Continuing the transformation

Predicting genetic changes with genomic information

Julius van der Werf

Overview

- Genomic information can be used to achieve more genetic change
 can we predict effect on genetic change, and inbreeding
- Combine genotype information with information from phenotypes and pedigree – 'additional value' of a genomic test
- How to best use genetic testing in breeding programs

Genomic breeding values

Good for:

Hard to measure, late in life traits HTML

- Lean meat yield, meat quality
- Reproductive Rate
- Adult Weight

But how does it change selection response?

- " Overall
- For each trait

Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0.$	$1 = r^2$	$h^2 = 0.3 = r^2$		
Trait Measurability	%∆ Acc	%∆ Gain	%∆ Acc	%∆ Gain	
< 1 year, both sexes	15	7	7	7	
> 1 year, both sexes	68	19	59	37	
>1 year, females only	119	27	112	52	
on Corr. Trait, r _g = 0.9	20	12	20	26	
on Corr. Trait, r _g = 0.5	67	50	76	86	

→ More increase inaccuracy when there is limited information

Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0.1 = r^2$		$h^2 = 0.3 = r^2$	
Trait Measurability	%∆ Асс	%∆ Gain	%∆ Acc	%∆ Gain
< 1 year, both sexes	15	7	7	7
> 1 year, both sexes	68	19	59	37
>1 year, females only	119	27	112	52
on Corr. Trait, r _g = 0.9	20	12	20	26
on Corr. Trait, r _g = 0.5	67	50	76	86

Note that: gain = (accuracy * selection intensity/generation interval) * genetic SD

These effects even higher in selected populations (need to account for Bulmer effect)

5

How is additional response calculated?

Selection index theory

- Index weights for various information sources
- Accuracies of EBV and GEBV -overall index and per trait-
- Response -overall index and per trait-
 - Some traits benefit more than other from GS

Some definitions

Information used to estimate it

■ TBV True breeding value

EBV Estimated breeding value
 Phenotype
 + Pedigree

■ GBV Genomically estimated BV DNA test

GEBV Genomically enhanced estimated BV
Phenotype
+ Pedigree

+ DNA test

Selection Index Approach

Genomic Selection:

Predict TBV with Accuracy = x

→ GS explains
$$x^2$$
% of V_A → $V_{qtl} = x^2 V_A$
 $V_{polygenic} = (1-x^2)V_A$

Lande and Thompson, 1990 Genetics:

Selection Index some formal stuff

First summarize some definitions

Single trait breeding objective: H= A (breeding value)

 $I = b_1 x_1 + b_2 x_2 + \dots + b_n x_n$

```
for reference only
```

```
Index:
X<sub>i</sub> = selection criteria
b<sub>i</sub> = index weight
```

Breeding Objective

Cov(X,A) = G	(a vector	with ST	objective)
Optimal weigł	nts are <mark>b =</mark>	P ⁻¹ G	

Calculate optimal index weights given the breeding objective

Var(I) = var(b'X) = b'var(X)b = b'Pb = σ_1^2 Var(H) = σ_a^2 Cov(LH) = cov(b'X A) = b'cov(X A) = b'C

Variance of index = covariance between index

and breeding objective

 $Cov(I,H) = cov(b'X,A) = b'cov(X,A) = b'G = b'Pb = \sigma_1^2$

 $b = P^{-1}G \rightarrow Pb = G$

var(X)=P

Accuracy of selection index (single trait)

r_{IA} = correlation between Index (=EBV) and A

 $= \underline{\operatorname{cov}(I,A)} = \underline{\sigma_{1}^{2}} = \underline{\sigma_{1}} / \sigma_{A} = \sqrt{(b'Pb/\sigma_{a}^{2})}$ $\sigma_{1}\sigma_{A} = \sigma_{1}\sigma_{A}$

Because cov(I,A) = var(I)

Selection Index = Best Linear Prediction BLP Index (I) is best estimate of breeding value: I = E(A|X) = cov(X,A)/var(X) Same as BLUP, but without fixed effects.

