





Cost per genome (USD)

Genome sequencing cost as estimated by NHGRI
(September 2001 to April 2014)
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Course overview

e Day 1
— Genomic prediction with SNP array genotypes (BLUP,
GBLUP and Bayesian methods)

— What drives the accuracy of genomic prediction — theory
and in practise

e Day 2

— Brief introduction to sequence data and implications for
genomic prediction

— Genomic prediction in practise 1. Combining genomic
prediction with other information - selection index and
multiple trait approaches

— Genomic prediction in practise 2. Genomic selection in
breeding programs




Quantitative traits

e (Genetic variation observed for many (all?) traits of
economic importance in livestock and plant species

e One gene or many?

More primitive




Yield in Rice

nature
genetlcs

Genome-wide association studies of 14 agronomic traits
in rice landraces

Xuehui Huang 219, Xinghua Wei*!%, Tao Sang®!%, Qiang Zhao!319, Qi Feng!!?, Yan Zhao!, Canyang Li',
Chuanrang Zhu!, Tingting Lu!, Zhiwu Zhang®, Meng Li*¢, Danlin Fan!, Yunli Guo!, Ahong Wang!, Lu Wang!,
Liuwei Deng', Wenjun Li', Yigi Lu!, Qijun Weng!, Kunyan Liu!, Tao Huang!, Taoying Zhou', Yufeng Jing',
Wei Li!, Zhang Lin!, Edward S Buckler®7, Qian Qian?, Qi-Fa Zhang?, Jiayang Li® & Bin Han'»

Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is
important to world food security. Here we have identified ~3.6 million SNPs by sequencing 517 rice landraces and constructed

a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association
studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies. The loci identified through GWAS
explained ~36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified
genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach
integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical
biparental cross-mapping for dissecting complex traits in rice.




Yield in Rice
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genetics
“our results suggest that multiple loci with relatively

small effects contribute to the phenotypic variance”
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Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is
important to world food security. Here we have identified ~3.6 million SNPs by sequencing 517 rice landraces and constructed

a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association
studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies. The loci identified through GWAS
explained ~36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified
genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach
integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical
biparental cross-mapping for dissecting complex traits in rice.




Human height
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Defining the role of common variation in the genomic and biological
architecture of adult human height

Andrew R Wood, Tonu Esko, Jian Yang, Sailaja Vedantam, Tune H Pers, Stefan Gustafsson, Audrey Y Chu, Karol Estrada, Jian'an Luan,
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Abstract

Using genome-wide data from 253,288 individuals, we identified 897 variants at genome-wide significance that together explained one-fifth of the
heritability for adult height. By testing different numbers of variants inindependent studies, we show that the most strongly associated ~2,000, ~3,700
and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. Furthermaore, all common variants together captured 80% of heritability.
The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated
genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/B-catenin and chondroitin sulfate—related
genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of
hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal

variants.



NEWS FEATURE PERSONAL GENOMES

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a lighton
six places where the missing loot could be stashed away.
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Complex traits

e Large number of causative mutations
(quantitative trait loci, QTL) for most
complex traits

e Variance explained by individual markers
will be small

e Use large numbers of DNA markers to
simultaneously track all QTL

e Sequence data -> includes causative
mutations




The Revolution

e As a result of sequencing animal and plant

genomes, have a huge amount of information
on variation in the genome

— at the DNA level
e Most abundant form of variation are Single

Nucleotide Polymorphisms (SNPs)
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» 1000 Genomes project (Pilot)

~15 mill SNPs

>
> ~7 mill SNPs with minor allele >5%
>
>
>

~100,000-300,000 cSNPs

~50,000 nonsynonymous cSNPs -> change protein structure
Every individual carries 250-300 loss of function mutations!




The Revolution

e SNP chips available for

Sheep, Cattle (50K, 800K), Pigs,
Chickens

Salmon

Horse, Dog

e Plants

— Maize, Wheat

— Cotton, Soybean under development
e Cost?

