
# Outline for Session 4 (1.30 – 3.00pm)

- Multiple-testing
- Bumphunting
- Annotation
- Example of DNA methylation studies that are not EWAS
  - Genetic control of DNA methylation
  - Epigenetic aging

### Probe correlation



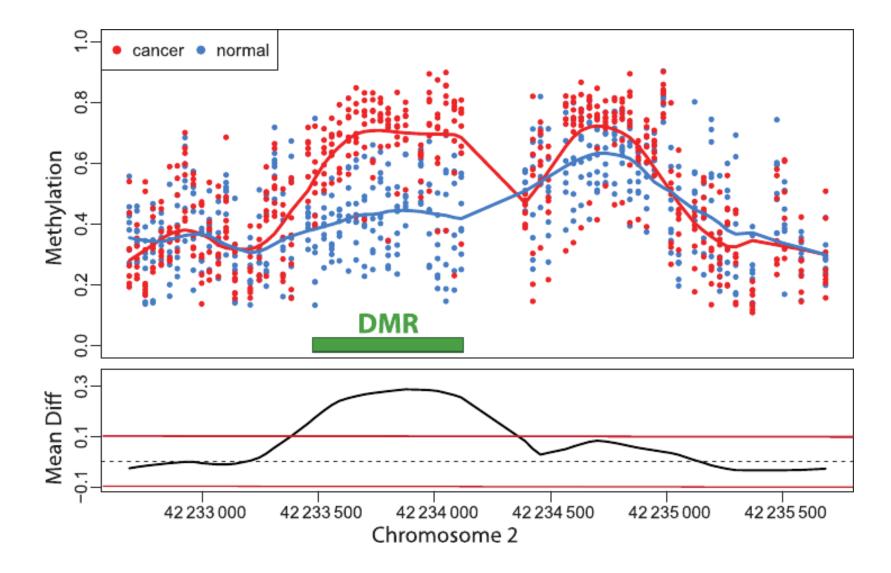
Ong et al Aging Cell 2013

## Multiple testing correction

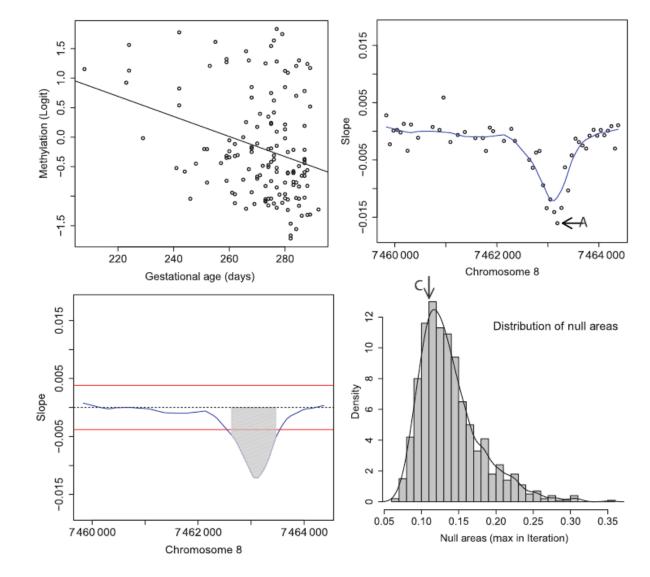
- We are performing ~400,000 test per EWAS
- Expect a large number of nominally significant hits
  - 20,000 at p < 0.05
  - 400 at p < 0.001
- Need to determine an appropriate significance threshold

# Multiple testing correction – "The Ugly"

- Use 5 x 10<sup>-8</sup> because that is what we use in GWAS...
- We know the correlation structure in DNA methylation does not extend as far as SNP LD
- Probably not bad for the current generation of arrays...


