
Genomic Prediction and Selection







Course overview
• Day 1

– Genomic prediction with SNP array genotypes (BLUP, 
GBLUP and Bayesian methods)

– What drives the accuracy of genomic prediction – theory 
and in practise

• Day 2
– Brief introduction to sequence data and implications for 

genomic prediction
– Genomic prediction in practise 1.  Combining genomic 

prediction with other information – selection index and 
multiple trait approaches

– Genomic prediction in practise 2.  Genomic selection in 
breeding programs



Quantitative traits
• Genetic variation observed for many (all?) traits of 

economic importance in livestock and plant species
• One gene or many?



Yield in Rice



Yield in Rice

“our results suggest that multiple loci with relatively 

small effects contribute to the phenotypic variance”



Human height





Complex traits

• Large number of causative mutations 
(quantitative trait loci, QTL) for most 
complex traits

• Variance explained by individual markers 
will be small

• Use large numbers of DNA markers to 
simultaneously track all QTL

• Sequence data -> includes causative 
mutations



The Revolution
• As a result of sequencing animal and plant 

genomes, have a huge amount of information 
on variation in the genome 
– at the DNA level

• Most abundant form of variation are Single 
Nucleotide Polymorphisms (SNPs)



Ø 1000 Genomes project (Pilot) 
Ø ~15 mill SNPs 
Ø ~7 mill SNPs with minor allele >5%
Ø ~100,000-300,000 cSNPs
Ø ~50,000 nonsynonymous cSNPs -> change protein structure
Ø Every individual carries 250-300 loss of function mutations! 



The Revolution
• SNP chips available for 

– Sheep, Cattle (50K, 800K), Pigs, 
– Chickens
– Salmon
– Horse, Dog

• Plants
– Maize, Wheat 
– Cotton, Soybean under development

• Cost?
– ~ $100-200 USD for 60K SNPs

• Genotyping by re-sequencing?
– 40 million SNPs in cattle
– Insertion deletions
– Copy number variants?





Sequence data vs SNP arrays

• Genomic selection (all hypotheses!)
– No longer have to rely on LD, causative 

mutation actually in data set
• Higher accuracy of prediction?
• Better prediction across breeds/populations?
• Better persistence of accuracy across generations

• But have sequencing errors, genotype 
errors, expense…….



Aim
• Provide you with genome wide association and 

genomic prediction methodologies to exploit high 
density genotypes, up to whole genome sequence 
data, in livestock and plant improvement



Course overview
• Day 1

– Genomic prediction with SNP array genotypes (BLUP, 
GBLUP and Bayesian methods)

– What drives the accuracy of genomic prediction – theory 
and in practise

• Day 2
– Brief introduction to sequence data and implications for 

genomic prediction
– Genomic prediction in practise 1.  Combining genomic 

prediction with other information – selection index and 
multiple trait approaches

– Genomic prediction in practise 2.  Genomic selection in 
breeding programs



• Introduction to genomic prediction

• Genomic prediction with BLUP/GBLUP

• Genomic prediction with Bayesian methods

• Examples in real data

Genomic prediction



Genomic prediction
• Problem marker assisted selection is 

only a proportion of genetic variance 
is tracked with markers
– Eg. 10 QTL << 5% of the genetic variance

• Alternative is to trace all segments of 
the genome with markers
– Divide genome into chromosome 

segments based on marker intervals?
– Capture all QTL = all genetic variance  



Genomic selection
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Genomic prediction
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Genomic prediction
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Genomic prediction
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• Predict genomic breeding values as 
sum of effects over all SNP
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• Predict genomic breeding values as 
sum of effects over all SNP
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Number of SNP

Genomic prediction



• Genomic prediction exploits linkage 
disequilibrium
– Assumption is that markers picking up 

QTL and will have same effect across the 
whole population

• Possible within dense marker maps now 
available

Genomic prediction



• Genomic prediction avoids bias in 
estimation of effects due to multiple 
testing, as all effects fitted 
simultaneously 

Genomic prediction



Genomic selection



• First step is to predict the 
chromosome segment effects in a 
reference population

• Number of effects >>> than number 
of records

• Eg. 50,000 SNPs
• From ~ 2000 records?
• Need methods that can deal with this 

Genomic prediction



Genomic prediction

• BLUP = best linear unbiased prediction
• Model:

• In BLUP we assume SNP effects come from 
normal distribution with same variance          
E(g) ~ N(0,σg

2)

egX1y iin ++= ∑
=

p

i 1
µ



Genomic prediction with BLUP

• BLUP assumes normal distribution of SNP  
effects
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• BLUP = best linear unbiased prediction
• Then we can estimate segment effects as:

• λ=σe
2 / σg
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Genomic prediction with BLUP



• Example
• A “simulated” data set
• Single chromosome, with 10 markers
• Phenotypes “simulated” 

– overall mean of 1
– an effect for SNP 1 of 2 allele of 1
– normally distributed error term with mean 0 and variance 

1.  

