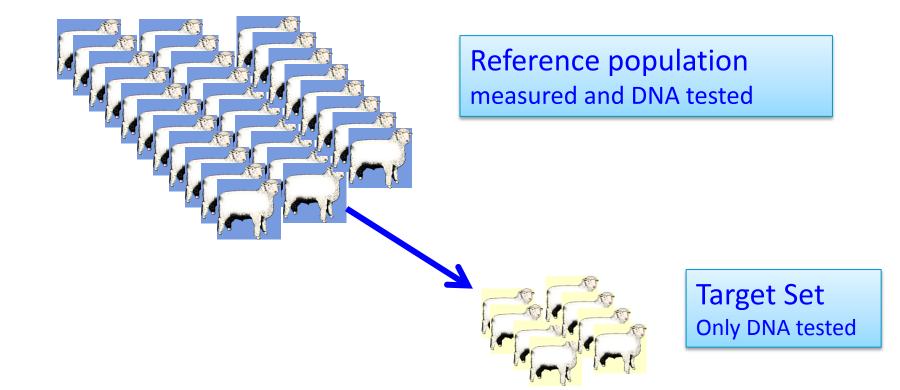
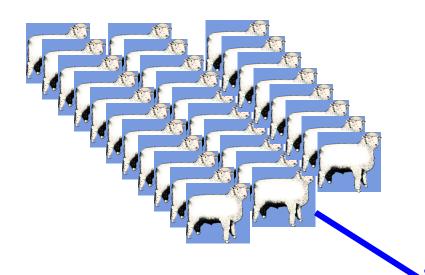


Accuracy of Genomic Prediction

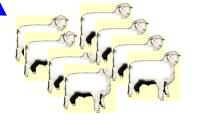
Julius van der Werf and Sang Hong Lee



Genomic Prediction: basic idea



To predict a trait EBV at a young age,


good for: late traits

hard to measure traits

Genomic Prediction: basic idea

Reference population measured and DNA tested

Target Set
Only DNA tested

What if reference population is

- Another breed
- Multi-breed
- Crossbreds
- Small
- Less related
- Heterogeneous

How does genomic prediction work?

Markers in LD with QTL?

Genomic Relationships?

We know that GBLUP is equivalent to SNP-BLUP

 We observe that SNP BLUP and Bayesian methods are pretty similar → "infinitesimal model"

Genomic Prediction: GBLUP

Example:

Data on sire 1, his sons (2 and 3) and an unrelated individual (4)

want to predict 5 (also a son of 1) ← no data

A-matrix (pedigree-based)

1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

1	0.5	0.5	0.02	0.5
0.5	1	0.20	0.015	0.20
0.5	0.20	1	0.025	0.30
0.02	0.015	0.025	1	0.025
0.5	0.20	0.30	0.025	1

Variation in relationship (animal 5 with 2 and 3

Also a small relationship with 'unrelated'

Genomic Prediction: GBLUP

Example:

Data on sire 1, sons 2 and 3, 4 unrelated, want to predict 5

A-matrix (pedigree-based)

1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

1	0.5	0.5	0.02	0.5
0.5	1	0.20	0.015	0.20
0.5	0.20	1	0.025	0.30
0.02	0.015	0.025	1	0.025
0.5	0.20	0.30	0.025	1

$$\hat{u}_5$$
= 0.1136.y₁ + 0.0455.y₂ + 0.0455.y₃

GBLUP
$$\hat{g}_5 = 0.1135.y_1 + 0.0328.y_2 + 0.0591.y_3 + 0.00519.y_4$$

Genomic Prediction: GBLUP

Example:

Data on sire 1, sons 2 and 3, 4 unrelated, want to predict 5

A-matrix (pedigree-based)

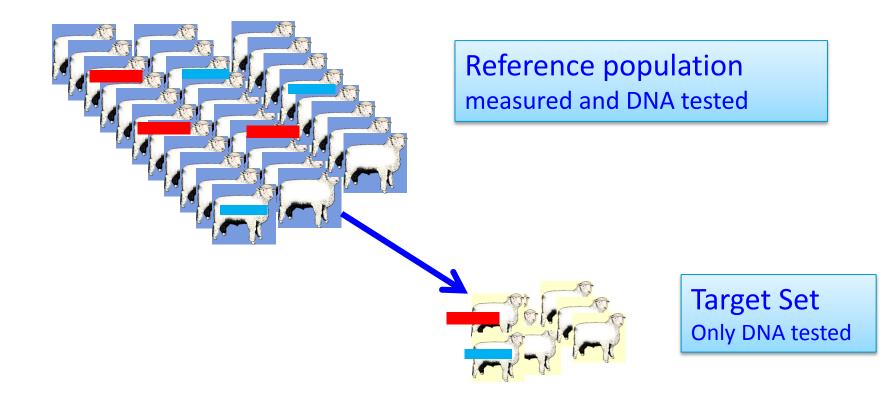
1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

- 1					
	1	0.5	0.5	0.02	0.5
	0.5	1	0.20	0.015	0.20
	0.5	0.20	1	0.025	0.30
	0.02	0.015	0.025	1	0.025
	0.5	0.20	0.30	0.025	1

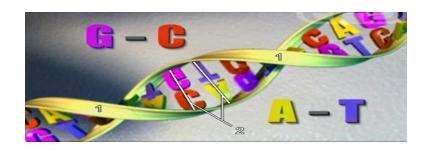
BLUP uses: Family Info

GBLUP uses: Family Info

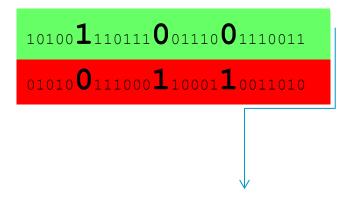

Segregation within family \ Info on 'unrelated'