Var(I)= var(EBV) = $r_{IA}^2 \cdot var(BV) = r_{IA}^2 \sigma_a^2$ r_{IA}^2 also known as reliability

Selection Index Approach with genomic info

use info on various information sources: *below for one trait only*

	١	Variance-covariance of information sources P-matrix						cova	riance v G	vith TBV -matrix
Without	Own perf.	Vp								Va
GS:	Sire		Vp							Va/2
	Dam			Vp						Va/2
	FullSibs	etc			{t-(1-t)/n}Vp					Va/2
	HalfSibs					{t-(1-t)/n}Vp				Va/4
	Progeny						{t-(1-t)/n}Vp			Va/2
With	Own perf.	Vp-Vq						0		Va-Vq
GS:	Sire		Vp-Vq					0		(Va-Vq)/2
	Dam			Vp-Vo	4			0		(Va-Vq)/2
	FullSibs	etc			{t-(1-t)/n}(Vp-Vq)		0		(Va-Vq)/2
	HalfSibs					{t-(1-t)/n}(Vp-Vc	1)	0		(Va-Vq)/4
	Progeny						{t-(1-t)/n}(Vp-Vq)	0		(Va-Vq)/2
	QTL	0	0	0	0	0	0	Vq		Vq

Selection Index Approach with genomic info

Pseudo BLUP: Genomic Breeding value is an additional trait with h²=1

Note weights on QTL info

MBV = GBV = "QTL"

Selection index: example of 2 approaches

- information from relatives

	Р			G	_	b	VarIndex	accuracy
ownPoly	0.75	0	0.125	0.25		0.3143	0.3429	0.8281
Own GBV	0	0.25	0	0.25		1.0000		
sirepoly	0.125	0	0.75	0.125		0.1143		

Selection index: example of 2 approaches

- information from relatives

Top: sire is genotyped, bottom: sire not genotyped, not same accuracy Conclusion: Relatives info needs to be ±orrected for markersq

Path coefficient method following

Dekkers Dec 2007 JABG

- P = Phenotype
- G = Breeding Value
- Q = BV component associated with markers (=GBV)

 Q_{hat} = estimate of Q

Accuracy GBV = % = q.r_{Qhat}

Phenotypic correlation: $r_{P,Qhat} = h.x$

Genetic correlation $r_{G,Qhat} = x$

Conclusion: single trait

- Can include GBV as a correlated trait
 - And use standard software for selection index
- r_g = accuracy, same as 'x'
- $r_p = h.x$
- econ value for GBV = 0
- This is equivalent to treating it as an extra info source in a single trait multiple info sources approach:

EBV = f(own perf, dam, sire, sibs, progeny, GBV)

Extension to multiple traits

- Some traits may have GBV, others may not
- Need correlations....
 - between GBV and other trait phenotypes
 - between GBV and other trait genotypes
 - between different GBVs

 These can be predicted from genetic correlations between traits, only when assuming infinitesimal model

Path coefficient method Dekkers Dec 2007 JABG

Path coefficient method following

Dekkers Dec 2007 JABG

To predict accuracy of GEBV we can use selection index approach

- Either: GBV + polygenic (no correlation)
- Or: GBV + P, correlation is r²
- The latter is easier: Genomic BV as a correlated trait.

 r_g = accuracy of GBV = 'x' r_p = h.x Econ value of GBV = 0

How much genetic change?

Genetic variation

How much genetic change?

Selection Differential

$$S = i r_{IA} \sigma_A$$

Mean of selected parents

Response per year

["] Response per generation

$$S = i r_{IA} \sigma_A$$

Superiority of parents averaged over males and females

$R = \frac{i_m r_m + i_f r_f}{L_m + L_f} \sigma_A$ Accuracy of predicting a breeding value (r) - increases as an animal gets older

Assumed heritability = 25%

Need to balance accuracy and generation interval!

Accuracy of predicting a breeding value

- increases as an animal gets older -

Genomic information is more helpful early in life!

Optimizing age structure

Accuracy changes with age class !

