
Outline for Session 2 (1.30 – 3.00pm) 
 
• Experimental Design 
• Normalisation 

• Background correction 
• Colour Bias 
• Across Array 
• Probe Bias 

• Batch Effect Correction 
 

 
 
 
 

 



Normalisation 

Goal: reduce non-biological variation 
 
A. Experimental design is critical for reducing technical variation: 
• Randomising cases and controls on plates, arrays, run times etc. 
• Repeated samples run on across plates, arrays, run times etc. 
 
B. Statistical methods to reduce technical variation: 
1. Within array normalisation - correcting for intensity-related dye biases 
2. Between array normalisation - removing technical artifacts between samples on 

different arrays 
 
No consensus on best normalisation approach. 



Experimental Design 

• This is the most critical part of any study 
• Poor experimental design can result in not being able to draw any 

conclusions from a study 
 

• Record as much information as possible about the experiement 
• DNA extraction dates/batches 
• Bisulphite conversion dates/batches 
• Array processing dates/batches 
• … 



Experimental Design – Example #1 

• Case-control study looking at methylation and disease 
 

• How were the cases and controls collected? 
• Was the DNA extracted and stored in the same fashion? 
• How was bisulphite conversion done? 
• How are cases and controls placed on methylation arrays? 

 



Experimental Design – Example #1 

• Cases and controls should be collected using common methods 
• Over a similar time frame 
• Have similar demography (age, sex, ancestry, smoking, …) 
• DNA should be extracted and stored by a common method 

• Ideally not in batches of cases or controls, but if necessary there should not be a single 
batch of each… 

• Record all information on DNA extraction batches (date, operator, …) 
• Cases and controls should be randomly placed in batches for bisulphite 

conversion 
• Cases and controls should be randomly placed on arrays 
• Consider using control samples and duplicates to track quality over time 



Experimental Design – Example #2 

• Investigating transmission of DNA methylation across generations 
(e.g. mother -> daughter) 
 
 
 

 



Experimental Design – Example #2 

• Investigating transmission of DNA methylation across generations 
(e.g. mother -> daughter) 
 

• Do not put mother and daughter beside each other 
• Do not put them on the same array 
• Do not have all mothers on one array and daughters 

on the other 
 
 
 

 



Normalisation 

• Although good experimental design is key to a successful experiment, 
power can be gained by removing batch or processing effects in that 
data 
 

• This is a landmine…     
• There is consensus on the best method to use 
• New methods claiming to be the best are released weekly 

 
• No normalisation method should be used blindly 



R Packages for methylation QC/normalisation 



Normalisation – Background Correction 

• All measurements on the array are made with some noise 
• It is impossible to get a “zero” measurement from the array 
• Background correction attempts to remove this noise 
• Often use negative control probes to remove this noise 

• Subtract 5% percentile of the negative controls from each colour channel 
(GenomeStudio Methylation Module) 

• Subtract median intensity value of control probes (R package lumi) 
• Other methods include 

• Smoothing data 
• Fitting complex mixture distributions to model signal + noise and subtracting 

noise 
 
 



Normalisation – Background Correction 

• Usual approach is to subtract the estimated noise from the signal 
• Can result in negative intensity values 

• Truncate to zero 

 
• Implemented in a wide variety of R packages 
• Often occurs during initial data reading 

 
• The Illumina GenomeStudio default is widely used 



Normalisation – Colour Bias 

• The two colour channels are know to perform differently 
 

• Usually higher overall intensities on the red channel that the green 
channel 
(extreme differences in colour intensities should be caught when 
cleaning bad samples from the data) 
 

• Large number of methods to handle this…. 
 



Normalisation – Colour Bias 

• Illumina GenomeStudio  
• Takes the average intensity of the internal normalisation control for that 

colour 
• Divides all intensity values by that average 
• Rescales data to the first sample on the array   (is this a good idea?) 

• R methylumi 
• Same as above but scales to sample on array with least difference in average 

dye intensities 

• ASMN (All Sample Mean Normalisation) 
• Modifies above to scale to the average across all samples  

 



Normalisation – Colour Bias 

• R wateRmelon - nanes and nanet 
• Quantile normalisation for methylation and unmethylation intensity values 

either for both Type I & II probe types (nanes) or separately (nanet) 

 
• R lumi 

• Implements a variant of quantile normalisation 
 
 

• The Illumina GenomeStudio version is still widely used 
 

 
 

 



Normalisation – Across Array 

• Beta values are calculated once background correction and colour 
bias removal is performed 

    𝛽 = 𝑀
𝑀+𝑈+ ε

 

 
• Next stage is normalisation is to normalise the beta values 
   
 



Normalisation – Across Array 



Normalisation – Across Array 

• Quantile Normalisation 
• Widely used in gene-expression studies 
• Normalises data to average/median of all observations 
• Makes all distributions identical 

 
• Is this suitable for DNA methylation data? 