Genomic prediction accuracy

- Derive from the model, e.g. PEV from GBLUP mixed model equations
- Validate with other EBVs or phenotypes
 - Validation population
 - Cross-validation
- Predict <u>in advance</u> based on theory and assumptions about population



Genomic Prediction: basic idea

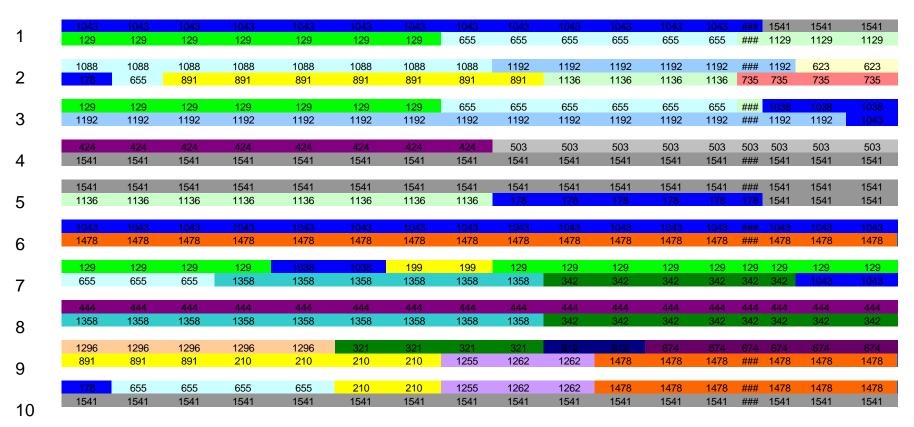


Illustrating (dis-)similarity of chromosome segments

Genotype information

Father

Progeny

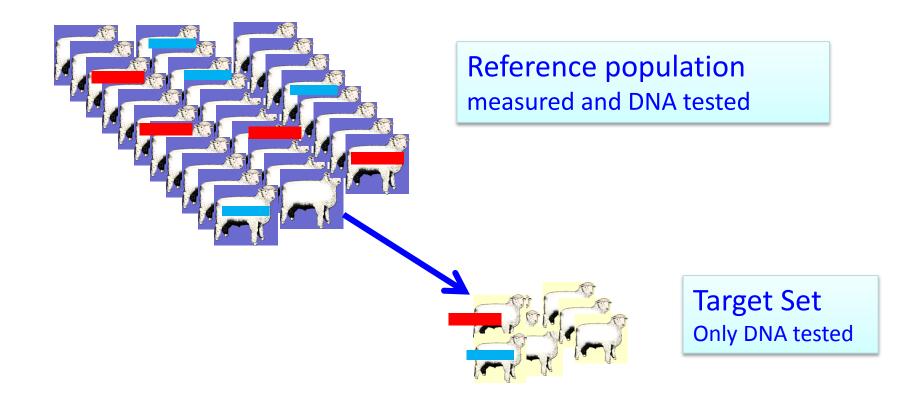

00010 **0**111100 **1**010110 **0**110011 10101 **1**101011 **1**1111111110

Mother

Chromosome segments are passed on

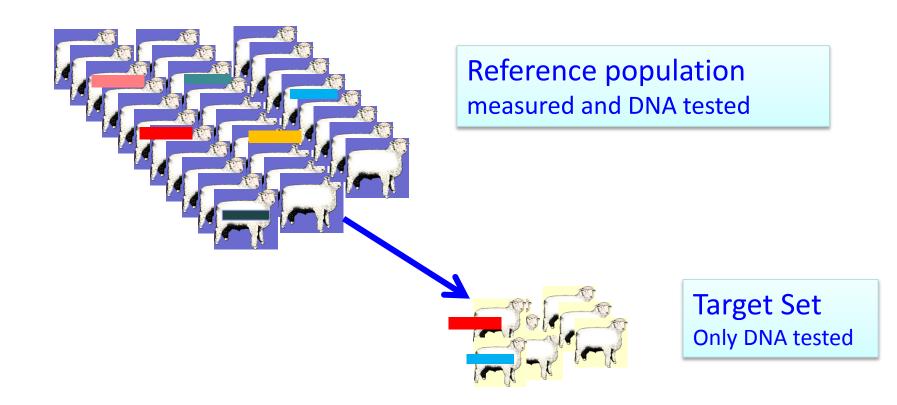
A whole population of haplotypes

Individual

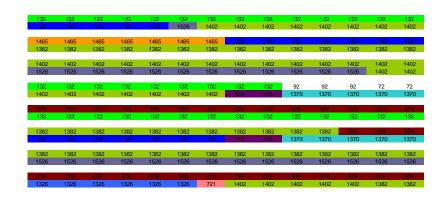


Within a population, members will share chromosome segments We can follow inheritance via SNPs

Degree of sharing can be represented in a genomic relationship (= observed based on SNPs) (similar to genetic relationship = expected based on pedigree)



Genomic Prediction: basic idea


Small diversity of segments → more accuracy

Genomic Prediction: basic idea

Large diversity of segments → less accuracy

populations of haplotypes

Holstein Friesian, a pig/poultry nucleus

Limited diversity
Long segment sharing

Smaller N_e, longer segment sharing, fewer "effective loci"

Merino sheep, humans

More diversity
Short segment sharing
Sub populations

Not only recent N_e but also historic N_e is relevant

Design parameters for predicting GP accuracy

- Effective population size (N_e)
- Effective # chromosome segments (M_e)
- Sample size in reference data (n)
- Heritability (h^2)

