Outline for Session 2 (1.30—3.00pm)

e Experimental Design

 Normalisation
e Background correction
e Colour Bias
* Across Array
e Probe Bias

e Batch Effect Correction



Normalisation

Goal: reduce non-biological variation

A. Experimental design is critical for reducing technical variation:
e Randomising cases and controls on plates, arrays, run times etc.
 Repeated samples run on across plates, arrays, run times etc.

B. Statistical methods to reduce technical variation:
1. Within array normalisation - correcting for intensity-related dye biases

2. Between array normalisation - removing technical artifacts between samples on
different arrays

No consensus on best normalisation approach.



Experimental Design

* This is the most critical part of any study

e Poor experimental design can result in not being able to draw any
conclusions from a study

e Record as much information as possible about the experiement
 DNA extraction dates/batches
e Bisulphite conversion dates/batches
e Array processing dates/batches



Experimental Design — Example #1

e Case-control study looking at methylation and disease

* How were the cases and controls collected?

* Was the DNA extracted and stored in the same fashion?
 How was bisulphite conversion done?

* How are cases and controls placed on methylation arrays?



Experimental Design — Example #1

e Cases and controls should be collected using common methods
e Over a similar time frame
e Have similar demography (age, sex, ancestry, smoking, ...)

DNA should be extracted and stored by a common method

* |deally not in batches of cases or controls, but if necessary there should not be a single
batch of each...

e Record all information on DNA extraction batches (date, operator, ...)

e Cases and controls should be randomly placed in batches for bisulphite
conversion

e Cases and controls should be randomly placed on arrays
e Consider using control samples and duplicates to track quality over time



Experimental Design — Example #2

* Investigating transmission of DNA methylation across generations
(e.g. mother -> daughter)




Experimental Design — Example #2

* Investigating transmission of DNA methylation across generations
(e.g. mother -> daughter)

* Do not put mother and daughter beside each other
* Do not put them on the same array

* Do not have all mothers on one array and daughters
on the other




Normalisation

* Although good experimental design is key to a successful experiment,
power can be gained by removing batch or processing effects in that
data

 This is a landmine...
e There is consensus on the best method to use

* New methods claiming to be the best are released weekly

 No normalisation method should be used blindly
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R Packages for methylation QC/normalisation

DNA methylation data analysis and visualization

Visual and interactive quality control of large Illumina
DNA Methylation array data sets

DNA methylation analysis from high-throughput
bisulfite sequencing results

MethylIMix: Identifying methylation driven cancer
genes

detect different methylation level (DMR)
Base resolution DNA methylation data analysis
Segmentation of Bis-seq data

Handle Illumina methylation data

Analyze Illumina Infinium DNA methylation arrays

Analysing Illumina HumanMethylation BeadChip Data

Identify oncogenes and tumor suppressor genes from
omics data

Estimation of the amplicon methylation pattern
distribution from bisulphite sequencing data

Preprocessing of Illumina Infinium 450K data



Normalisation — Background Correction

e All measurements on the array are made with some noise
* It is impossible to get a “zero” measurement from the array
e Background correction attempts to remove this noise

e Often use negative control probes to remove this noise

e Subtract 5% percentile of the negative controls from each colour channel
(GenomeStudio Methylation Module)

e Subtract median intensity value of control probes (R package lumi)

e Other methods include
 Smoothing data

e Fitting complex mixture distributions to model signal + noise and subtracting
noise



Normalisation — Background Correction

e Usual approach is to subtract the estimated noise from the signal

e Can result in negative intensity values
* Truncate to zero

* Implemented in a wide variety of R packages
e Often occurs during initial data reading

* The lllumina GenomeStudio default is widely used



Normalisation — Colour Bias

* The two colour channels are know to perform differently

e Usually higher overall intensities on the red channel that the green
channel
(extreme differences in colour intensities should be caught when
cleaning bad samples from the data)

e Large number of methods to handle this....



Normalisation — Colour Bias

e [[lumina GenomeStudio

e Takes the average intensity of the internal normalisation control for that
colour

e Divides all intensity values by that average
e Rescales data to the first sample on the array (is this a good idea?)

R methylumi

e Same as above but scales to sample on array with least difference in average
dye intensities

* ASMN (All Sample Mean Normalisation)

 Modifies above to scale to the average across all samples



Normalisation — Colour Bias

* R wateRmelon - nanes and nanet

e Quantile normalisation for methylation and unmethylation intensity values
either for both Type | & Il probe types (nanes) or separately (nanet)

* R lumi
* Implements a variant of quantile normalisation

e The lllumina GenomeStudio version is still widely used



Normalisation — Across Array

e Beta values are calculated once background correction and colour
bias removal is performed
M
b= M+U+ €

* Next stage is normalisation is to normalise the beta values



Normalisation — Across Array

Beta



Normalisation — Across Array

 Quantile Normalisation

* Widely used in gene-expression studies

 Normalises data to average/median of all observations
* Makes all distributions identical

* |s this suitable for DNA methylation data?

e Evidence for different genome-wide average methylation across people

e Case/control studies can have vastly different methylation profiles
(e.g. cancer)



