CEU CHB CHD GIH JPT LWK MXL MKK TSI YRI

SNP1 0.48 0.84 0.90 0.91 0.81 0.86 0.51 0.82 0.53 0.85 0.40

SNP2 0.07 0.09 0.47 0.44 0.28 0.41 0.19 0.04 0.14 0.11 0.05

Calculate population-specific FST for CEU, CHB and YRI, using

each of SNP1 and SNP2.

SNP1 SNP2 Both

M̃CEU

M̃CHB

M̃YRI

M̃CEU,CHB

M̃CEU,YRI

M̃CHB,YRI

M̃B

β̂CEU

β̂CHB

β̂YRI

FST

189



ASSOCIATION MAPPING
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Association Mapping

Association methods use random samples from a population and

are alternatives to methods based on pedigrees or crosses be-

tween inbred lines. The associations depend on linkage disequi-

librium between marker and trait loci instead of depending on

linkage between those loci as in pedigree or line cross methods.

A quantitative trait locus T contributes to a trait of interest.

The QTL genotype cannot be observed but maybe it can be

inferred, and the location of the QTL be estimated, from ob-

servations on the trait and the genotype at a genetic marker

M.
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Marker-Trait Genotype Frequencies

Each marker genotypic class MiMj is composed of a mixture of

elements from each of the QTL classes, TrTs, where the propor-

tion of QTL class TrTs contained within marker class MiMj is

Pr(TrTs|MiMj). With random mating, genotype frequencies are

products of gamete frequencies. For example

Pr(TrTr,MiMi) = Pr(TrMi)
2

Pr(TrTr|MiMi) = Pr(TrMi)
2/Pr(Mi)

2

and gamete frequencies involve allele frequencies and linkage dis-

equilibria:

Pr(TrMi) = prpi +Dri
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Two-allele Genotypes

TT Tt tt

MM P2
MT 2PMTPMt P2

Mt

Mm 2PMTPmT 2PMTPmt + 2PMtPmT 2PMtPmt

mm P2
mT 2PmTPmt P2

mt
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Two-allele Gametes

T t

M PMT = pMpT +DMT PMt = pMpt −DMT

m PmT = pmpT −DMT Pmt = pmpt +DMT

ρMT =
DMT√

pMpmpTpt

ρ2MT =
D2
MT

pMpmpTpt
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Marker and Trait Variables

Introduce variables X and G for loci M and T. The values of X

will be assigned for the marker whereas the values G represent

the genetic contributions to measured trait variables or to disease

status. In either case, the Hardy-Weinberg assumption provides

the following expressions for the means and variances:

E(X) = µX = p2MXMM + 2pMpmXMm + p2mXmm

E(G) = µG = p2TGTT + 2pTptGT t + p2tGtt

Var(X) = σ2
AM

+ σ2
DM

Var(G) = σ2
AT

+ σ2
DT
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Components of Variance

The “additive” and “dominance” components of variance are

σ2
AM

= 2pMpm[pM(XMM −XMm) + pm(XMm −Xmm)]2

σ2
AT

= 2pTpt[pT (GTT −GT t) + pt(GT t −Gtt)]
2

σ2
DM

= p2Mp
2
m(XMM − 2XMm +Xmm)2

σ2
DT

= p2Tp
2
t (GTT − 2GT t +Gtt)

2

and these lead to the following expression for the covariance of

X and G:

Cov(G,X) = ρMTσATσAM + ρ2MTσDTσDM
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Correlation of Trait and Marker Variables

Cov(G,X) = ρMTσATσAM + ρ2MTσDTσDM

If either X or G are purely additive, then their covariance is

Cov(G,X) = ρMTσATσAM

If both X and G are purely additive, then their correlation is

ρGX = ρMT

If either X or G are purely non-additive, then their covariance is

Cov(G,X) = ρ2MTσDTσDM

If both X and G are purely non-additive, then their correlation is

ρGX = ρ2MT
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Measured Traits

Suppose Y = G + E where G is the genetic effect of locus T

and E are all other effects. These other effects are supposed to

have mean zero and to be independent of both G and the marker

variable X. Then

E(Y ) = E(G)

Cov(X,Y ) = Cov(X,G)

