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Outline	for	Session	3	Lecture

• EWAS	analysis
• Inflation	in	test-statistics
• Interpreting	EWAS	results
• Study	design
• Examples:	Smoking,	age,	BMI	and	height,	ALS



Epigenome-wide	association	studies

• Identifies	changes	in	methylation	levels	at	single	CpG sites	that	are	associated	
with	human	phenotype/disease

• Similar	to	analysing SNPs	in	GWAS
• Association	analysis	between	each	CpG and	phenotype	of	interest	(~450,000	association	
analyses)

• Unlike	SNPs,	DNA	methylation	measurements	considered	as	quantitative	measure.
• Linear	or	logistic	regression	(for	binary	dependent	variables)
• Interpretation	of	effect	depends	on	whether	methylation	is	your	dependent	or	independent	
variable

𝐶𝑝𝐺𝑚𝑒𝑡ℎ	~	𝑠𝑚𝑜𝑘𝑖𝑛𝑔 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝑃𝐶𝑠
	𝑑𝑖𝑠𝑒𝑎𝑠𝑒	~	𝐶𝑝𝐺𝑚𝑒𝑡ℎ + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝑃𝐶𝑠



Visualising results
manhattan QQ



Inflation	in	lambda

Iterson et	al	Genome	Biology	2017



Controlling	inflation	in	EWAS

• Simulation study showing 
that the genomic inflation 
factor depends on the 
number of true associations

• genomic inflation factor 
commonly overestimates 
the true level of test-
statistic inflation in EWAS 
and TWAS



Controlling	inflation	in	EWAS

• http://genomebiology.biomedcentral.com/articles/10.1186/s13059-
016-1131-9 Published	Jan	2017

• EWASs	and	TWASs	are	prone	not	only	to	significant	inflation	but	also	
bias	of	the	test	statistics	

• Not	properly	addressed	by	GWAS-based	methodology	(i.e.	genomic	
control)	or	approaches	to	control	for	unmeasured	confounding	(e.g.	
RUV,	sva and	cate).

• Method	to	estimate	the	empirical	null	distribution	using	Bayesian	
statistics.	

• http://bioconductor.org/packages/bacon/.



Interpretation	of	EWAS	much	
more	complicated	than	GWAS

Study	design	very	important



Advantage	of	GWAS

• Genotype	is	constant	from	birth
• Genotype	comes	before	phenotype
• no	issue	of	reverse	causation	i.e.	phenotype	does	not	cause	changes	in	
genotype.	

• Genetic	variants	assumed	to	be	randomly	assigned	with	respect	to	
the	characteristics	of	individual,	therefore	minimised confounding	
bias

• Ascertainment	bias
• Population	stratification	(which	can	be	corrected	for)



Fraga et	al PNAS	2005

Differences in global 
5mC DNA content in 
monozygotic twins

Methylation	is	dynamic



Methylation	is	dynamic

http://ib.bioninja.com.au/_Media/methylation-factors_med.jpeg



Methylation	during	development



In	utero	environment	and	methylation



In	utero	environment	and	methylation

• Dutch	famine	study
• The	Dutch	famine	started	in	November	1944	- May	1945.	
• Rations	were	as	low	as	400-800	calories	a	day;	less	than	a	quarter	of	
the	recommended	adult	caloric	intake.

• Babies	whose	mothers	went	through	the	Dutch	famine
• lower	birth	weights
• increased	risk	of	cardiovascular	diseases	and	other	adverse	health	outcomes	
in	adulthood	



Methylation	is	tissue	and	cell-specific

Most	studies	done	in	blood	due	
to	ease	of	sample	collection



Methylation	is	tissue	and	cell-specific

• Any	tissue	suitable	if	the	epigenetic	variation	is	present	soma-wide	
(e.g.	if	induced	during	developmental	reprogramming	in	early	
embryogenesis).

• If	changes	that	occur	later	in	life, alternative	tissue	sources	need	to	be	
explored

• Tissue	heterogeneity	- tissues	are	composed	of	multiple	cell	types	
(e.g.	blood	contains	>50	distinct	cell	types).	

• Disease	state	itself	can	also	alter	cell	composition	in	a	tissue	(e.g.	
inflamed	tissue	vs	non-inflamed	tissue)



Methylation	can	be	causal	or	consequential

• Methylation	changes	can	be	
driven	by	disease	e.g.	
alterations	in	white	blood	cell	
proportions	in	autoimmune	
disorders	or	altered	metabolic	
regulation	in	type	2	diabetes

Birney	et	al	PLOS	Genetics	2016



Confounding	in	EWAS

• Methylation	may	be	affected	by	many	confounding	factors:
• Environmental	exposures	e.g.	smoking
• Batch	effects
• Ascertainment	bias
• Population	stratification

• Could	adjust	for	PCs	generated	from	GWAS	data	if	available	on	the	same	EWAS	samples

• Methods	such	as	SVA	and	PCA	can	adjust	for	known/unknown	
confounders



Genetic	variants	also	affect	on	methylation

• McRae	et	al.	2013	Genome	Biology
• Investigate	the	role	of	genetic	heritability	in	the	similarity	of	DNA	
methylation	between	generations	

• Family	based	sample	of	614	individuals	from	117	families	consisting	of	
twin	pairs,	their	parents	and	siblings

• After	removing	all	probes	overlapping	SNPs	(1000G	EUR)	average	
genetic	heritability	was	0.187

• Approximately	20%	of	individual	differences	in	DNA	methylation	in	the	
population	are	caused	by	DNA	sequence	variation	that	is	not	located	
within	CpG sites

• SNPs	associated	with	methylation	levels	of	top	heritable	probes	
(mQTLs)



Methylation	is	dynamic



Study	design

Rakyan et	al	Nat	Rev	Gen	2011



Study	design

• Investigating	causal	effect	of	environmental	exposure	on	disease	
outcome

• 2-step	design	
• EWAS	of	environmental	exposure	in	healthy	individuals	to	identify	changes	in	
methylation	as	a	consequence	of	exposure

• Look	at	whether	the	above	methylation	changes	are	associated	with	disease	
in	an	independent	sample.