Normalisation — Across Array

* Functional normalisation

e Fortin et al., Genome Biology 2014, 15:503
e Uses quantile normalisation of control probes only

e Other array probes are scaled relative to control probes with
surrounding intensities

 We will use this method in the practicals



Normalisation — Probe Bias

 Some measurement bias is shown between Type | and Il probes

e This causes a problem if probes are to be ranked/combined in an
analysis
e Clustering
e Regional approaches (“bumphunting”)

e This is “not” an issue for single probe analyses



Normalisation — Probe Bias
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Normalisation — Probe Bias

e Peak Based Correction

Infinium site density

e Uses peak summits to correct B values
e Convert 3 to M values — T
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e Determine peaks for | and Il probes with f-value
kernel density estimation

e Rescale M values by peak summits

e Convert these corrected M values back to
values
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Normalisation — Probe Bias

e Beta MIxture Quantile Dilation (BMIQ)

e “The strategy involved application of a three-state beta-mixture
model to assign probes to methylation states, subsequent
transformation of probabilities into quantiles and finally a
methylation-dependent dilation transformation to preserve the
monotonicity and continuity of the data”

e Currently a widely used approach...



Normalisation — Probe Bias

e Subset Within-Array Normalization (SWAN)

e Normalises Typel and Typell probes together
e Subsets all probes that cover the same number of CpG sites

e Takes the methylated and unmethylated channels, calculates mean intensity
e Scales Typel and Typell probes to this mean separately by linear interpolation



Normalisation — Probe Bias
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Batch effects

e Technical artifacts (e.g. [aboratory conditions, experiment time,
reagent, array batch, sample plate, position on array) that are not
associated with the underlying biology.

e Batch effects can affect different probes in different ways.

 Minimise batch effect through careful study design (e.g. randomising
samples across run times, running technical replicates etc)

* Two types of methods
 when the sources of batch effect are known

e when batch effects are unknown (SVA, ISVA - attempt to infer the unwanted
variation from the data itself)



Batch effects
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Batch Effects

 We have carefully recorded all information from our experimental
design...

* We can correlate each of these with the Principle Components of the
DNA methylation data to test if they explain variation in the data

* Once we know which effects to correct for we can either include
them in our analysis model (if possible) or pre-correct the data.



Principal Component Analysis

 Understand the major
sources of variation in
methylation across
array.
e Can highlight possible
confounders that
should be adjusted for

 |dentify outlying
samples that may
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from analysis
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Batch Effects — Linear Regression

 The most basic correction for batch effects is to perform a linear
regression with known batch effects as covariates

e Convert to M values and then back to Beta values
e Take the residuals of the model through to further analysis

e Different regression for each probe



Batch Effects — COMBAT

 Method designed for gene-expression data
e Can be used for DNA methylation after transforming to M values

e Uses information across probes to scale the residual variance to
provide more accurate estimates of corrected values



Further normalisation

* The normalisation methods covered so far are at the limit of the
corrections that can be done given the recorded information

e Further corrections may remove genuine biological differences
between the groups

 We can attempt to recover unobserved batch effects from a variety of
methods



Unobserved Batch Effects

* Principle Component Analysis...

* When used on all probes at once, there is a great risk of removing the
biological effects you are trying to detect

e Compromise: Use PCA on the control probes
e |s known to capture effects of array and array position

* |s unlikely to capture all unobserved effects due to the small number of
control probes (and the fact that control probes have very specific design)

e How many PCs to include?



Unobserved Batch Effects

e Remove Unwanted Variation (RUV)

e A suit of methods to try capture unobserved batch effects from the
data

* General approach with DNA methylation data
e Perform analysis
e Take bottom 50% least associated probes
Do a PCA on those probes...



Unobserved Batch Effects

e Surrogate Variable Analysis (SVA)
e Space PCA (sPCA)

* Both try to capture unobserved technical variation without removing
signal being tested

e SVA uses correlation with phenotype to select probes
e SPCA does not (same correction can be used for many phenotypes)



Unobserved Batch Effects
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Estimating Unobserved Batch Effects

* If we know about a batch/technical effect but do not have data to
correct for it, we may be able to estimate it from the data

e E.g. Blood cell counts, age, ...



Cell composition

 Methylation plays a large role in cellular differentiation

e Substantial variation across tissue types as well as individual cell types
(well demonstrated in WBCs).

 Measured methylation levels represent weighted averages of cell-
type-specific methylation levels with weights corresponding to the
proportion of the different cell types in a sample.

e Cell-type proportions can vary across individuals, and can be
associated with diseases or phenotypes

e Cell composition a potential confounder in MWAS



Cell composition
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Estimating Blood Cell Counts

* We can “easily” sort blood into its component cell types and measure
the DNA methylation differences in each.

e Using the differences of DNA methylation across cell types, we can
model the proportion of each cell type in whole blood

* These values can be used as covariates in analyses

e Particularly important in analysis of disease that affect immune
function



Estimating Age
* DNA generally becomes more methylated with age

 We can use these changes in DNA methylation with age to make a
predictor to estimate a persons age

e Accurate within +/-10 years — so real age preferred!
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