Without genomic selection

Potential benefits of GS - some cases

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0.1 = r^2$		$h^2 = 0.3 = r^2$	
Trait Measurability	%∆ Асс	%∆ Gain	%∆ Acc	%∆ Gain
< 1 year, both sexes	15	7	7	7
> 1 year, both sexes	68	19	59	37
>1 year, females only	119	27	112	52
on Corr. Trait, r _g = 0.9	20	12	20	26
on Corr. Trait, r _g = 0.5	67	50	76	86

These effects underestimated due to not accounting for Bulmer effect

Effect of GS on genetic change

- ["] More accuracy of GEBV,
 - . esp younger animals
 - . Depends on trait measurability (early/late trat, sex limited)
- More response due to higher accuracy
- "Or lower generation interval
- E.g. dairy: accuracy of GBV is lower than of progeny test, but generation interval can be much reduced

Benefits across Species

	<u>% ex</u>	xtra gain	impact
"	Early trait	small	small accuracy/ gen int
"	Late Trait	moderate	gen int/acc
"	Sex limited trait . females only, late . Males only early	very large small to mod	gen int est acc/gen int

Compare: Progeny Testing

Each progeny group only informs one sire

Genomic Testing

70% accuracy 0.5-1 yrs old

One large reference population informs all young rams

EBV accuracy increased at young age

Genomic Selection also changes the balance between traits

Selection for milk Yield and Fertility

	economic weights		progeny ts measured			response (4 yrs)		
	milk	fertility	milk fertility		milk	feed		
left	0.2	8	50	10	381	-1.25		
right	0.2	8	50	50	352	0.17		

Shifting the *trait* balance with genomic selection

		Current
	S	election
	Accuracy	Response
Weight kg	0.71	0.79
Dressing % Saleable meat	0.26	0.23
yield %	0.33	0.29
Overall Merit		
\$Index	0.58	2.03

Shifting the trait balance with genomic selection

	Current S	Selection	Genomi	Genomic Selection		
	Accuracy	Response	Accuracy	Response		
Weight kg	0.71	0.79	0.75	0.76	-4%	
Dressing % Saleable meat	0.26	0.23	0.59	0.42	83%	
yield %	0.33	0.29	0.60	0.46	59%	
Overall Merit						
\$Index	0.58	2.03	0.69	2.43	20%	

Note: not only more gain overall, but shift to HTML traits

Effect of GS on genetic change

With multiple trait selection:

The accuracy of hard to measure trait will improve more, and as a result, these traits get more pushed,

possibly at the expense of the easy to measure traits (but these were 'overemphasized' response before GS)

Genomic information and inbreeding AXC? anaCh

Relationships between Individuals

- *Estimated using:*
 - . Expected relatedness from PEDIGREE
 - . 'Observed' relatedness from proportion of genome shared
 - " Thousands of genetic markers (SNPs)

Estimates of relationship using genotypes:

- The expectations A
- *Replaced by the estimated G*. Genomic relationship matrix

. Still half mum and half dad

- . But which half?
- . Variation around the expectation?

There is variation in actual relationship, e.g. 0.40-0.50 in FS

We can see this with genomic relationships

What information is used in BVs?

Clark et al, 2013 GSE

//

Va= ¼ sire + ¼ dam + ½ MS

Across family

Within Family

 Table 2- The proportion of variation in breeding value explained by between family (Sire and Dam) and within family (MS) information.

		N.	7 NZ dairy bulls				Australian dairy bulls			
	BV	Sire	Dam	MS+e	Prop. of PT	BV	Sire	Dam	MS+e	Prop. of PT
Parent Av	/ /erage	0.56	0.44	0.001	0.001	PA EBV	0.44	0.52	0.04	0.05
Genomic	BV	0.43	0.26	0.31	0.56	GEBV	0.33	0.37	0.30	0.36
Progeny 1	Test	0.21	0.31	0.48	1.0	РТ	0.16	0.32	0.52	1.0

Correlation of breeding values and co-selection of relatives

Half sib correlation	Full Sib correlation	Accuracy
0.55	1.0	0.45
0.50	0.85	0.57
0.26	0.53	1.0
	Half sib correlation 0.55 0.50 0.26	Half sib correlation Full Sib correlation 0.55 1.0 0.50 0.85 0.26 0.53

- Full Sibs share the same Parent average BV (½ sire ½ dam)
 - no longer the case with genomics
- Half Sibs Share different PA breeding values
 - Small advantage of using G to restrict inbreeding

Constraining Inbreeding:

Pedigree or Genomics, Optimal contributions

Genomic selection and inbreeding

- Effect on IBD and variance at loci is different between GBLUP and BLUP
- GBLUP could give more 'local inbreeding'
- Can constrain inbreeding: better use G when applying GBLUP and use A when applying BLUP

When constraining with G, can exploit some more variation within family (useful for large FS families)