• Combine	study	designs	e.g.	 a	discordant	monozygotic-twin	stage	
followed	by	a	longitudinal	cohort	stage.



Study	design

• Clearly	define	hypothesis
• Understanding	mechanism	of	disease	– mediating	cell	type	with	high	purity
• Identify	biomarker	of	exposure	or	predictive/prognosis	– use	of	an	accessible	cell	
type/biological	sample

• Can	the	study	design	answer	this	hypothesis
• Understand	any	cell	heterogeneity	in	your	sample
• Effect	size	should	be	evaluated	in	the	context	of	functional	and	biological	
relevance.	E.g.	is	a	methylation	difference	of	1%	large	enough	to	have	an	
impact	on	disease?

• Integrate	data	with	genetic	and	transcriptomic	data	on	same	individuals	to	
determine	causality



Validation

• Technical	validation	using	different	technology	- single	locus–specific	
methylation	techniques	such	as	bisulfite	(pyro)sequencing

• ruling	out	technical	errors	such	as	cross-hybridising probes	or	unrecognised
SNPs

• Biological	validation	of	EWAS	findings	- replicating	study	results	in	
comparable	but	independent	sample



Criteria	for	identification	of	'driver'	
methylation	changes

Michels et	al	Nat.	Methods	2013



Summary	of	EWAS	publications

Michels et	al	Nat.	Methods	2013



Example	1:	Smoking

• Zeilinger et	al
• 450K	array
• Discovery	sample:	 discovery (current N = 262, never N = 749)
• Replication (current N = 236, never N = 232)
• 972	CpG sites	with	differential	methylation	levels	after	Bonferroni	
correction	(p≤1E-07)

• 187	CpG sites	replicated



Zeilinger et	al.	PLOS	ONE	2013

Smoking	EWAS
Top hit 
cg05575921 

Effect in current smokers vs never 
smokers
• Discovery:
–24.40%, p = 2.54E-182, 
explained variance = 41.02%;

• Replication:
–23.29%, p = 1.81E-64, explained 
variance = 39.69%), 

located within the AHRR gene (chr5)



cg05575921	methylation	levels



Prediction	of	smoking	status



Longitudinal	analysis	of	smoking

Two	distinct	classes	of	CpG sites	identified:

• sites	whose	methylation	reverts	to	levels	typical	of	never	smokers	
within	decades	after	smoking	cessation

• sites	remaining	differentially	methylated,	even	more	than	35	years	
after	smoking	cessation.



Example	2:	Age

• Horvath	Genome	Biology 2013
• Identify	age-associated	CpGs in	a	training	set	using	a	penalized	
regression	model	(elastic	net)

• Identified	353	CpGs
• Predicted	age	in	independent	samples	and	multiple	tissues



Horvath	Genome	Biology 2013

Example	2:	Age



Prediction	of	age	using	Horvath	CpGs in	a	
Chinese	cohort	



Methylation	age	calculator

• https://labs.genetics.ucla.edu/horvath/dnamage/



Example	3:	BMI	and	height

• Shah	et	al	American	Journal	of	Human	Genetics	2014
• Discovery	of	BMI-associated	CpGs in	2	independent	samples	(LBC	and	
Lifelines)

• Generate	genetic	risk	scores	from	BMI	GWAS	SNPs	and	determine	if	
genetic	risk	score	and	methylation	risk	scores	are	independently	
associated	with	BMI

• Repeat	for	height.



Methods

• Study	A	(population	cohort)	– EWAS	on	BMI	->	significant	probelist A
• Study	B	(old	individuals	70+)	– EWAS	on	BMI	->	significant	probelist B
• Calculate	methylation	BMI	risk	score	in	study	A	based	on	probelist B
• Calculate	methylation	BMI	risk	score	in	study	B	based	on	probelist A
• Proportion	of	variance	in	BMI	explained	by	methylation	score	in	each	study
• Generate	genetic	scores	for	BMI	in	each	study	using	SNPs	identified	from	
the	largest	BMI	GWAS	(GIANT	consortium)

• Look	at	proportion	of	variance	explained	by	genetic	risk	score
• Are	methylation	and	genetic	risk	scores	independently	associated	with	BMI	
and	height



Example	3:	BMI	and	height



Example	4:	C9orf72	repeat	expansion	

• hexanucleotide repeat	expansion	
GGGGCC	

• 1st Intron	region	of	c9orf72
• Most	common	mutation	identified	

that	is	associated	with	familial	FTD	
and/or	ALS (5–20%	of	patients	
with	sporadic	ALS)

• Length	of	repeat	in	cases	can	
occur	in	the	order	of	100s	and	
varies

• <30	repeats	generally	not	
associated	with	disease



Determining	causality



Mendelian	randomisation

G must be associated with intermediate 
phenotype PA

G must	not	be	associated	with	
confounders.

G	should	only	be	related	to	the	
outcome PB via	PA



Does	genotype	affect	phenotype	via	changes	in	
methylation?

• Instrumental	variable	analysis	or	Mendelian	randomisation analysis
• Step	1:	Is	there	a	SNP	(not	in	the	probe)	that	is	strongly	associated	
with	methylation	levels	(mQTL)

• Step	2:	CpGmeth ~	SNP
• Step	3:	BMI	~	predicted	CpGmeth


