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Outline for Session 3 Lecture

 EWAS analysis

* Inflation in test-statistics

* Interpreting EWAS results

e Study design

* Examples: Smoking, age, BMI and height, ALS



Epigenome-wide association studies

* |dentifies changes in methylation levels at single CpG sites that are associated
with human phenotype/disease

* Similar to analysing SNPs in GWAS

Asscl)uatl)on analysis between each CpG and phenotype of interest (~450,000 association
analyses

Unlike SNPs, DNA methylation measurements considered as quantitative measure.
Linear or logistic regression (for binary dependent variables)

Inter Iretatlon of effect depends on whether methylation is your dependent or independent
variable

CpGmeth ~ smoking + covariates + PCs
disease ~ CpGmeth + covariates + PCs
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Inflation in lambda
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Controlling inflation in EWAS
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Figure 2 | The genomic inflation factor overestimates inflation if a moderated
proportion of true associations is present Sets of test-statistics were generated with different
amounts of true associations (20%, 10% and 5%) but without any true inflation, i.e., the inflation
factor should be equal to one (Supplemental Methods). The genomic inflation factor was
calculated as the square-root of the median of squared test-statistics divided by 0.456, the
median of chi-square distribution with one degree of freedom?.

Simulation study showing
that the genomic inflation
factor depends on the
number of true associations
genomic inflation factor
commonly overestimates
the true level of test-
statistic inflation in EWAS
and TWAS



Controlling inflation in EWAS

* http://genomebiology.biomedcentral.com/articles/10.1186/s13059-
016-1131-9 Published Jan 2017

* EWASs and TWASs are prone not only to significant inflation but also
bias of the test statistics

* Not properly addressed by GWAS-based methodology (i.e. genomic
control) or approaches to control for unmeasured confounding (e.g.
RUV, sva and cate).

* Method to estimate the empirical null distribution using Bayesian
statistics.

* http://bioconductor.org/packages/bacon/.




Interpretation of EWAS much
more complicated than GWAS

Study design very important



Advantage of GWAS

* Genotype is constant from birth
* Genotype comes before phenotype

* no issue of reverse causation i.e. phenotype does not cause changes in
genotype.

* Genetic variants assumed to be randomly assigned with respect to
the characteristics of individual, therefore minimised confounding
bias

* Ascertainment bias
* Population stratification (which can be corrected for)



Methylation is dynamic

Differences in global
5mC DNA content in
monozygotic twins

% S5mC

3-year-old S50-year-old
twins twins

Fraga et al PNAS 2005



Methylation is dynamic

Life-point DNA methylation factors

Fertilisation Pregnancy Infancy Young Adult Senior
Parent-of-origin Maternal diet Early life Environmental, Age-related
(imprinted genes) exposure to diet, lifestyle changes
microbes

http://ib.bioninja.com.au/_Media/methylation-factors_med.jpeg



Methylation during development

DNA Methylation
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In utero environment and methylation

Pregnant mother fed diet
supplemented with compounds
rich in methyl donor groups

Pregnant mom fed
regular mouse food
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Offspring
predominantly
brown and in
good health

Offspring
mainly look
like mother
and in poorer
health




In utero environment and methylation

* Dutch famine study
* The Dutch famine started in November 1944 - May 1945.

e Rations were as low as 400-800 calories a day; less than a quarter of
the recommended adult caloric intake.

* Babies whose mothers went through the Dutch famine

* lower birth weights

* increased risk of cardiovascular diseases and other adverse health outcomes
in adulthood



Methylation is tissue and cell-specific
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Most studies done in blood due
to ease of sample collection



Methylation is tissue and cell-specific

* Any tissue suitable if the epigenetic variation is present soma-wide
(e.g. if induced during developmental reprogramming in early
embryogenesis).

* If changes that occur later in life, alternative tissue sources need to be
explored

* Tissue heterogeneity - tissues are composed of multiple cell types
(e.g. blood contains >50 distinct cell types).