## Multiple testing correction – "The Bad"

- False Discovery Rate
- DNA methylation data is correlated
- Standard FDR approaches assume the data is independent
- Results in an inflation in the FDR


# Multiple testing correction – "The Good"

- Bonferroni correction
- Divide 0.05 by the number of test performed
- Assumes all tests are independent
- Results in conservative threshold (may miss true positives)
- 450K array 450,000 tests p < 1.1 x 10<sup>-7</sup>
- EPIC array 850,000 tests p < 5 x 10<sup>-8</sup>

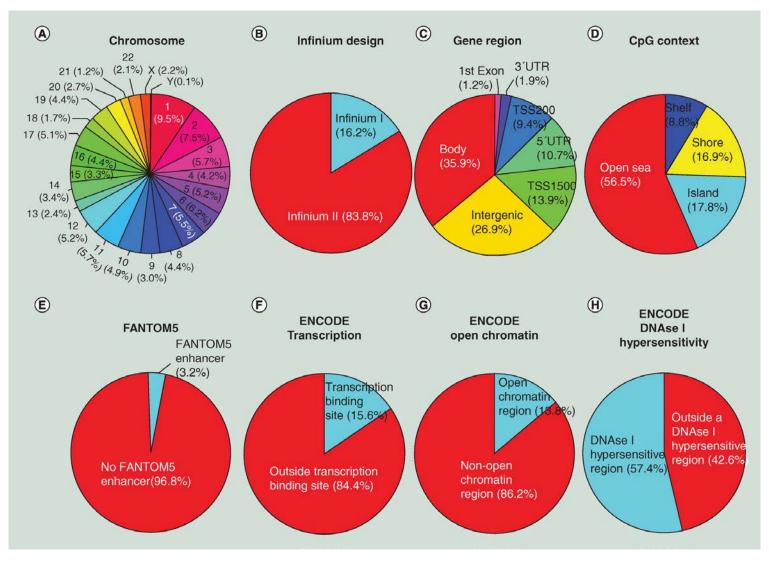
- Several methods have been proposed to look for "bumps" in EWAS results
- Look at combined evidence of association across multiple methylation sites
- May improve power if a region has multiple independent signals



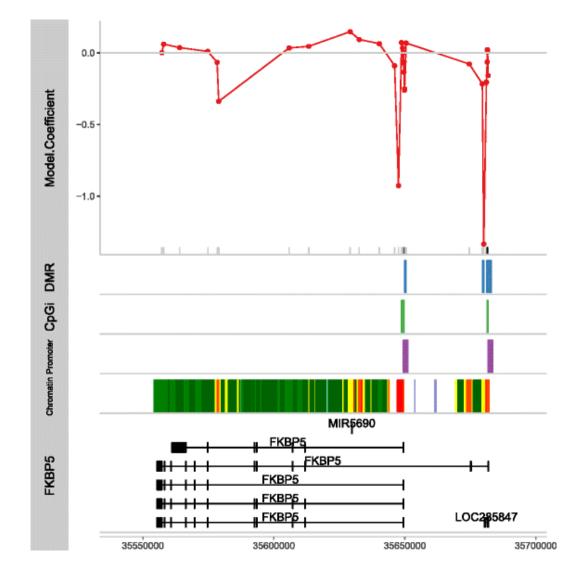
• Bumphunter



- DMRcate
- Applies a similar approach to bumphunter
- Gives marked better results


### **Functional Annotation**

• A range of annotations have been generated for Illumina array data


#### • Includes

- Chromosome, position
- Nearest genes and distance to them
- Position relative to CpG islands
- Probe sequence
- SNPs in probe binding region
- ...