Var(Y ) = σ2
AT

+ σ2
DT

+ VE

Trait values Y may be regressed on marker variables X. The

regression coefficient is

βY X =
Cov(X,Y )

Var(X)
=
ρMTσATσAM + ρ2MTσDTσDM

σ2
AM

+ σ2
DM
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Marker Variable

Variable X may be chosen to be additive, e.g XMM = 2, XMm =

1, Xmm = 0 so that σ2
AM

= 2pMpm, σ2
DM

= 0, and then

βY X = ρMT
σAT
σAM

The marker variable can also be made to have a zero additive

variance, e.g. XMM = pm, XMm = 0,Xmm = pM so that σ2
AM

=

0, σ2
DM

= p2Mp
2
m, and

βY X = ρ2MT

σDT
σDM

A significant regression coefficient implies a significant linkage

disequilibrium measure ρMT between marker and disease loci.

The signal is expected to be stronger with an additive marker as

ρMT ≥ ρ2MT and it is usual that σ2
AT

≥ σ2
DT

.
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Analysis of Variance

Instead of regressing trait on marker, the trait means could be

compared among marker classes. The expected trait means fol-

low as

E(Y |MiMj) =
∑

r,s
GrsPr(TrTs|MiMj)

=
∑

r,s
GrsPr(TrMi, TsMj)/Pr(MiMj)

in general.

For a trait locus with only two alleles, T, t, for marker homozygote

MM :

E(Y |MM) = (GTTP
2
MT + 2GT tPMTPMt +GttP

2
Mt)/p

2
M
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Trait Means in Marker Classes

This last expression can be manipulated to show the effects of

linkage disequilibrium.

Trait means among the three marker genotype classes:

E(Y |MM) = µG + 2ρMTA/pM + ρ2MTD/p2M
E(Y |Mm) = µG + ρMTA(1/pM − 1/pm) − ρ2MTD/(pMpm)

E(Y |mm) = µG − 2ρMTA/pm + ρ2MTD/p2m
where A = σAT

√
(pMpm),D = σDT (pMpm), so that an analysis of

variance will also test that ρMT = 0 and the test will be affected

by both additive and dominance effects at the trait locus.
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Dichotomous Traits: Case Only

The case-control approach starts with independent samples of

people who are either affected or not affected with a disease and

compares marker frequencies between the two groups. The MM

marker frequency among cases is

Pr(MM |Case) = p2M +
1

µG

[
pMρMTA+ ρ2MTσDTD

]

Pr(Mm|Case) = 2pMpm +
1

µG

[
(pm − pM)ρMTA− 2ρ2MTD

]

Pr(mm|Case) = p2m +
1

µG

[
−pmρMTA + ρ2MTD

]

Note that these three probabilities sum to one.
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Case Allele Frequencies

Combining the genotypic frequencies to give allele frequencies:

Pr(M |Case) = pM +
ρMTσAT

2µG

√
2pMpm

Pr(m|Case) = pm −
ρMTσAT

2µG

√
2pMpm

and these two sum to one.

The inbreeding coefficient at the marker locus in the case pop-

ulation follows from

Pr(MM |Case) = Pr(M |Case)2 + fCase Pr(M |Case)[1 − Pr(M |Case)]

or

fCase =
ρ2MT (2µGσDT − σ2

AT
)

(µG

√
2pM/pm + ρMTσAT )(µG

√
2pm/pM − ρMTσAT )
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Case-only HWE Testing

The power of this test depends on nf2
Case which is proportional

to ρ4MT so the power will decrease quickly as ρMT deceases.
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Dichotomous Traits: Case-Control

An argument similar to that above provides the marker genotype

frequencies among controls:

Pr(MM |Control) = p2M − 1

1 − µG

[
pMρMTA + ρ2MTD

]

Pr(Mm|Control) = 2pMpm − 1

1 − µG

[
(pm − pM)ρMTA− 2ρ2MTD

]

Pr(mm|Control) = p2m − 1

1 − µG

[
−pmρMTA + ρ2MTD

]

Pr(M |Control) = pM − ρMTA
2(1 − µG)

Pr(m|Control) = pm +
ρMTA

2(1 − µG)
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Case-control Test

The simplest case-control test compares marker allele frequen-

cies between the two samples and it is clearly equivalent to test-

ing that ρMT = 0 since

Pr(M |Case)− Pr(M |Control) ∝ ρMTσAT

√
2pMpm

The test is not affected by non-additivity at the disease locus.