Genomic prediction with BLUP



• Example

• 10 SNPs
• Only 5 phenotypic records.

X

Animal Y 1 2 3 4 5 6 7 8 9 10

1 0.19 0 0 0 0 0 0 1 2 0 2

2 1.23 1 0 0 1 1 1 2 1 0 1

3 0.86 1 0 0 1 0 0 1 1 1 1

4 1.23 1 1 1 1 0 1 2 1 1 1

5 0.45 0 1 1 1 1 1 2 1 0 1

Genomic prediction with BLUP



• Example

• Assume value of 1 for λ
• 1n‘ = [1 1 1 1 1]
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• Example

Mean 0.47
SNP1 0.29
SNP2 -0.05
SNP3 -0.05
SNP4 0.08
SNP5 -0.02
SNP6 0.13
SNP7 0.13
SNP8 -0.08
SNP9 0.11
SNP10 -0.08

Genomic prediction with BLUP



• Now we want to predict GEBV for a group of 
young animals without phenotypes.

• We have the g_hat, and we can get X from their 
haplotypes (after genotyping)…………

∧

= gXGEBV

Progeny X
1 1 1 1 1 1 1 2 1 0 1
2 1 0 0 1 1 1 2 1 0 1
3 1 0 0 1 1 1 2 1 0 1
4 1 0 0 1 1 1 2 1 0 1
5 0 0 0 0 0 0 1 2 0 2

Genomic prediction with BLUP



• GEBV
∧

= gXGEBV

X                                              GEBV
∧

g
1 1 1 1 1 1 2 1 0 1 0.29 0.47
1 0 0 1 1 1 2 1 0 1 -0.05 0.58
1 0 0 1 1 1 2 1 0 1 -0.05 0.58
1 0 0 1 1 1 2 1 0 1 0.08 0.58
0 0 0 0 0 0 1 2 0 2 -0.02 -0.20

0.13
0.13

-0.08
0.11

-0.08

Genomic prediction with BLUP



• Where do we get σg
2 from?

• Can estimate total additive genetic 
variance and divide by number of 
segments, eg σg

2 = σa
2 /p

• If using single markers take account of 
heterozygosity

• Ridge regression (Bayesian approach)
• Cross validation
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Genomic prediction with BLUP



• An equivalent model
• If there are many QTLs whose effects are normally 

distributed with constant variance, 
• Then genomic selection equivalent to replacing the 

expected relationship matrix with the realised or 
genomic relationship matrix (G) estimated from 
DNA markers in normal BLUP equations.
– Gij = proportion of genome that is IBD between animals i 

and j

Genomic prediction with BLUP



• An equivalent model
• Rescale X to account for allele frequencies

–wij = xij – 2pj

• Then breeding values are
– v = Wg (             )

• And

• Then 

∧

= gXGEBV
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• An equivalent model

eZv1y n ++= µ
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• An equivalent model
–Model 1. 

–Model 2. 
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• An equivalent model
–Model 1. 

–Model 2. 

eZv1y n ++= µ

egX1y iin ++= ∑
=
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i 1
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Holstein reference     n = 781

Jersey reference       n = 287

Holstein validation    n = 400

Jersey validation      n = 77



• An equivalent model
• Why use model 2 (GBLUP).

– If number of markers >>> large than number 
of animals, more computationally efficient

– Can be integrated into national evaluations 
more readily? 

– Calculate accuracy of GEBV from inverse 
coefficient matrix

Genomic prediction with BLUP



Genomic selection



• Alternative assumptions regarding the 
distribution of SNP effects

• Introduction to Bayesian methods

• Genomic prediction with Bayesian methods

• Comparison of accuracy of methods

Genomic prediction



Genomic selection



Alternative prior assumptions for SNP effects

• BLUP assumes normally 
distributed QTL effects

• Does not match prior 
knowledge of 
distributions of QTL 
effects for some traits
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Alternative prior assumptions for SNP effects

• Students t distribution?
– BayesA

• Many zero effects and proportion Students t 
distribution?
– BayesB

• Many zero effect and rest normal distribution
– BayesCpi

• Double exponential effects
– BayesianLASSO

• Multiple normal distributions
– BayesMulti, BayesR



Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝



Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝

Probability of 
parameters x given 
the data y (posterior)



Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝

Probability of 
parameters x given 
the data y (posterior)

Is proportional to



Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝

Probability of 
parameters x given 
the data y (posterior)

Is proportional to Probability of 
data y given the 
x (likelihood of 
data)



Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝

Probability of 
parameters x given 
the data y (posterior)