Genomic prediction accuracy Using Daetwyler et al, 2008

Accuracy² of estimating a random effect = $n / (n+\lambda)$

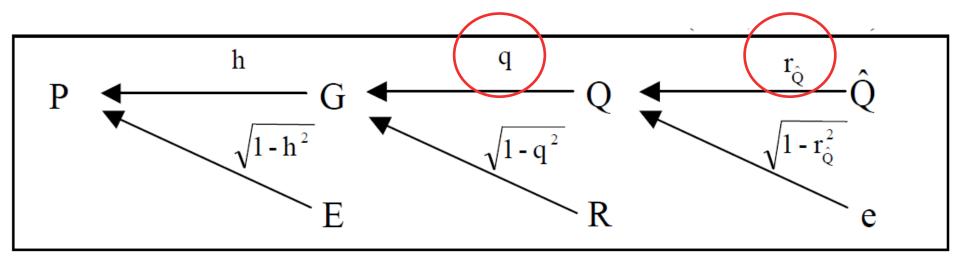
$$\lambda = V_e / V_a$$

n = nr obs'ns per effect

If genome exists of M_e independently segregating 'effective chromosome segments'

And each segment has variance VA/ M_e, then accuracy² of estimating each segment

$$\frac{n}{n + V_e / (V_a/M_e)} = \frac{nV_a}{nV_a + V_e M_e} = \frac{h^2}{h^2 + M_e/n}$$


$$V_e \cong V_p$$

$$r_{g,\hat{g}} = \sqrt{\frac{h^2}{h^2 + M_e/n}}$$

n = nr observations $M_e = effective nr loci$

Valid if "all genetic variance is captured by markers"

Dekkers 2007 (Path coefficient method)

Trait heritability = h^2

G = total BV

Q = genetic effects captured by marker(s)

R = residual polygenic effects

Model for phenotype: P = G + E

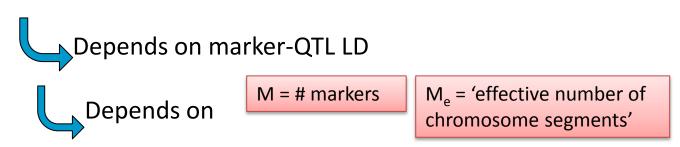
Model for BV: G = Q + R

h, q, and r_Q etc. are correlations

Depends on

Proportion of genetic variance at QTL captured by markers | q² **i**)

i) Reliability of estimating marker effects


Accuracy =
$$\sqrt{(q^2. r^2_{Qhat})}$$

= $q. r_{Qhat}$

Depends on

i) Proportion of genetic variance at QTL captured by markers

$$q^2 = M/(M_e + M)$$

i) Accuracy of estimating marker effects

Depends on

Proportion of genetic variance at QTL captured by markers $q^2 = M/(M_e + M)$ i)

$$q^2 = M/(M_e + M)$$

Depends on marker-QTL LD

Depends on M = # markers

 M_e = 'effective number of chromosome segments'

ii) Accuracy of estimating marker effects

$$r_{Qhat}^2 = V_{qhat}/V_q = n/(n + \lambda) = h^2/(h^2 + M_e/(q^2n))$$

as $\lambda = V_e/(q^2V_a/M_e) = M_e/(q^2h^2)$

Accuracy of genomic prediction is

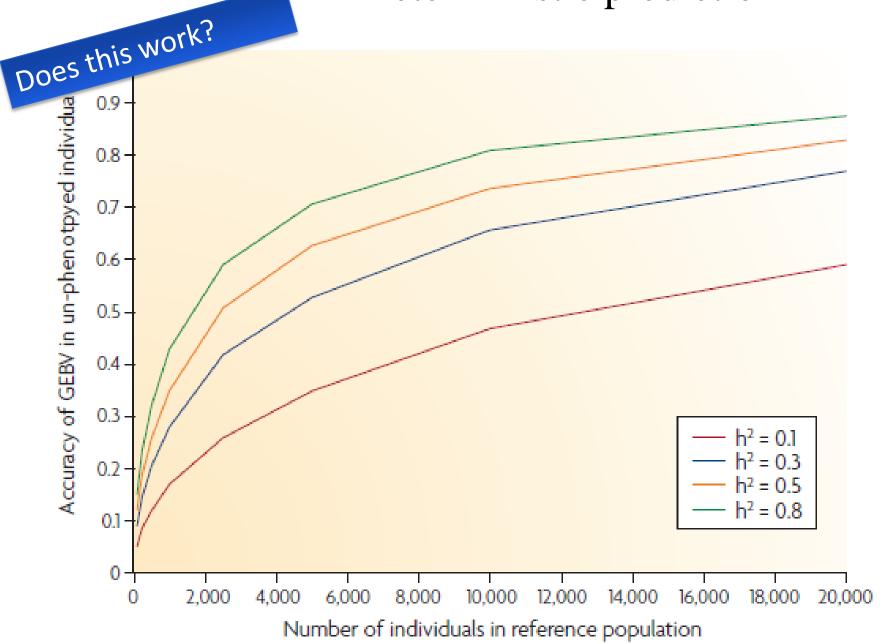
$$= \sqrt{(q^2. r^2_{Qhat})}$$
$$= q. r_{Qhat}$$