### **Functional Annotation**



### **Functional Annotation**

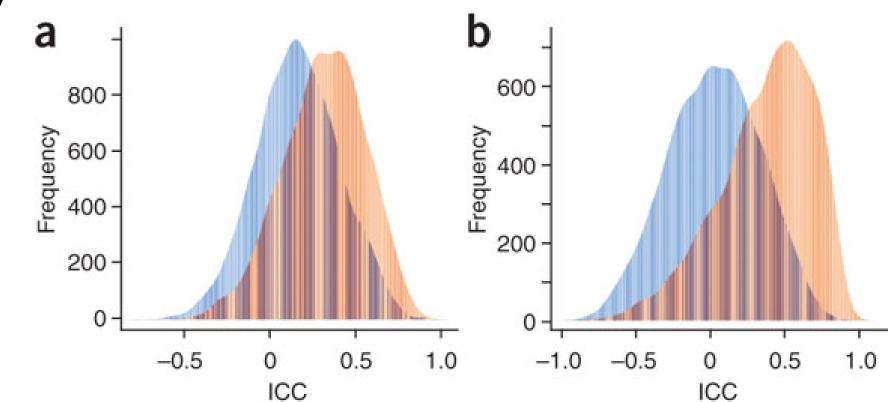


## Functional annotation

#### GREAT improves functional interpretation of *cis*-regulatory regions

Cory Y McLean<sup>1</sup>, Dave Bristor<sup>1,2</sup>, Michael Hiller<sup>2</sup>, Shoa L Clarke<sup>3</sup>, Bruce T Schaar<sup>2</sup>, Craig B Lowe<sup>4</sup>, Aaron M Wenger<sup>1</sup> & Gill Bejerano<sup>1,2</sup>

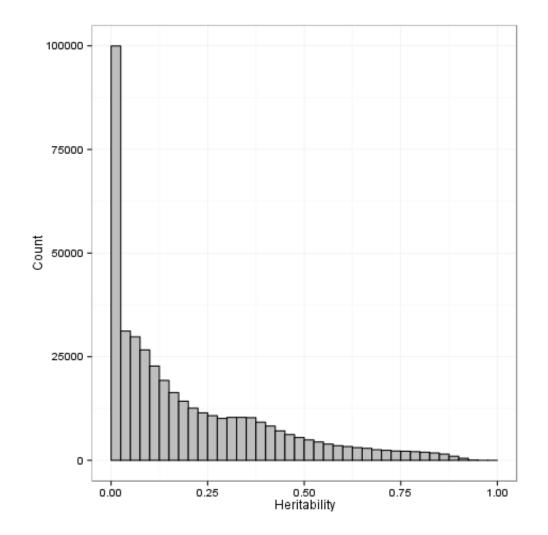
http://bejerano.stanford.edu/great/public/html/index.php