• Evidence for different genome-wide average methylation across people 
• Case/control studies can have vastly different methylation profiles 

(e.g. cancer) 



Normalisation – Across Array 

• Functional normalisation 
 

• Fortin et al.,  Genome Biology 2014, 15:503 
• Uses quantile normalisation of control probes only 
• Other array probes are scaled relative to control probes with 

surrounding intensities 
 

• We will use this method in the practicals 



Normalisation – Probe Bias 

• Some measurement bias is shown between Type I and II probes 
 

•  This causes a problem if probes are to be ranked/combined in an 
analysis 

• Clustering 
• Regional approaches  (“bumphunting”) 
• … 

 
• This is “not” an issue for single probe analyses 



Normalisation – Probe Bias 

• Type II probes have a smaller range of  
beta values than Type I probes 
 

• Type II probes are more variable than 
Type I probes 
 
 

• This may be expected given biology… 
 
 



Normalisation – Probe Bias 
• Peak Based Correction 

 
• Uses peak summits to correct β values 

• Convert β to M values 
• Determine peaks for I and II probes with 

kernel density estimation 
• Rescale M values by peak summits 
• Convert these corrected M values back to β 

values 

 

Dedeurwaerder et al. Epigenomics 2011 



Normalisation – Probe Bias 

• Beta MIxture Quantile Dilation  (BMIQ) 
 

• “The strategy involved application of a three-state beta-mixture 
model to assign probes to methylation states, subsequent 
transformation of probabilities into quantiles and finally a 
methylation-dependent dilation  transformation to preserve the 
monotonicity and continuity of the data” 
 

• Currently a widely used approach… 



Normalisation – Probe Bias 

• Subset Within-Array Normalization (SWAN) 
 

• Normalises TypeI and TypeII probes together 
• Subsets all probes that cover the same number of CpG sites 
 
• Takes the methylated and unmethylated channels, calculates mean intensity 
• Scales TypeI and TypeII probes to this mean separately by linear interpolation 

 
 



Normalisation – Probe Bias 



Batch effects 

• Technical artifacts (e.g. laboratory conditions, experiment time, 
reagent, array batch, sample plate, position on array) that are not 
associated with the underlying biology. 

• Batch effects can affect different probes in different ways. 
• Minimise batch effect through careful study design (e.g. randomising 

samples across run times, running technical replicates etc) 
• Two types of methods  

• when the sources of batch effect are known 
• when batch effects are unknown (SVA, ISVA - attempt to infer the unwanted 

variation from the data itself) 



Batch effects 



Batch Effects 

• We have carefully recorded all information from our experimental 
design…    
 

• We can correlate each of these with the Principle Components of the 
DNA methylation data to test if they explain variation in the data 
 

• Once we know which effects to correct for we can either include 
them in our analysis model (if possible) or pre-correct the data. 



Principal Component Analysis 

• Understand the major 
sources of variation in 
methylation across 
array. 

• Can highlight possible 
confounders that 
should be adjusted for 

• Identify outlying 
samples that may 
need to excluded 
from analysis 



Batch Effects – Linear Regression 

• The most basic correction for batch effects is to perform a linear 
regression with known batch effects as covariates 
 

• Convert to M values and then back to Beta values 
• Take the residuals of the model through to further analysis 

 
• Different regression for each probe 
 

 



Batch Effects – COMBAT 

• Method designed for gene-expression data 
• Can be used for DNA methylation after transforming to M values 

 
• Uses information across probes to scale the residual variance to 

provide more accurate estimates of corrected values 



Further normalisation 

• The normalisation methods covered so far are at the limit of the 
corrections that can be done given the recorded information 

 
• Further corrections may remove genuine biological differences 

between the groups 
 

• We can attempt to recover unobserved batch effects from a variety of 
methods 



Unobserved Batch Effects 

• Principle Component Analysis… 
• When used on all probes at once, there is a great risk of removing the 

biological effects you are trying to detect 
 

• Compromise:  Use PCA on the control probes 
• Is known to capture effects of array and array position 
• Is unlikely to capture all unobserved effects due to the small number of 

control probes (and the fact that control probes have very specific design) 

 
• How many PCs to include? 



Unobserved Batch Effects 

• Remove Unwanted Variation  (RUV) 
• A suit of methods to try capture unobserved batch effects from the 

data 
 

• General approach with DNA methylation data 
• Perform analysis 
• Take bottom 50% least associated probes 
• Do a PCA on those probes… 

 



Unobserved Batch Effects 

• Surrogate Variable Analysis (SVA) 
• Space PCA (sPCA) 

 
• Both try to capture unobserved technical variation without removing 

signal being tested 
 

• SVA uses correlation with phenotype to select probes 
• sPCA does not   (same correction can be used for many phenotypes) 

 



Unobserved Batch Effects 

Rahmani et al., Nat Methods 2016 



Estimating Unobserved Batch Effects 

• If we know about a batch/technical effect but do not have data to 
correct for it, we may be able to estimate it from the data 
 

• E.g.  Blood cell counts, age, … 



Cell composition  

• Methylation plays a large role in cellular differentiation 
• Substantial variation across tissue types as well as individual cell types 

(well demonstrated in WBCs). 
• Measured methylation levels represent weighted averages of cell-

type-specific methylation levels with weights corresponding to the 
proportion of the different cell types in a sample. 

•  Cell-type proportions can vary across individuals, and can be 
associated with diseases or phenotypes 

• Cell composition a potential confounder in MWAS 



Cell composition 

Eckhardt et al Nat Gen 2011 



Estimating Blood Cell Counts 

• We can “easily” sort blood into its component cell types and measure 
the DNA methylation differences in each. 
 

• Using the differences of DNA methylation across cell types, we can 
model the proportion of each cell type in whole blood 
 

• These values can be used as covariates in analyses 
 

• Particularly important in analysis of disease that affect immune 
function 



Estimating Age 

• DNA generally becomes more methylated with age 
 

• We can use these changes in DNA methylation with age to make a 
predictor to estimate a persons age 
 

• Accurate within +/-10 years – so real age preferred! 
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