Is proportional to Probability of 
data y given the 
x (likelihood of 
data)

Prior 
probability 
of x



Bayesian methods

• Consider an experiment where we measure height 
of 10 people to estimate average height

• We want to use prior knowledge from many 
previous studies that average height is 174cm 
with standard error 5cm

y=average height + e



Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝

Prior probability of x (average height)
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Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝

Prior probability of x (average height)
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Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝

Prior probability of x (average height)
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Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝
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Bayesian methods
• Bayes theorem
• Less certainty about prior information? Use less informative (flat) 

prior
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Bayesian methods
• Bayes theorem
• Less certainty about prior information? Use less informative (flat) 

prior
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Bayesian methods
• Bayes theorem
• More certainty about prior information? Use more informative prior
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L(y|x)                              P(x)                  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

160 165 170 175 180 185 190

Height

L(
y|

x)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

160 165 170 175 180 185 190

Height

P
(h

ei
gh

t)



Bayesian methods
• Bayes theorem
• More certainty about prior information? Use more informative prior
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Genomic prediction
• Alternative assumptions regarding the 

distribution of SNP effects

• Introduction to Bayesian methods

• Genomic prediction with Bayesian methods

• Comparison of accuracy of methods



Genomic selection
• For some traits 

prior 
knowledge 
suggests t-
distribution of 
effects

• How to 
incorporate this 
into our 
predictions?

-10 -5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty



Genomic selection
• The t distribution

can be presented 
as a two level 
hierarchical model

• Allow different 
variances between 
SNPs (SNP specific 
shrinkage)

• Assume a 
distribution of 
these variances

• Computationally 
easier to deal with 
than original form -10 -5 0 5 10
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Bayesian methods

• Now lets allow different variances of SNP 
effects













































+

+
=






















−

∧

∧

∧

yX

yX
y

σ
σ

σ
σ

p

n

gp

e

g

e

p
'

.
'
'1

.

1

2

2

2
1

2

1

1

pp1pnp

p111n1

pn1nnn

IX'X.X'X'1X

....

X'X.IX'X'1X

X'1.X'1'11

g

g

µ



0.05 0.10 0.15 0.20 0.25

0
10

20
30

40
50

X

Y

-10 -5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty

Distribution of σgj
2      --à Distribution of gj



Bayesian methods

• Prior?
– Inverted chi square convenient for variances
– An inverted chi square with v degrees of freedom 

and scaled by S2, eg. 

– Describes a distribution with 
• mean 

• variance 

– Larger v, more informative prior = more belief 
about variance
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Bayesian methods

v=2



Bayesian methods

v=2

v=20
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Bayesian methods
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Bayesian methods

• No closed form solution

• Markov Chain Monte Carlo sampling 
(Gibbs, Metropolis Hastings)

• Expectation Maximisation algorithms

• Practical 



Genomic prediction
• Comparison of accuracy of methods 

(Meuwissen et al. 2001)
– Genome of 1000 cM simulated, marker 

spacing of 1 cM.  
– Markers surrounding each 1-cM region  

combined into haplotypes.
– Due to finite population size (Ne = 100), 

marker haplotypes were in linkage 
disequilibrium with QTL between markers.  

– Effects of haplotypes predicted in one 
generation of 2000 animals

– Breeding values for progeny of these 
animals predicted based on marker 
genotypes



Genomic prediction
• Comparison of accuracy of methods 

(Meuwissen et al. 2001)

 rTBV;EBV + SE bTBV.EBV + SE 

 

LS 0.318 ± 0.018 0.285 ± 0.024 

BLUP 0.732 ± 0.030 0.896 ± 0.045 

BayesA 0.798 0.827 

BayesB 0.848 + 0.012 0.946 + 0.018 

 



Genomic prediction
• Comparison of accuracy of methods 

(Meuwissen et al. 2001)
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.  
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– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.  

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB



Genomic prediction
• Comparison of accuracy of methods 

(Meuwissen et al. 2001)
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.  

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB

– Also “shrinks” estimates of effects of other 
chromosome segments based on a prior 
distribution of QTL effects. 



Genomic prediction
• Comparison of accuracy of methods 

(Meuwissen et al. 2001)
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.  

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB

– Also “shrinks” estimates of effects of other 
chromosome segments based on a prior 
distribution of QTL effects. 