- ~ $100-200 USD for 60K SNPs
e Genotyping by re-sequencing?

— 40 million SNPs in cattle

— Insertion deletions
— Copy number variants?




Cost per genome (USD)

Genome sequencing cost as estimated by NHGRI
(September 2001 to April 2014)
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Sequence data vs SNP arrays

e Genomic selection (all hypotheses!)

- No longer have to rely on LD, causative
mutation actually in data set
e Higher accuracy of prediction?
e Better prediction across breeds/populations?
e Better persistence of accuracy across generations

e But have sequencing errors, genotype
errors, expense.......




Alm

e Provide you with genome wide association and
genomic prediction methodologies to exploit high
density genotypes, up to whole genome sequence
data, in livestock and plant improvement




Course overview

e Day 1
— Genomic prediction with SNP array genotypes (BLUP,
GBLUP and Bayesian methods)

— What drives the accuracy of genomic prediction — theory
and in practise

e Day 2

— Brief introduction to sequence data and implications for
genomic prediction

— Genomic prediction in practise 1. Combining genomic
prediction with other information - selection index and
multiple trait approaches

— Genomic prediction in practise 2. Genomic selection in
breeding programs




Genomic prediction

Introduction to genomic prediction
Genomic prediction with BLUP/GBLUP
Genomic prediction with Bayesian methods

Examples in real data




Genomic prediction

e Problem marker assisted selection is
only a proportion of genetic variance
is tracked with markers
- Eg. 10 QTL << 5% of the genetic variance

o Alternative is to trace all segments of
the genome with markers

— Divide genome into chromosome
segments based on marker intervals?

— Capture all QTL = all genetic variance




Genomic selection

M MMMM MMMMM M
chromosome 4+ ___ | __ 1 | | | | |




Genomic prediction

M MMMM MMMMM M
chromosome 4+ ___ | __ | | | | | |

marker i




Genomic prediction

M MMMM MMMMM M
chromosome 4+ ___ | __ | | | | | |

marker i

Effect of 2" allele +0.3 L milk




Genomic prediction

M MMMM MMMMM M
chromosome 4+ ___ | __ 1 | | | | |

0.1 0.00.030.040.00.01 0.3 0.0 0.050.050.0




Genomic prediction

e Predict genomic breeding values as
sum of effects over all SNP




Genomic prediction

e Predict genomic breeding values as
sum of effects over all SNP

M

Number of SNP




Genomic prediction

e Genomic prediction exploits linkage
disequilibrium
— Assumption is that markers picking up
QTL and will have same effect across the
whole population

e Possible within dense marker maps now
available




Genomic prediction

e Genomic prediction avoids bias in
estimation of effects due to multiple
testing, as all effects fitted
simultaneously
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Reference population /S_election candidates

Genomic selection

genotypes Marker
Kand phenotypes \se notypes

1

Prediction equation

Genomic breeding value = w

WiX] + WXy + WiXge.

GE[ECtEd breeders

Using genomic

Kbreeding values




Genomic prediction

First step is to

oredict the

chromosome segment effects in a

reference popu

ation

Number of effects >>> than number

of records

Eg. 50,000 SNPs
From ~ 2000 records?
Need methods that can deal with this




Genomic prediction

e BLUP = best linear unbiased prediction
e Model:

e In BLUP we assume SNP effects come from
normal distribution with same variance

E(g) ~ N(0,04°)




Genomic prediction with BLUP

e BLUP assumes normal distribution of SNP
effects




Genomic prediction with BLUP

e BLUP = best linear unbiased prediction
e Then we can estimate segment effects as:

1.'X |1y
X'X+I1| | X'y




Genomic prediction with BLUP

Example
A “simulated” data set
Single chromosome, with 10 markers

Phenotypes “simulated”
— overall mean of 1

— an effect for SNP 1 of 2 allele of 1

— normally distributed error term with mean 0 and variance
1.