With very many markers

Proportion of genetic variance at QTL captured by markers $q^2 = M/(M_e + M)$ **i**)

$$q^2 = M/(M_e + M)$$

$$q^2 = 1$$


i) Accuracy of estimating marker effects

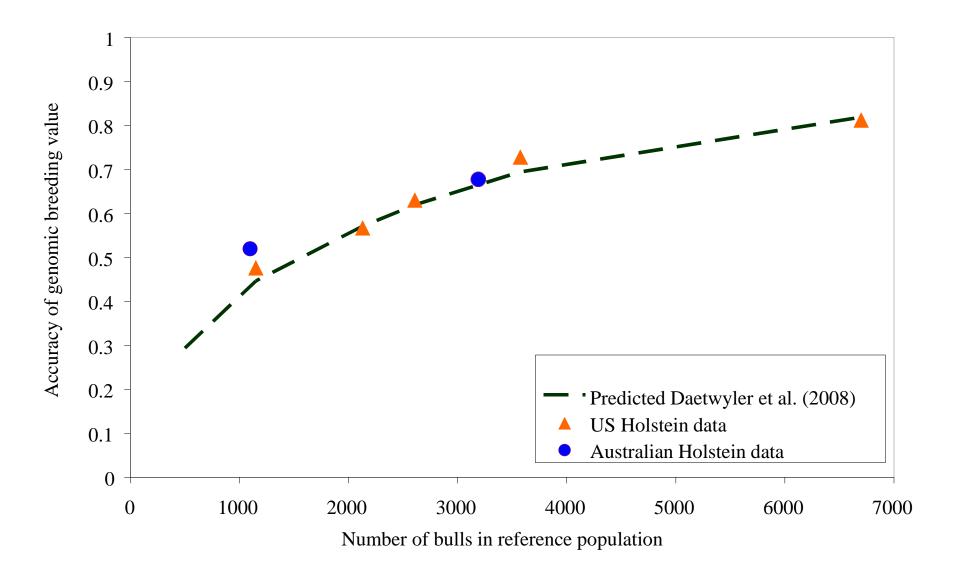
$$r^{2}_{Qhat} = V_{qhat}/V_{q} = n/(n + \lambda) = h^{2}/(h^{2} + M_{e}/n)$$