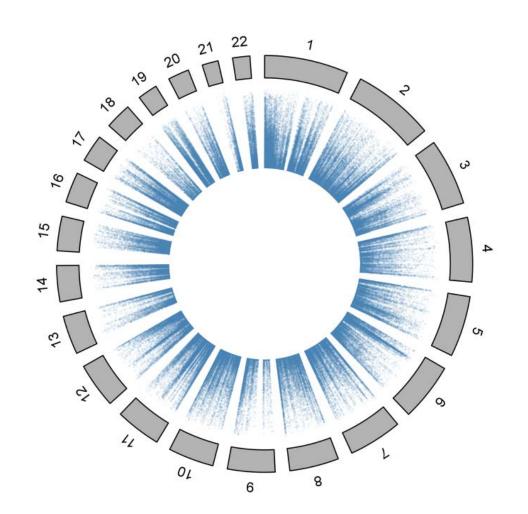

| GO BIO         | logical Process (   | 20+ terms)                       |                         |                                   |                                        |                                  |                                 |                                    |                                                                        |                                               |                                                           |                                                   | Global controls                                               | 3                       |                                              |                                                           |                                                  |                                              |                                                    |
|----------------|---------------------|----------------------------------|-------------------------|-----------------------------------|----------------------------------------|----------------------------------|---------------------------------|------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------|----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------|
| able controls: | Export \$           | Shown top rows in this table: 20 |                         | Set Term annotation count: Min: 1 |                                        | Max: Inf                         | Set                             | Visualize this table               |                                                                        | e: [select one]                               |                                                           | ¢                                                 |                                                               |                         |                                              |                                                           |                                                  |                                              |                                                    |
|                | Term<br>Name        | Binom<br>Rank                    | Binom<br>Raw<br>P-Value | Binom<br>FDR Q-Val                | Binom<br>Fold<br>Enrichment            | Binom<br>Observed<br>Region Hits | Binom<br>Region Set<br>Coverage | Hyper<br>Rank                      | Hyper<br>FDR Q-Va                                                      | Hyper<br>Fold<br>Enrichme                     | Obs                                                       | rper Hype<br>erved Tota<br>e Hits Gene            | I Gene Set                                                    |                         |                                              |                                                           |                                                  |                                              |                                                    |
| egulation of   | cellular senescence | 1                                | 1.1180e-26              | 1.1672e-22                        | 44.9592                                | 20                               | 8.51%                           | 13                                 | 2.2239e-2                                                              | 21.0268                                       | 3                                                         | 4 12                                              | 1.40%                                                         |                         |                                              |                                                           |                                                  |                                              |                                                    |
| keletal syste  | em development      | 58                               | 1.5432e-9               | 2.7778e-7                         | 2.8964                                 | 40                               | 17.02%                          | 1                                  | 1.3446e-3                                                              | 3.6001                                        | 2                                                         | 403                                               | 8.04%                                                         |                         |                                              |                                                           |                                                  |                                              |                                                    |
| onnective ti   | ssue development    | 82                               | 5.4523e-8               | 6.9418e-6                         | 3.5668                                 | 25                               | 10.64%                          | 4                                  | 4.6218e-3                                                              | 4.7226                                        | i - 1                                                     | 14 187                                            | 4.90%                                                         |                         |                                              |                                                           |                                                  |                                              |                                                    |
| artilage dev   | elopment            | 86                               | 8.9515e-8               | 1.08 <b>O</b> Hu                  | 1.08 C Human Phenotype (20+ terms)     |                                  |                                 |                                    |                                                                        |                                               |                                                           |                                                   |                                                               |                         |                                              |                                                           |                                                  | Gle                                          | obal control                                       |