Genomic prediction with BLUP

e Example

Y 12345678910
000000120
100111210
100100111
111101211
011111210
e 10 SNPs

e Only 5 phenotypic records.




Genomic prediction with BLUP

e Example X

12345678910
OO IO RO RO RO RO RO NI D B0 B2
123 SO R TS 1 2 1 )
0.86 1§60 IR0 J11 IR0 (0 A 11 Il
.23 13 R 1 ] ) 2 I A

e Assume value of 1 for A aed bl e

e 1'=[11111]

ul (1,1, 1,'X
g

X'l X'X+I4




Genomic prediction with BLUP

e Example




Genomic prediction with BLUP

e Now we want to predict GEBV for a group of
young animals without phenotypes.

GEBV = Xg

e We have the g_hat, and we can get X from their
haplotypes (after genotyping)

111111210
100111210
100111210
100111210
000000120




Genomic prediction with BLUP

e GEBV
GEBV = Xg

111111210
100111210
100111210
100111210
000000120




Genomic prediction with BLUP

Where do we get 6,2 from?

Can estimate total additive genetic
variance and divide by number of
segments, eg 6,° = 6,2 /p

If using single markers take account of
heterozygosity

Ridge regression (Bayesian approach)
Cross validation




Genomic prediction with BLUP

e An equivalent model

o If there are many QTLs whose effects are normally
distributed with constant variance,

e Then genomic selection equivalent to replacing the
expected relationship matrix with the realised or
genomic relationship matrix (G) estimated from
DNA markers in normal BLUP equations.

- G;; = proportion of genome that is IBD between animals i
and j




Genomic prediction with BLUP

An equivalent model
Rescale X to account for allele frequencies
~ Wi = Xjj — 2p;

Then breeding values are

~v=wg (TN

And

2
G=WW'/2> p.(1-p,)
j=1




Genomic prediction with BLUP

e An equivalent model

1 (1,11,

u| 2
Tz, 22+G1 e
\

O-a




Genomic prediction with BLUP

e An equivalent model
- Model 1.

1"y
y 1 /u_l_legl_'_e X'X+IO-62‘| |:

X'y

— Model 2.




Genomic prediction with BLUP

e An equivalent model
- Model 1.

1n'1n 1.'x | "
1 2: +e 2| |y
e iSi X', X'X+I2%

X'y
O-g

— Model 2.

y=1 u+72v+e




Holstein reference n =781

Jersey reference n =287

Holstein validation n =400

Jersey validation n=77




Genomic prediction with BLUP

e An equivalent model
e Why use model 2 (GBLUP).

— If number of markers >>> large than number
of animals, more computationally efficient

— Can be integrated into national evaluations
more readily?

— Calculate accuracy of GEBV from inverse
coefficient matrix







Genomic prediction

Alternative assumptions regarding the
distribution of SNP effects

Introduction to Bayesian methods
Genomic prediction with Bayesian methods

Comparison of accuracy of methods




-

Reference population /S_election candidates

Genomic selection

genotypes Marker
Kand phenotypes \se notypes

1

Prediction equation

Genomic breeding value = w

WiX] + WXy + WiXge.

GE[ECtEd breeders

Using genomic

Kbreeding values




Alternative prior assumptions for SNP effects

e BLUP assumes normally
distributed QTL effects

e Does not match prior
knowledge of
distributions of QTL
effects for some traits

150000 200000 250000 300000

50000 100000

0

0.010

STD Effects




Alternative prior assumptions for SNP effects

Students t distribution?
— BayesA

Many zero effects and proportion Students t
distribution?