$$\lambda = M_{e}/h^{2}$$
 same as Daetwyler

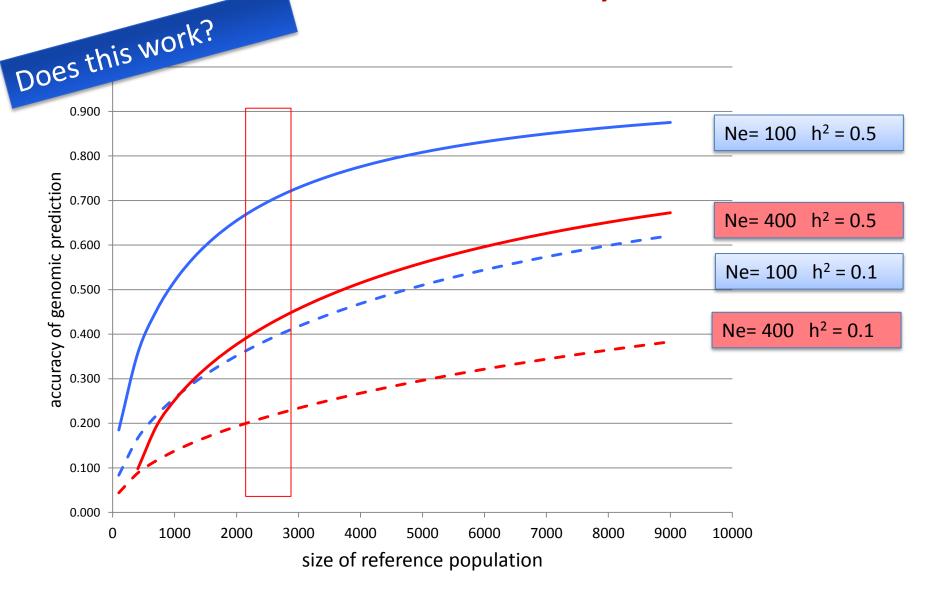
Accuracy =
$$\sqrt{(r_{Qhat}^2)}$$

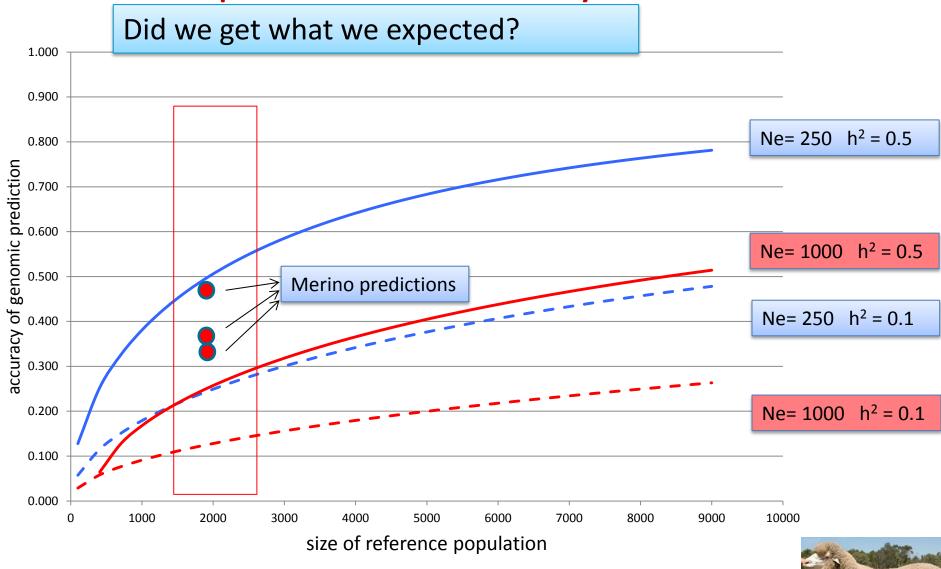
= r_{Qhat}

Deterministic prediction

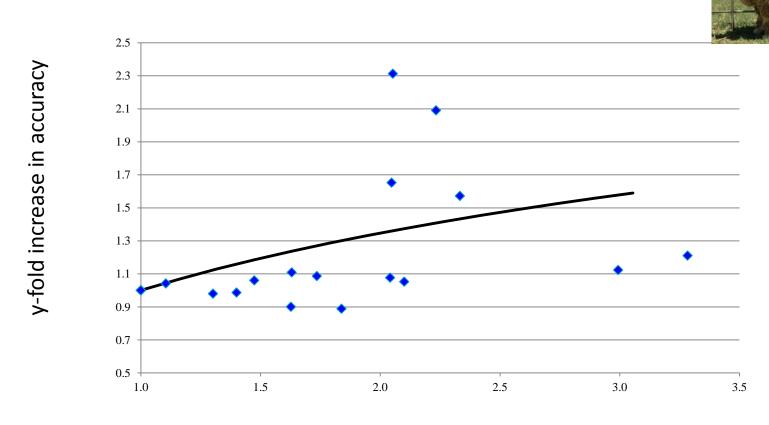


Real Data


- Dairy cattle (Holsteins)
 - ➤ USA results (N=1000-6700) for Net Merit Index (VanRaden et al. 2009)
 - Australian results (N=1100-3300) for Australian Profit Ranking
 - \rightarrow h²=0.9 (heritability of progeny means)
 - $> N_e = 100$


■ Accuracies r(GEBV,EBV) in validation data sets

Deterministic prediction vs. Holstein data


Hayes et al., 2009, AAABG

Validating 'Genomic Prediction Accuracy'

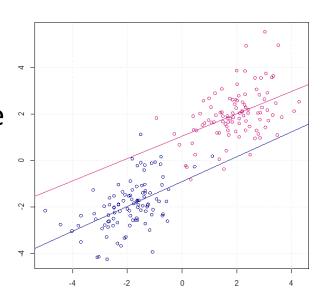
More data is always good But does it increase accuracy as expected?

x-fold increase in data

What effective population size?

Kijas et al 2012

Sampling?



Populations not homogeneous.

Within and between breed/line accuracies

Some accuracy due to population structure

Summary so far

- Theory exists to predict genomic prediction accuracy in advance: depends on nr. effective segments, nr records
- Relies on assumptions regarding effective population size
- Theory assumes everyone in he population is equally unrelated
- Some (unclear) theory about effective nr of loci
- Ignores heterogeneity of populations and relationships
- We observe more initial acc and less increase with more data

How to derive the effective number of loci?

$$M_{e}$$

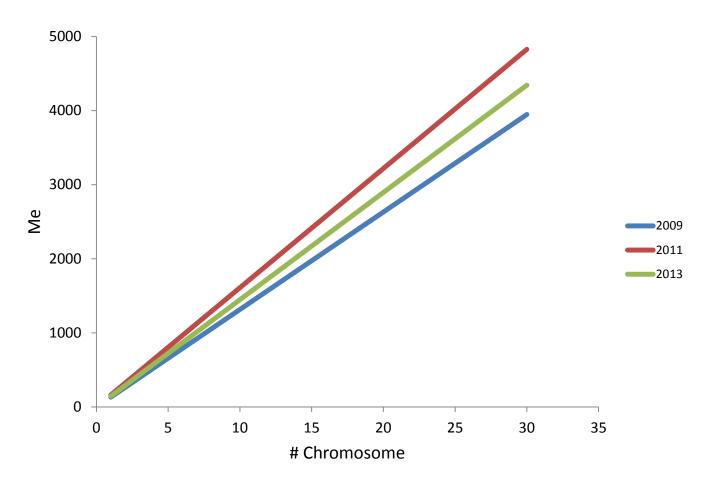
G= covariance matrix among marker genotypes: $r^2 = 1 / (1 + 4N_e \times c)$

How to derive the effective number of loci?

 M_e is a (almost linear) function of N_e and genome size

•
$$M_e = 2N_eLN_{chr}/\ln(4N_eL)$$
 (Goddard 2009)

•
$$M_e = 2N_eLN_{chr}/ln(N_eL)$$
 (Goddard et al. 2011)


•
$$M_e = 2N_eLN_{chr}/\ln(2N_e)$$
 (Meuwissen et al. 2013)

Different assumptions about multiple chromosomes etc.

$$N_e$$
 = Effective pop.size
L = Av. Length per chrom (1M)
 N_{chr} = 30

Hard to 'know' N_P

Difference among the formulas

Example: $N_e = 500$, L=1M

 $h^2 = 0.5$ and n = 5000, \rightarrow accuracy = 0.62, 0.58, 0.60

Validating 'Effective number of segments' empirically

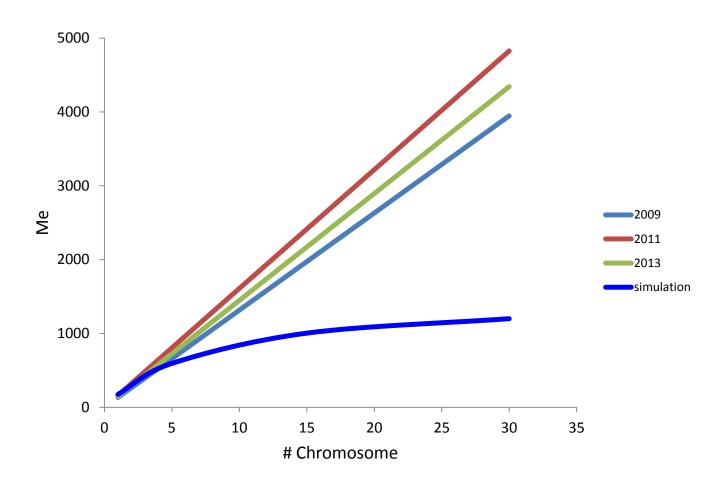
Can use actual data on A and G to test this