* Disease state itself can also alter cell composition in a tissue (e.g.
inflamed tissue vs non-inflamed tissue)



Methylation can be causal or consequential

CELLULAR HYPOTHESIS (‘nlll la

(=

* Methylation changes can be
driven by disease e.g.
alterations in white blood cell
proportions in autoimmune
disorders or altered metabolic
regulation in type 2 diabetes

Epigenetic and
functional change

B .
w'l | ,“\ |
Control

Birney et al PLOS Genetics 2016



Confounding in EWAS

* Methylation may be affected by many confounding factors:
* Environmental exposures e.g. smoking
* Batch effects
e Ascertainment bias

* Population stratification
* Could adjust for PCs generated from GWAS data if available on the same EWAS samples

* Methods such as SVA and PCA can adjust for known/unknown
confounders



Genetic variants also affect on methylation

* McRae et al. 2013 Genome Biology

* Investigate the role of genetic heritability in the similarity of DNA
methylation between generations

* Family based sample of 614 individuals from 117 families consisting of
twin pairs, their parents and siblings

e After removinE all probes overlapping SNPs (1000G EUR) average
genetic heritability was 0.187

* Approximately 20% of individual differences in DNA methylation in the
population are caused by DNA sequence variation that is not located
within CpG sites

* SNPs associated with methylation levels of top heritable probes
(mQTLs)



Methylation is dynamic

-
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Methylation

causal disease pathway via

=2 methylation changes

—> TEVerse causation
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Study design

Key advantage Key disadvantage
Case versus control (singletons)

Cannot easily control
Many cohorts exist for environmental and
it genetic confounders
Families
&:;t::ly Few large cohorts
inheritance [ UR=Hpeen

Disease-discordant monozygotic twins

Can control for Few large cohorts
genetics of this type exist

Prospectively sampled, longitudinal

Can establish Slow and difficult
Q_W_’ ' cavsaly toestablih

Nature Reviews | Genetics

Rakyan et al Nat Rev Gen 2011



Study design

* Investigating causal effect of environmental exposure on disease
outcome
e 2-step design
 EWAS of environmental exposure in healthy individuals to identify changes in
methylation as a consequence of exposure

* Look at whether the above methylation changes are associated with disease
in an independent sample.

* Combine study designs e.g. a discordant monozygotic-twin stage
followed by a longitudinal cohort stage.



Study design

* Clearly define hypothesis
* Understanding mechanism of disease — mediating cell type with high purity

* |dentify biomarker of exposure or predictive/prognosis — use of an accessible cell
type/biological sample

* Can the study design answer this hypothesis
* Understand any cell heterogeneity in your sample

 Effect size should be evaluated in the context of functional and biological
relevance. E.g. is a methylation difference of 1% large enough to have an
impact on disease?

* Integrate data with genetic and transcriptomic data on same individuals to
determine causality



Validation

* Technical validation using different technology - single locus—specific
methylation techniques such as bisulfite (pyro)sequencing

* ruling out technical errors such as cross-hybridising probes or unrecognised
SNPs

* Biological validation of EWAS findings - replicating study results in
comparable but independent sample



Criteria for identification of 'driver’
methylation changes

Confidence that methylation difference mediates biological pathway

Increase confidence Decrease confidence

Statistical ) o Does not meet predefined significance threshold that takes into

o Reaches genome-wide significance ) ,

significance account multiple testing

Effect size

(difference in Large (>10% difference) Small (<5% difference)

methylation)

Bias and Bias and confounding are prevented by design or Bias or uncontrolled confounding may exist and explain the

confounding controlled for in the analyses differences observed

. , Differential methylation is in a region that may Current knowledge cannot explain the influence of the observed

Genomic location . o , . ) . o
impact regulation of transcription difference in methylation at that locus on regulation of transcription

Functional . .
Affects expression Does not affect expression

relevance

Biological ) ) . Biological relevance of DMR location unknown or unrelated to
Gene codes for known biological function

relevance phenotype

Validation Findings are replicated in an independent human No validation of results attempted or results are not replicated in a

idati

cohort or animal model using a different technique  validation study

Michels et al Nat. Methods 2013



Summary of EWAS publications
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Example 1: Smoking

* Zeilinger et al
* 450K array
* Discovery sample: discovery (current N=262, never N=749)

* Replication (current N=236, never N=232)

e 972 CpG sites with differential methylation levels after Bonferroni
correction (p<1E-07)

* 187 CpG sites replicated



Smoking EWAS

a .
Current vs. never smokers of F4
T .
=
=
>
e
(=]
4
' i
! I A Rd ;
. E P L D "d‘l |. {.i'..
Current vs. never smokers of F3
=
"}
=
g
e
o
e,
g
T
i ey 3 leine. s .
- s - - AR Tl “ v
SHRPCRSSCRENWIF T
c Former vs. never smokers of F4
)
8.
[
>
e
o
e,
g
v '
; v - o .
pese® .,I'.-. "-fl-lo. i.."'i.._-- 2 %y
0 " 12 3