|                |                     |                                  |                         |                                   |                                        |                                  |                                 |                                    |                                                                        |                                               |                                                           |                                                   |                                                               |                         |                                              |                                                           |                                                  |                                              |                                                    |
|                |                     |                                  |                         | Table co                          | <u> </u>                               | Term                             | Shown top row                   | Binom                              | Binom<br>Raw                                                           | Binom                                         | Binom<br>Fold                                             | on count: Min:<br>Binom<br>Observed               | Binom<br>Region Set                                           | Hyper                   | Hyper                                        | ze this table:<br>Hyper<br>Fold                           | Hyper<br>Observed                                | Hyper<br>Total                               | +<br>Hyper<br>Gene Set                             |
|                |                     |                                  |                         |                                   |                                        | Term<br>Name                     |                                 | Binom<br>Rank                      | Binom<br>Raw<br>P-Value F                                              | Binom<br>DR Q-Val El                          | Binom<br>Fold<br>Inrichment                               | Binom<br>Observed<br>Region Hit:                  | Binom<br>Region Set<br>Coverage                               |                         | Hyper<br>FDR Q-Val                           | Hyper<br>Fold<br>Enrichment                               | Hyper<br>Observed<br>Gene Hits                   | Hyper<br>Total<br>Genes                      | Gene Set<br>Coverage                               |
|                |                     |                                  |                         | Abnorr                            | nality of body h                       | Term<br>Name                     |                                 | Binom<br>Rank                      | Binom<br>Raw<br>P-Value F<br>A                                         | Binom<br>DR Q-Val El<br>1.5318e-6             | Binom<br>Fold<br>nrichment<br>2.7300                      | Binom<br>Observed<br>Region Hit<br>44             | Binom<br>Region Set<br>Coverage<br>18.72%                     | Hyper                   | Hyper<br>FDR Q-Val<br>6.8587e-5              | Hyper<br>Fold<br>Enrichment<br>3.2110                     | Hyper<br>Observed<br>Gene Hits<br>31             | Hyper<br>Total<br>Genes<br>609               | Gene Set<br>Coverage<br>10.84%                     |
|                |                     |                                  |                         | Abnorr<br>Growth                  | nality of body h                       | Term<br>Name                     |                                 | Binom<br>Rank                      | Binom<br>Raw<br>P-Value F<br>.2462e-9 1<br>2.5444e-9 2                 | Binom<br>CDR Q-Val<br>E1.5318e-6<br>2.6063e-6 | Binom<br>Fold<br>nrichment<br>2.7300<br>2.5543            | Binom<br>Observed<br>Region Hit:<br>44<br>47      | Binom<br>Region Set<br>Coverage<br>18.72%<br>20.00%           | Hyper<br>Rank<br>1<br>5 | Hyper<br>FDR Q-Val<br>6.8587e-5<br>6.7258e-4 | Hyper<br>Fold<br>Enrichment<br>3.2110<br>2.6972           | Hyper<br>Observed<br>Gene Hits<br>31<br>31       | Hyper<br>Total<br>Genes<br>609<br>725        | Gene Set<br>Coverage<br>10.84%<br>10.84%           |
|                |                     |                                  |                         | Abnorr                            | nality of body h                       | Term<br>Name                     |                                 | Binom<br>Rank                      | Binom<br>Raw<br>P-Value F<br>.2462e-9 1<br>2.5444e-9 2                 | Binom<br>DR Q-Val El<br>1.5318e-6             | Binom<br>Fold<br>Inrichment<br>2.7300<br>2.5543<br>2.6986 | Binom<br>Observed<br>Region Hit<br>44<br>47<br>40 | Binom<br>Region Set<br>Coverage<br>18.72%<br>20.00%<br>17.02% | Hyper                   | Hyper<br>FDR Q-Val<br>6.8587e-5              | Hyper<br>Fold<br>Enrichment<br>3.2110<br>2.6972<br>3.2207 | Hyper<br>Observed<br>Gene Hits<br>31<br>31<br>29 | Hyper<br>Total<br>Genes<br>609<br>725<br>568 | Gene Set<br>Coverage<br>10.84%<br>10.84%<br>10.14% |
|                |                     |                                  |                         | Abnorr<br>Growth<br>Short s       | nality of body h<br>n delay<br>stature | Term<br>Name                     |                                 | Binom<br>Rank<br>5 1<br>6 2<br>7 1 | Binom<br>Raw<br>P-Value F<br>1.2462e-9 1<br>2.5444e-9 2<br>1.1038e-8 5 | Binom<br>CDR Q-Val<br>E1.5318e-6<br>2.6063e-6 | Binom<br>Fold<br>nrichment<br>2.7300<br>2.5543            | Binom<br>Observed<br>Region Hit:<br>44<br>47      | Binom<br>Region Set<br>Coverage<br>18.72%<br>20.00%           | Hyper<br>Rank<br>1<br>5 | Hyper<br>FDR Q-Val<br>6.8587e-5<br>6.7258e-4 | Hyper<br>Fold<br>Enrichment<br>3.2110<br>2.6972           | Hyper<br>Observed<br>Gene Hits<br>31<br>31       | Hyper<br>Total<br>Genes<br>609<br>725        | Gene Set<br>Coverage<br>10.84%<br>10.84%           |