Compare G and A matrices G - A = D + E

Note, this is different from Goddard et al: var(D)=1/M_e assumed A = I D =deviation in relationship at QTL

$$Var(G) = 1/M_e$$

$$M_e = 1/\mathrm{var}(G_{ij})$$


$$E = error$$

Given genomic relationships (after collecting data), it is possible to empirically get M_e from the data

Simulation

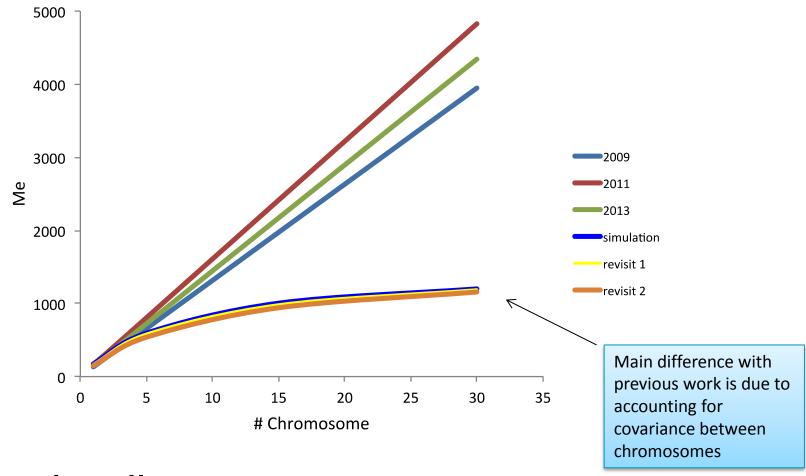
- Coalescence gene dropping
 - $-N_{\rho}$ = 500 for 500 generations
 - L = 1 Morgan
 - $-N_{chr} = 30$
 - Recombination according to L
 - Mutation rate = 10E-08
 - n = 3000 in the last generation
- Estimate G_{ij} and obtain empirical M_e

Difference from empirical M_e

 h^2 = 0.5 and n = 5000, accuracy = 0.62, 0.58, 0.60 vs. 0.82 (simulation)

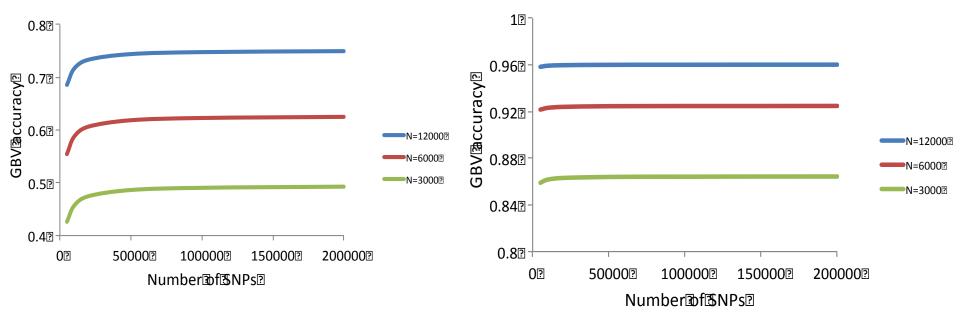
Revisit the theory

$$M_e = \frac{N_{chr}}{[\ln(4N_eL+1)+4N_eL(\ln(4N_eL+1)-1)]/(8N_e^2L^2)+(1/3N_e)\times(N_{chr}-1)}$$


Assuming LD $r^2 = 1 / (1 + 4N_e \times c)$

$$M_e = \frac{N_{chr}}{[\ln(2N_eL+1)+2N_eL(\ln(2N_eL+1)-1)]/(4N_e^2L^2)+(1/3N_e)\times(N_{chr}-1)}$$

Assuming LD $r^2 = 1/(2 + 4N_e \times c)$


For more detail, see Lee et al, 2017 Scientific Reports

Empirical M_e and new formula

Agreed well

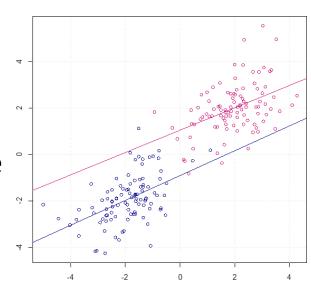
Genomic prediction accuracy Effect of marker density

$$Ne = 1,000$$

$$Ne = 100$$

Expect very little improvement with denser markers

What effective population size?


Holstein Friesian < 100

Merino Sheep ~1000 ?

Populations not homogeneous.

Within and between breed/line accuracies

Some accuracy due to population structure

How do we validate accuray?

- Validation population
 - EBV (based on progeny test)
 - Phenotype
 - Is it a homogeneous group?
 - Suppopulations
 - Different cohorts with genetic trend
 - Are there direct relatives between training and validation?
- Cross-validation
 - Across families
 - Random(also within families)
 - Across or within genetic groups (subpopulations)?

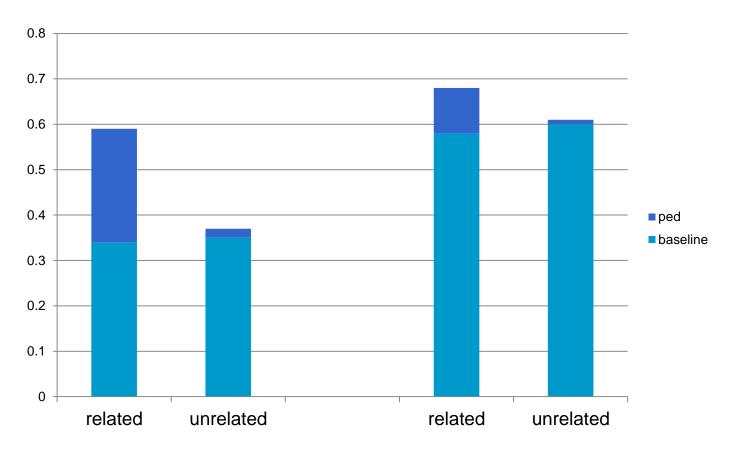
Main question

 How many records are needed in the reference population to achieve a certain accuracy?