If the allelic counts for M,m in cases and controls are laid out in

a 2× 2 table, the contingency-table chi-square test statistic has

1 df. An alternative is to work with the 3 × 2 table of marker

genotype counts in cases and controls and calculate a 2 df chi-

square test statistic. This test is affected by both additivity and

non-additivity at the disease locus but it is sensitive to errors in

genotype calls for rare alleles.
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Allelic Case Control Test

Write the marker genotype counts in random samples of cases

and controls as

Genotype MM Mm mm Total

Case counts r0 r1 r2 R
Control counts s0 s1 s2 S
Total counts n0 n1 n2 N

The allelic test statistic uses the allele counts

Observed M m Total

Case counts 2r0 + r1 2r2 + r1 2R
Control counts 2s0 + s1 2s2 + s1 2S
Total counts 2n0 + n1 2n2 + n1 2N
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Allelic Case Control Test

A contingency table test for independence of marker allele and

disease status compares the observed allelic counts with the

products of the marginal totals divided by the overall total:

Expected M m Total

Case counts 2R(2n0 + n1)/2N 2R(2n2 + n1)/2N 2R
Control counts 2S(2n0 + n1)/2N 2S(2n2 + n1)/2N 2S
Total counts 2n0 + n1 2n2 + n1 2N

The test statistic is

X2
A =

∑ (Obs.−Exp.)2

Exp.

=
2N [N(r1 + 2r2) −R(n1 + 2n2)]

2

SR[2N(n1 + 2n2) − (n1 + 2n2)2]
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Allelic Case Control Test

Approximating the expectation of X2
A by the ratio of the expec-

tations of the numerator and denominator:

E(X2
A) ≈ (1 + f)

showing an inflation factor of (1 + f) when there is inbreeding.

The expected value is 1 when f = 0 and the test statistic has a

chi-square distribution with 1 df.
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AMD Example: Case-control test statistics on
chromosome 1
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AMD Example: Case-control test statistics QQ
plot
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AMD Example: HWE test statistics on chromo-
some 1
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Trend Test

i = 0 i = 1 i = 2

Marker Genotype MM Mm mm Total
Marker Variable X0 X1 X2
Case counts Y = 1 r0 r1 r2 R
Control counts Y = 0 s0 s1 s2 S
Total counts n0 n1 n2 N

The Armitage trend test is based on a score statistic U:

U =
2∑

i=0

Xi

(
S

N
ri −

R

N
si

)
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Trend Test for Additivity

Assuming normality for U, the test statistic

X2
T =

U2

V̂ar(U)
=

N(N
∑
i riXi −R

∑
i niXi)

2

SR[N
∑
i niX

2
i − (

∑
i niXi)

2]

is distributed as χ2
(1)

under the hypothesis H0 : ρMT = 0.

Usual to consider a linear trend test, with X0 = 0, X1 = 1, X2 =

2, so that σ2
DM

= 0 and

X2
T =

N [N(r1 + 2r2) −R(n1 + 2n2)]
2

SR[N(n1 + 4n2) − (n1 + 2n2)
2]

This will provide a test for additive effects at the disease locus.
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Case-control vs Trend Tests

The allelic case-control test statistic is

X2
A =

2N [N(r1 + 2r2) −R(n1 + 2n2)]
2

SR[N(2n1 + 4n2) − (n1 + 2n2)2]

and the linear trend test statistic is

X2
T =

N [N(r1 + 2r2) −R(n1 + 2n2)]
2

SR[N(n1 + 4n2) − (n1 + 2n2)2]

In both cases, σ2
DM

= 0 and the test is for linkage disequilibrium

ρMT between trait and marker alleles, and is affected only by

additive trait effects.

Unlike the allelic case-control test, the trend statistic has an

expected value of 1 even when there are departures from Hardy-

Weinberg equilibrium.
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Trend Test for Non-Additivity

Setting X0 = pm, X1 = 0,X2 = pM gives σ2
AM

= 0 and a test for

non-additive effects. There is not an obvious simplification of

the equation for the test statistic.
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