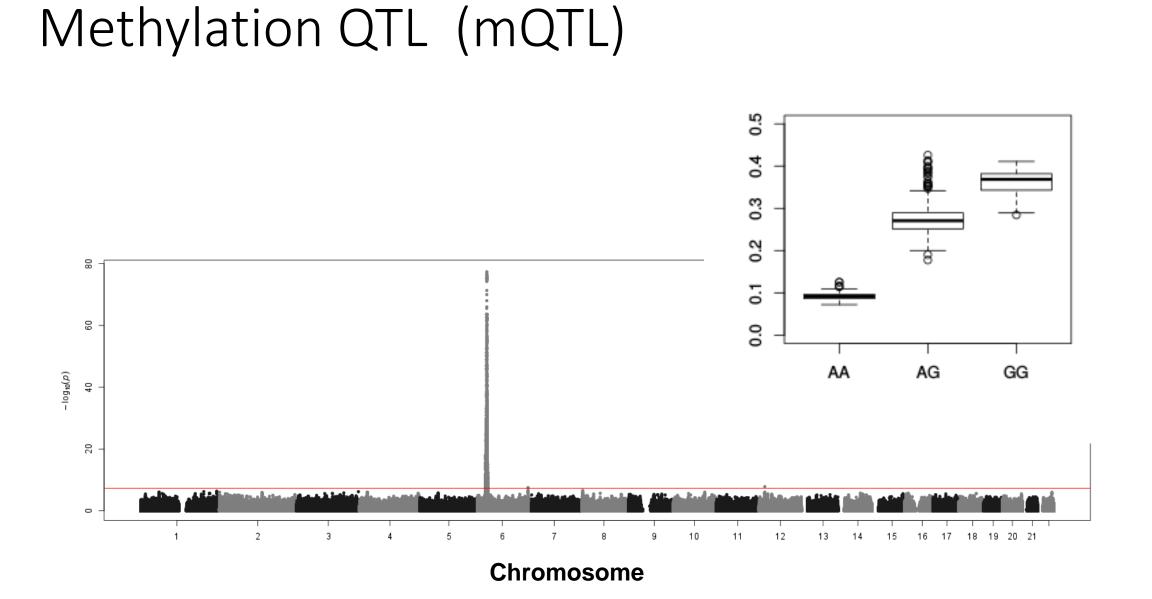
# Genetic Control of DNA methylation

- There is much interest in the transmission of DNA methylation across generations
- Potential to pass on environmental insults across generations?
- Epigenetic inheritance?
- Genetic influences on DNA methylation?

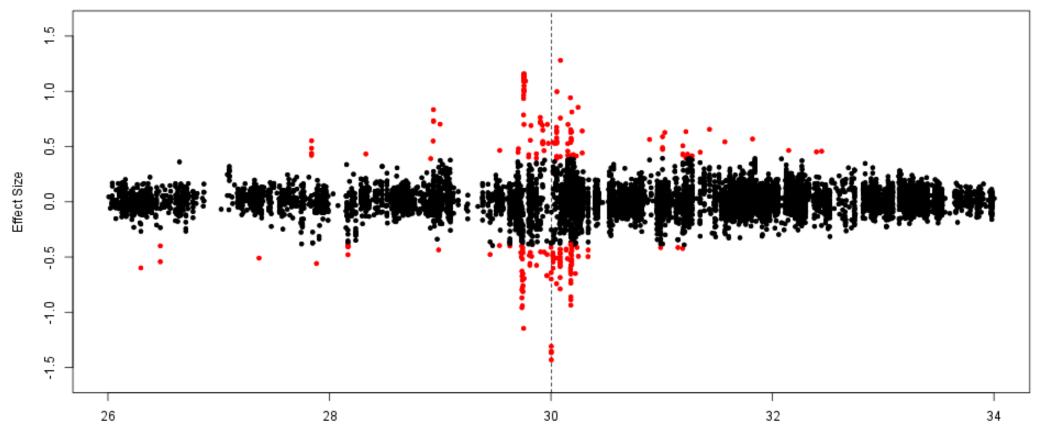
### Genetic Control of DNA methylation


- Kamisky et al 2007
- MZ twins have have more similar DNA methylation than DZ twins
- Chorionicity has an effect