But some important sub questions:

- What if you are more related to the reference?
- the value of closer rleatives (e.g.own herd) versus the 'general' reference population

Relationship with reference population


Clark et al 2011

Method	Close Ped 0 - 0.25 Genom 0.08 – 0.35	Distant 0 - 0.125 0.08 – 0.26	Unrelated 0 - 0.05 0.08 – 0.16	
BLUP- Shallow pedigree	0.39	0.00	0.00	
BLUP- Deep Pedigree	0.42	0.21	0.04	
gBLUP	0.57	0.41	0.34	

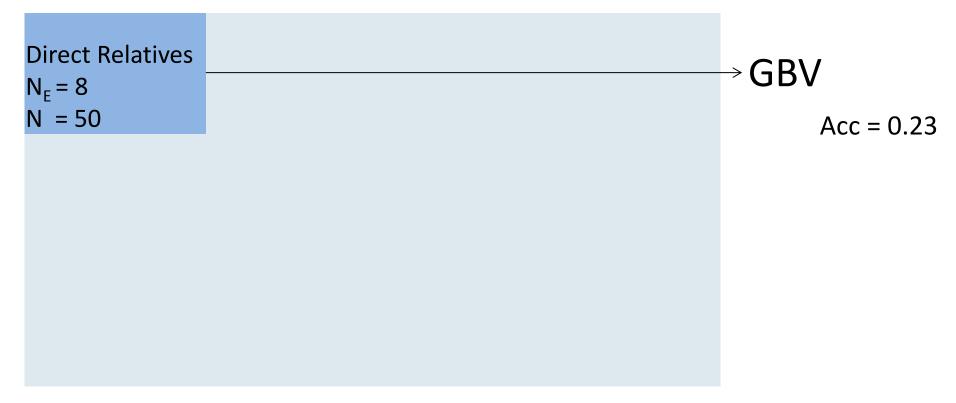
Additional accuracy from family info

'baseline accuracy': graphs predict 0.36 for Ne=100, N=1750, h²=0.3

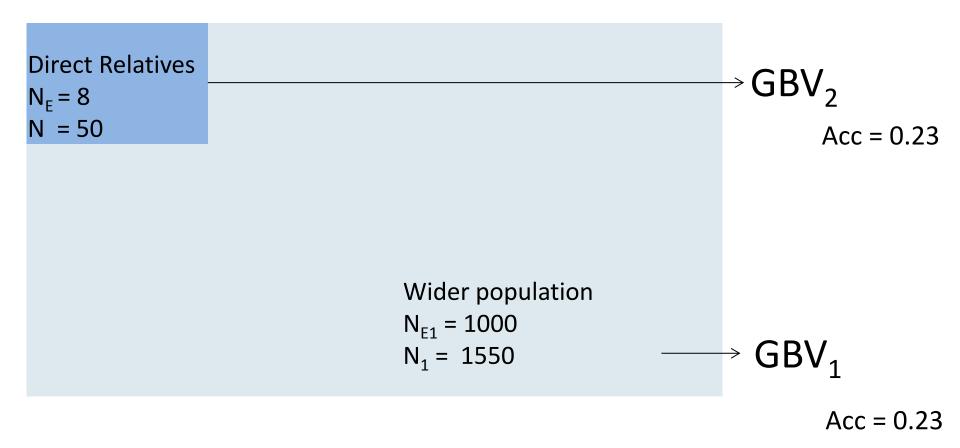
Relatedness matters more if the reference population is smaller

smaller ref pop

larger ref pop


(hypothesis)

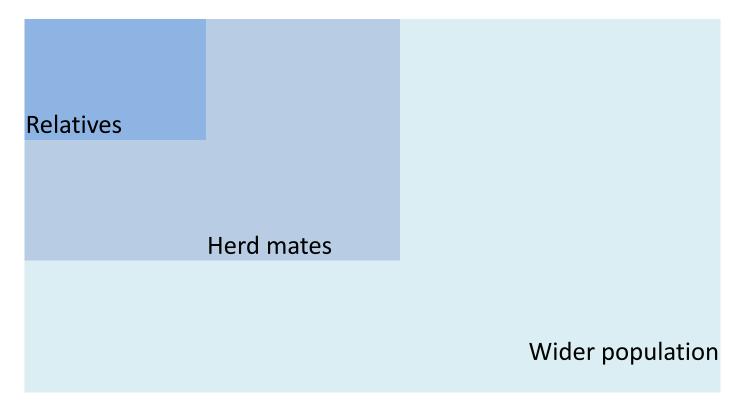
A reference population may have relatives