2 3 4 5 (] 7 8 9 1 1 14 15 16 17 1819202122

Chromosome
I Hypermethylated CpG sites

Il Hypomethylated CpG sites

Top hit
cg05575921

Effect in current smokers vs never
smokers

« Discovery:

—24.40%, p=2.54E-182,

explained variance=41.02%;

* Replication:
—23.29%, p=1.81E-64, explained
variance=39.69%),

located within the AHRR gene (chrd)

Zeilinger et al. PLOS ONE 2013



cg05575921 methylation levels
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Prediction of smoking status
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Longitudinal analysis of smoking

Two distinct classes of CpG sites identified:

* sites whose methylation reverts to levels typical of never smokers
within decades after smoking cessation

* sites remaining differentially methylated, even more than 35 years
after smoking cessation.



Example 2: Age

* Horvath Genome Biology 2013

* |[dentify age-associated CpGs in a training set using a penalized
regression model (elastic net)

* |dentified 353 CpGs
* Predicted age in independent samples and multiple tissues



Example 2: Age
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Prediction of age using Horvath CpGs in a

Chinese cohort

All MND Case and Contorl Samples
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Methylation age calculator

* https://labs.genetics.ucla.edu/horvath/dnamage/

DNA Methylation Age Calculator

Important Hints Submit Methylation Data

Steve Horvath (shorvath@mednet.ucla.edu)
Main webpage
http://labs.genetics.ucla.edu/horvath/dnamage

(link opens in a new tab/window)

Abstract

This webpage contains information on how to calculate DNA methylation (DNAm) age based on data measured using the lllumina Infinium platform
(e.g. 450K or 27K data).

The age calculator presented below automatically outputs the estimated DNAm age and optionally various measures of age acceleration, predictive
accuracy, and data quality. After uploading the data, the function will return an Excel file whose rows report the estimated DNAm age of each subject
and optionally additional information. If you only submit DNA methylation data, then you will only obtain an estimate of DNAm age.

If you want to obtain various measures of age acceleration and array quality, then you need to upload an additional sample annotation file as described
below.



Example 3: BMI and height

* Shah et al American Journal of Human Genetics 2014

* Discovery of BMI-associated CpGs in 2 independent samples (LBC and
Lifelines)

* Generate genetic risk scores from BMI GWAS SNPs and determine if
genetic risk score and methylation risk scores are independently
associated with BMI

* Repeat for height.



Methods

e Study A (population cohort) — EWAS on BMI -> significant probelist A
 Study B (old individuals 70+) — EWAS on BMI -> significant probelist B

* Calculate methylation BMI risk score in study A based on probelist B

* Calculate methylation BMI risk score in study B based on probelist A

* Proportion of variance in BMI explained by methylation score in each study

* Generate genetic scores for BMI in each study using SNPs identified from
the largest BMI GWAS (GIANT consortium)

* Look at proportion of variance explained by genetic risk score

* Are methylation and genetic risk scores independently associated with BMI
and height



Example 3: BMI and height
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Example 4: C9orf72 repeat expansion

hexanucleotide repeat expansion
GGGGCC

15t Intron region of c9orf72

Most common mutation identified
that is associated with familial FTD
and/or ALS (5-20% of patients
with sporadic ALS)

Length of repeat in cases can
occur in the order of 100s and
varies

<30 repeats generally not
associated with disease

C9orf72 gene
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Determining causality

-

Environment

Methylation

causal disease pathway via

=2 methylation changes

—> TEVerse causation

>

Genetics

S~—_

reverse
causation

Disease




Mendelian randomisation

G must be associated with intermediate

G > P, > P, phenotype P,
Genetic Intermediate Outcome G must not be associated with
variable phenotype phenotype confounders.

G should only be related to the
outcome Py via P,

Confounders

Nature Reviews | Genetics



Does genotype affect phenotype via changes in
methylation?

* Instrumental variable analysis or Mendelian randomisation analysis

* Step 1: Is there a SNP (not in the probe) that is strongly associated
with methylation levels (mQTL)

e Step 2: CpoGmeth ~ SNP
» Step 3: BMI ~ predicted CpGmeth