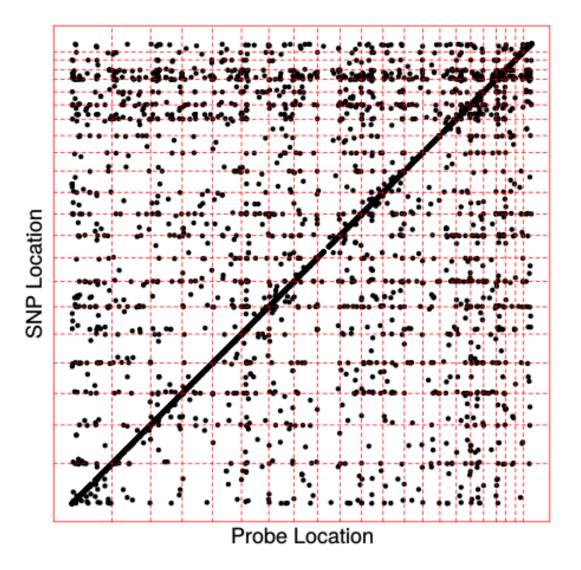


## Familial Correlations of DNA methylation

| Relationship     | Pairs (n)            | Correlation | Expected <sup>a</sup> |  |  |
|------------------|----------------------|-------------|-----------------------|--|--|
| MZ twins         | 67                   | 0.200       | $h^2$                 |  |  |
| DZ twins         | 111                  | 0.109       | h²/2                  |  |  |
| Siblings         | 262 <sup>b</sup>     | 0.090       | h²/2                  |  |  |
| Parent-Offspring | 362 <sup>b</sup>     | 0.089       | h²/2                  |  |  |
| Mother-Offspring | 190                  | 0.097       | h²/2                  |  |  |
| Father-Offspring | 172                  | 0.085       | h²/2                  |  |  |
| Parent-Parent    | 58                   | 0.023       | 0                     |  |  |
| Unrelated        | 187,331 <sup>b</sup> | -0.002      | 0                     |  |  |


## Heritability








### Methylation QTL



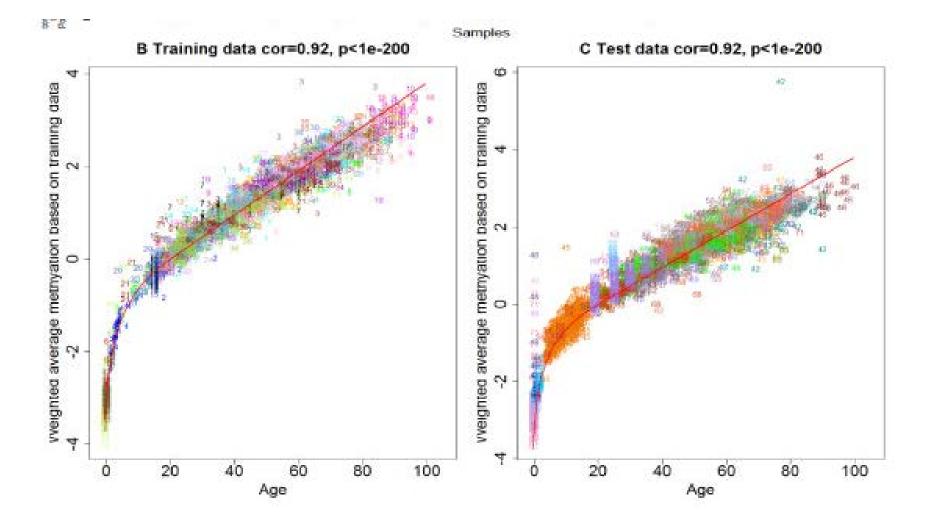
Position (Mbp)

### Methylation QTL Everywhere!



## Epigenetic Clock

- DNA methylation is correlated with age
  - Global change to high DNA methylation
  - Individual loci have varying amounts of change with age
- Several methods have been presented to use DNA methylation data to make a predictor of age