– Accuracies were very high, as high as 
following progeny testing for example



• Introduction to genomic selection

• Genomic prediction with BLUP

• Genomic prediction with Bayesian methods

• Examples in real data

Genomic prediction



In real data

• 1500 Australian dairy 
bulls

• genotyped for 56000 
genome wide SNPs

• Phenotypes average 
of daughters milk 
production



• Split data into two sub-populations
– Reference:  Bulls born < 2003
– Validation: Bulls born >= 2003

In real data



• Split data into two sub-populations
– Reference:  Bulls born < 2003
– Validation: Bulls born >= 2003

• Accuracy
– Correlation of genomic breeding values with 

EBVs (which include daughter information) in 
validation set

In real data



In real data
Table 3 MEBV- Correlation between predicted MEBV and ABV in the validation 

data set (Bulls proven in years 2005, 2006, 2007)  

 

 

 

 

Method  Protein kg Fat kg Protein % Fat % 

Bayes SSVS  0.55 0.51 0.68 0.73 

Bayes A  0.53 0.48 0.66 0.70 

BLUP 0.60 0.48 0.66 0.64 
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Bayesian methods
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Genomic prediction

• Bayesian C∏ (Habier et al 2011)

• Two criticisms of BayesA/BayesB
– Posterior of locus-specific variance has only 

one additional degree of freedom, compared 
to its prior regardless of the number of 
genotypes, so 

– Degree of shrinkage of depends strongly on 
prior

– Little information coming from data
– ∏ is treated as known, not estimated from 

the data



Genomic prediction

• Bayesian C∏ (Habier et al 2011)

• Use a common σgi
2 across all SNP in 

model
– Many degrees of freedom from data
– A “BLUP” for SNP in model

• Estimate ∏ from data



Bayesian methods

• Now lets allow different variances of 
chromosome segment effects
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Genomic prediction

• Bayesian C∏ (Habier et al 2011)
– Accuracy in German Holstein Friesian data set

• Can draw inferences about trait architecture?

Trait GBLUP BayesA BayesB BayesCpi

Milk Yield 0.48 0.48 0.40 0.43

Fat Yield 0.51 0.56 0.52 0.54

Protein Yield 0.21 0.22 0.17 0.21

Somatic cells 0.17 0.17 0.12 0.14



BayesR

idea: SNP effects from one of four normal distributions                  
which have different variances

Erbe et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with 
imputed high-density single nucleotide polymorphism panels. J  Dairy Sci. 2012 Jul;95(7):4114-29.
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Model

GSA Sitzung in Werder/Havel, Malena Erbe

• y: vector of phenotypes
• μ: overall mean
• g: vector of SNP effects
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BayesR
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BayesR

• Each SNP has a probability of being in each of the four 

distributions. 

GSA Sitzung in Werder/Havel, Malena Erbe
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BayesR

GSA Sitzung in Werder/Havel, Malena Erbe
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BayesR

Gibbs Sampling:

• For each SNP in each iteration, calculate likelihood of data if 

SNP in distribution 1, 2, 3 or 4 given BLUP estimate of effect, 

proportion of SNP in that distribution

• Take SNP effect for distribution with highest likelihood, 

update pij, α (count of SNP in each distribution)

• Use Dirichlet distribution to sample distribution proportions, 

P∼Dirichlet(α+β)
GSA Sitzung in Werder/Havel, Malena Erbe



Real Data, 800K

• Reference 
– Holstein = 3049 bulls, 8478 cows
– Jersey = 770 bulls,  3917 cows

• Validation
– Holstein = 262 bulls
– Jersey = 105 bulls
– Australian Reds = 114 bulls

• GEBV with GBLUP, BayesR
• (Kemper et al GSE, 2014)



Real Data, 800K

• r(GEBV,DTD) 

Fat Milk Protein Fat% Protein% Average
Holstein

GBLUP 0.60 0.59 0.58 0.72 0.83 0.66

BAYESR 0.64 0.62 0.57 0.81 0.84 0.69

Jersey

GBLUP 0.56 0.62 0.67 0.64 0.76 0.65

BAYESR 0.56 0.69 0.71 0.76 0.79 0.70

Australian Reds

GBLUP 0.20 0.16 0.11 0.32 0.34 0.22

BAYESR 0.26 0.21 0.13 0.44 0.36 0.28



BayesR



BayesR -> QTL mapping



BayesR

https://github.com/syntheke/bayesR



Genomic prediction

• Methods for deriving prediction equation differ 
in assumptions about distribution of QTL effects
– BLUP = normal distribution with known variance
– Ridge regression = normal distribution with prior 

assumption about variance
– BayesA = t-distribution, degree of shrinkage known a-

priori, or sampled
– BayesB = mixture distribution, many effects zero
– BayesianLASSO, double exponential distribution of 

effects
– Bayesian C∏, estimate ∏ from data, common variance 

across SNP
– BayesR = multiple normal distributions



Genomic prediction

• Bayesian methods can have an advantage 
when:

• QTL of moderate to large effect on the trait (eg 
Fat%, DGAT1)

• Very large numbers of SNP (eg 800K) (but need 
large reference sets) – set some SNP effects to 
zero

• Multi-breed, across breed genomic predictions 