— BayesB

Many zero effect and rest normal distribution
— BayesCpi

Double exponential effects

- BayesianLASSO

Multiple normal distributions
— BayesMulti, BayesR




Bayesian methods

e Bayes theorem

P(x|y)oc P(y|x)P(x)




Bayesian methods

e Bayes theorem

P(x|y)oc P(y|x)P(x)

e

Probability of
parameters x given
the data y (posterior)




Bayesian methods

e Bayes theorem

P(x|y)oc P(y|x)P(x)

e

Probability of Is proportional to
parameters x given
the data y (posterior)




Bayesian methods

e Bayes theorem

P(x|y)oc P(y|x)P(x)

e

Probability of Is proportional to Probability of
parameters x given data y given the

the data y (posterior) X (likelihood of
data)




Bayesian methods

e Bayes theorem

P(x|y)oc P(y|x)P(x)

LN

Probability of Is proportional to Probability of Prior
parameters X given data y given the probability

the data y (posterior) X (likeltihood of of x
data)




Bayesian methods

e Consider an experiment where we measure height
of 10 people to estimate average height

e We want to use prior knowledge from many
previous studies that average height is 174cm
with standard error 5cm

y=average height + e




Bayesian methods

e Bayes theorem

Prior probability of x (average height)




Bayesian methods

e Bayes theorem

Prior probability of x (average height)
From the data

x=178

se=5




Bayesian methods

e Bayes theorem

P(x|y) o< P(y|x)P(x)
Likelihood of data (y) given / I

height x, most likely x = 178cm Prior probability of x (average height)

0.09 0.09
0.08 - 0.08 -
0.07 - 0.07 A
0.06 1 0.06 -

=005 | g 0.05

e @

— 004 A 0.04 -
003 | 0.03 -
002 0.02 1
001 0.01

0 0

He|ght Height



Bayesian methods

e Bayes theorem

P(X|y) mean = 176cm

P(Heightly)

175

175
Height

Height




Bayesian methods

e Bayes theorem

e Less certainty about prior information? Use /ess informative (flat)
prior

P(x|y)oc P(y|x)P(x)




Bayesian methods

e Bayes theorem
e Less certainty about prior information? Use /ess informative (flat)

P(x|y)oc P(y|x)P(x)

AR

P(X|y) mean = 178cm




Bayesian methods

e Bayes theorem
e More certainty about prior information? Use more informative prior

P(x|y)oc P(y|x)P(x)




Bayesian methods

e Bayes theorem
e More certainty about prior information? Use more informative prior

P(x|y)oc P(y|x)P(x)

[l

P(x|y) mean = 174.5cm




Genomic prediction

Alternative assumptions regarding the
distribution of SNP effects

Introduction to Bayesian methods
Genomic prediction with Bayesian methods

Comparison of accuracy of methods




Genomic selection

e For some traits
prior
knowledge
suggests t-
distribution of
effects

How to
incorporate this
iInto our
predictions?




Genomic selection

The t distribution
can be presented
as a two level
hierarchical model

Allow different

variances between
SNPs (SNP specific
shrinkage) z

Assume a
distribution of
these variances

Computationally
easier to deal with
than original form




Bayesian methods

e Now lets allow different variances of SNP
effects
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Bayesian methods

e Prior?
— Inverted chi square convenient for variances

— An inverted chi square with v degrees of freedom
and scaled by S?, eq.

— Describes a distribution with
¢ mean vS* [(v—2)

: VAR
e variance ——
(v=2)°(v—4)

— Larger v, more informative prior = more belief
about variance




Bayesian methods




Bayesian methods

+ Series’]

03

0.2

0.1

*» Series
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Bayesian methods

E(c4%)=S/(v-2)

V(o4?) [E(cgi2)]*=2/(v-4)

2
A (4.012,0.002)

—l
|_
o
Y
o
c
9
s
o
Q.
o
| -
o

0.2 0.4 0.6 0.8
Size of QTL (phenotypic standard deviations)




Bayesian methods

e No closed form solution

e Markov Chain Monte Carlo sampling
(Gibbs, Metropolis Hastings)

e Expectation Maximisation algorithms

e Practical




Genomic prediction

e Comparison of accuracy of methods
(Meuwissen et al. 2001)

— Genome of 1000 cM simulated, marker
spacing of 1 cM.

— Markers surrounding each 1-cM region
combined into haplotypes.