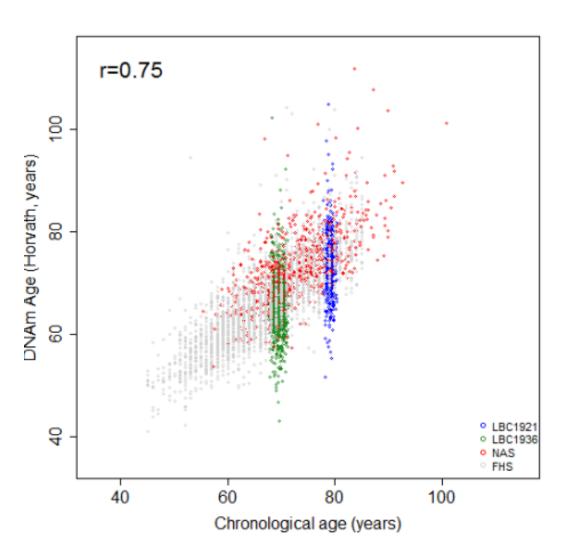

DNA methylation age of human tissues and cell types

Steve Horvath 🖾

 Genome Biology
 2013
 14:3156
 DOI: 10.1186/gb-2013-14-10-r115
 © Horvath; licensee BioMed Central Ltd. 2013

 Received:
 10 June 2013
 Accepted: 4 October 2013
 Published: 10 December 2013

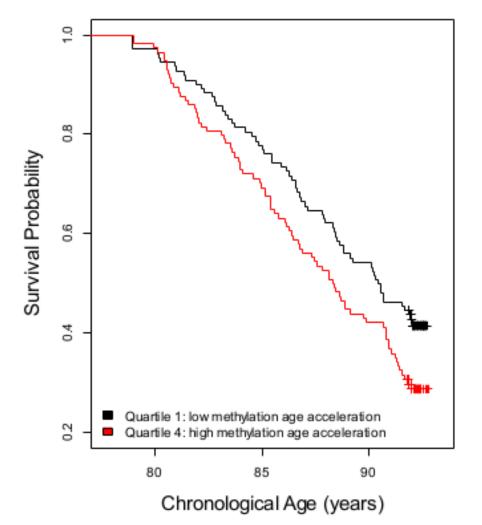
### **DNA Methylation Age**




# DNA methylation age

- Horvath demonstrates his measure:
  - Is applicable to a wide range of tissues
  - Works in chimpanzees
  - Stem cells have a DNA methylation age close to zero
  - Is negatively associated with number of mutations found in cancer cells

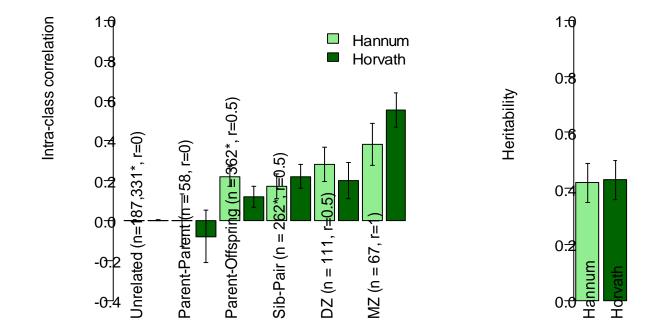
### Age Acceleration


- There is variation in DNA methylation age for people with the same chronological age
- This is referred to as age acceleration
- Is this variation important?



# Age Acceleration

- People with higher age acceleration have a higher rate of mortality than those with low age acceleration
- Effect still present after correcting for
  - Smoking
  - BMI
  - CVD
  - Removing people who died within five years of measurement
- Effect on mortality is independent of telomere length






## Age Acceleration

- Has been associated with
  - Lung function
  - Grip strength
  - Cognition
  - Cardiovascular disease
  - ....

### Age Acceleration is Heritable