— Due to finite population size (Ne = 100),
marker haplotypes were in linkage
disequilibrium with QTL between markers.

— Effects of haplotypes predicted in one
generation of 2000 animals

— Breeding values for progeny of these
animals predicted based on marker
genotypes




Genomic prediction

e Comparison of accuracy of methods
(Meuwissen et al. 2001)

rrev-eev + SE brgvesy + SE

LS 0.318 £ 0.018 0.285 = 0.024
BLUP 0.732 +0.030 0.896 £ 0.045
BayesA 0.798 0.827

BayesB 0.848 + 0.012 0.946 + 0.018




Genomic prediction

e Comparison of accuracy of methods
(Meuwissen et al. 2001)
— The least squares method does very poorly,

primarily because the haplotype effects are
over-estimated.




Genomic prediction

e Comparison of accuracy of methods
(Meuwissen et al. 2001)

— The least squares method does very poorly,
primarily because the haplotype effects are
over-estimated.

— Increased accuracy of the Bayesian approach

because method sets many of the effects of
the chromosome segments close to zero in
BayesA, or zero in BayesB




Genomic prediction

e Comparison of accuracy of methods
(Meuwissen et al. 2001)

— The least squares method does very poorly,
primarily because the haplotype effects are
over-estimated.

— Increased accuracy of the Bayesian approach

because method sets many of the effects of
the chromosome segments close to zero in
BayesA, or zero in BayesB

— Also “shrinks” estimates of effects of other
chromosome segments based on a prior
distribution of QTL effects.




Genomic prediction

e Comparison of accuracy of methods
(Meuwissen et al. 2001)

— The least squares method does very poorly,
primarily because the haplotype effects are
over-estimated.

— Increased accuracy of the Bayesian approach
because method sets many of the effects of
the chromosome segments close to zero in
BayesA, or zero in BayesB

— Also “shrinks” estimates of effects of other
chromosome segments based on a prior
distribution of QTL effects.

— Accuracies were very high, as high as
following progeny testing for example




Genomic prediction

Introduction to genomic selection
Genomic prediction with BLUP
e Genomic prediction with Bayesian methods

Examples in real data




In real data

e 1500 Australian dairy
bulls
genotyped for 56000
genome wide SNPs
Phenotypes average
of daughters milk
production




In real data

e Split data into two sub-populations
— Reference: Bulls born < 2003
— Validation: Bulls born >= 2003




In real data

e Split data into two sub-populations
— Reference: Bulls born < 2003
— Validation: Bulls born >= 2003
e Accuracy

— Correlation of genomic breeding values with
EBVs (which include daughter information) in
validation set




In real data

Table 3 MEBV- Correlation between predicted MEBV and ABV in the validation
data set (Bulls proven in years 2005, 2006, 2007)

Method Protein kg Fat kg Protein % Fat %
Bayes B 0.55 051 0.68 0.73
Bayes A 0.53 048  0.66 0.70
BLUP 0.60 048  0.66 0.64

50000 100000 150000 200000 250000 300000

0

0.000 0.005 0.010 0.015 0.020

STD Effects
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Genomic prediction

e Bayesian CI1 (Habier et al 2011)

e Two criticisms of BayesA/BayesB

— Posterior of locus-specific variance has only
one additional degree of freedom, compared
to its prior regardless of the number of
genotypes, so

— Degree of shrinkage of depends strongly on
prior
— Little information coming from data

— TT is treated as known, not estimated from

the data




Genomic prediction

e Bayesian CI1 (Habier et al 2011)

e Use a common o,? across all SNP in

model

— Many degrees of freedom from data
— A "BLUP” for SNP in model

e Estimate I from data




Bayesian methods

e Now lets allow different variances of
chromosome segment effects




Genomic prediction

e Bayesian CI1 (Habier et al 2011)

— Accuracy in German Holstein Friesian data set

Trait GBLUP BayesA BayesB BayesCpi

Milk Yield 0.48 0.48 0.40 0.43
Fat Yield 0.51 0.56 0.52 0.54
Protein Yield 0.21 0.22 0.17 0.21

Somatic cells 0.17 0.17 0.12 0.14

e Can draw inferences about trait architecture?




BayesR

Idea: SNP effects from one of four normal distributions
which have different variances

I
0

Erbe et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with
imputed high-density single nucleotide polymorphism panels. J Dairy Sci. 2012 Jul;95(7):4114-29.



BayesR

Idea: SNP effects from one of four normal distributions
which have different variances

I
0

Erbe et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with
imputed high-density single nucleotide polymorphism panels. J Dairy Sci. 2012 Jul;95(7):4114-29.



BayesR

Idea: SNP effects from one of four normal distributions
which have different variances

I
0

Erbe et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with
imputed high-density single nucleotide polymorphism panels. J Dairy Sci. 2012 Jul;95(7):4114-29.



BayesR

Idea: SNP effects from one of four normal distributions
which have different variances

Erbe et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with
imputed high-density single nucleotide polymorphism panels. J Dairy Sci. 2012 Jul;95(7):4114-29.



Model

y=1 u+Wg+e

« V: vector of phenotypes
e u: overall mean
e (: vector of SNP effects

0-o? with probability p,
0.0001- &2 with probability p,
4 0.001. o2 with probability p,
0.01. o2 with probability p,

28.09.2011 GSA Sitzung in Werder/Havel, Malena Erbe



BayesR



BayesR

« Each SNP has a probability of being in each of the four

distributions.

28.09.2011 GSA Sitzung in Werder/Havel, Malena Erbe



BayesR

p}il Pi2 p/iS 39/{4
/

28.09.2011 GSA Sitzung in Werder/Havel, Malena Erbe



BayesR

Gibbs Sampling:

e For each SNP In each iteration, calculate likelihood of data if
SNP in distribution 1, 2, 3 or 4 given BLUP estimate of effect,
proportion of SNP in that distribution

« Take SNP effect for distribution with highest likelihood,

update p;, a (count of SNP in each distribution)

« Use Dirichlet distribution to sample distribution proportions,
P~Dirichlet(a+[3)

28.09.2011 GSA Sitzung in Werder/Havel, Malena Erbe



Real Data, 800K

Reference
— Holstein = 3049 bulls, 8478 cows
— Jersey = 770 bulls, 3917 cows

Validation

— Holstein = 262 bulls

— Jersey = 105 bulls

— Australian Reds = 114 bulls

GEBV with GBLUP, BayesR
(Kemper et al GSE, 2014)



Real Data, 800K

e r(GEBV,DTD)

Fat Milk  Protein Fat% Protein% Average
Holstein
GBLUP 0.60 0.59 0.58 0.72 0.83 0.66
BAYESR 0.64 0.62 0.57 0.81 0.84 0.69
Jersey

GBLUP 0.56 0.62 0.67 0.64 0.76
BAYESR 0.56 0.69 0.71 0.76 0.79

Australian Reds
GBLUP 0.20 0.16 0.11 0.32 0.34
BAYESR 0.26 0.21 0.13 0.44 0.36
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BayesR -> QTL mapping
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BayesR

https://github.com/syntheke/bayesR




Genomic prediction

° Methods for deriving prediction equation differ
assumptions about distribution of QTL effects
BLUP = normal distribution with known variance

Ridge regression = normal distribution with prior
assumption about variance

BayesA = t-distribution, degree of shrinkage known a-
priori, or sampled

BayesB = mixture distribution, many effects zero

BayesianLASSO, double exponential distribution of
effects

Bayesian Ci1, estimate TT from data, common variance
across SNP

BayesR = multiple normal distributions




Genomic prediction

Bayesian methods can have an advantage
when:

QTL of moderate to large effect on the trait (eg
Fat%, DGAT1)

Very large numbers of SNP (eg 800K) (but need
large reference sets) — set some SNP effects to
Zero

Multi-breed, across breed genomic predictions