Relatives Wider population

'Relatedness' can be represented by effective size

Hayes et al 2009

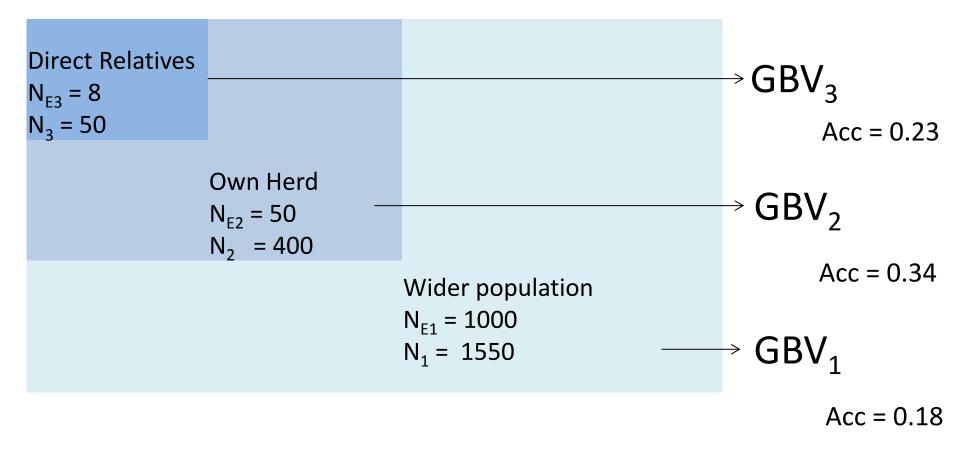
Information from different subsets can be combined



Calculate overall accuracy using selection index

$$GBV = \Sigma b_i GBV_i$$

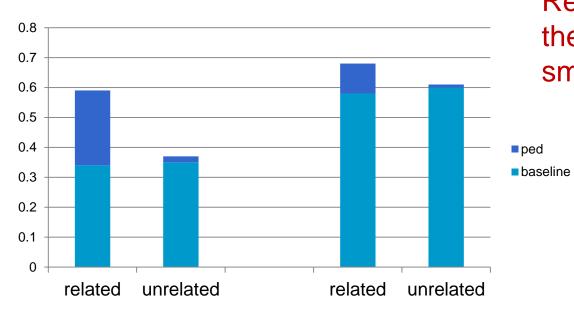
Acc = 0.31


Using a stratified reference population -populations are not homogeneous

Using a stratified reference population -populations are not homogeneous

Direct Relatives $N_{F3} = 8$ $N_3 = 50$ Own Herd $N_{E2} = 50$ $N_2 = 400$ Wider population $N_{F1} = 1000$ $N_1 = 1550$

Using a stratified reference population -populations are not homogeneous


Calculate overall accuracy using selection index

$$GBV = \Sigma b_i GBV_i$$

Acc = 0.42

$NE_1 = 1000$

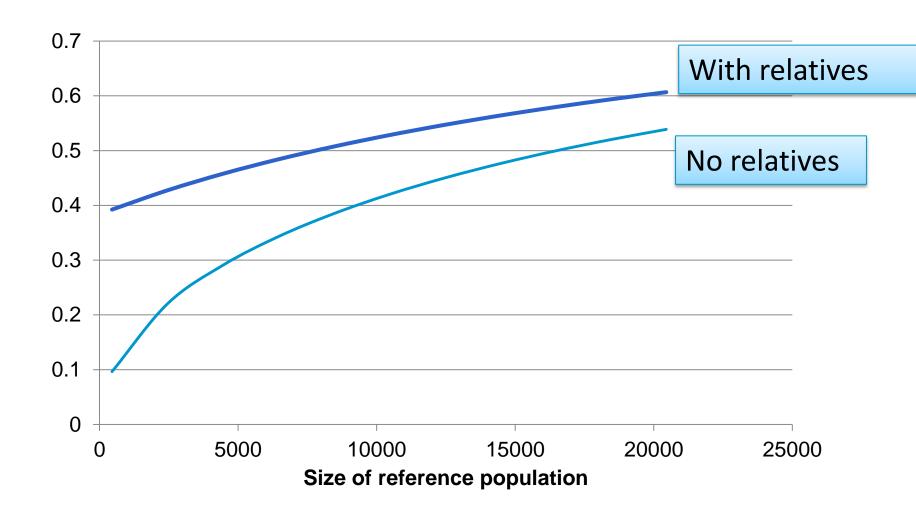
	Value of information source			GBV accuracy		
N_1	breed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000	16%	52%	21%	0.43	0.22	95%
5,000	31%	39%	15%	0.47	0.32	48%
10,000	45%	26%	10%	0.53	0.42	26%

Relatedness matters more if the reference population is smaller

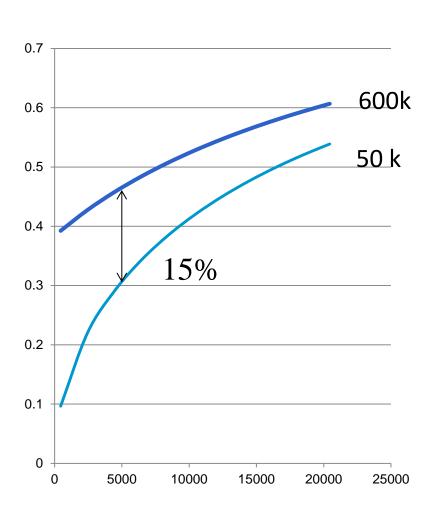
hypothesis confirmed

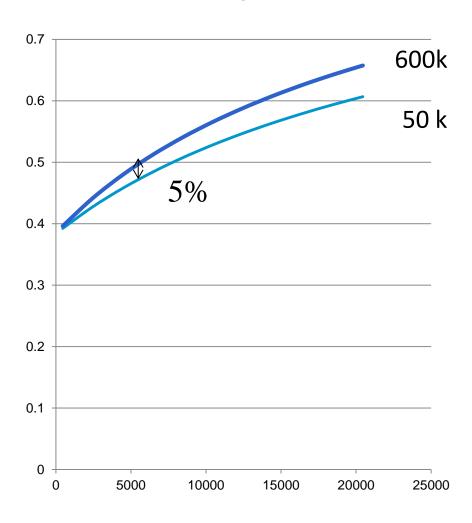
$NE_1 = 1000$							
	Value of information source			GBV accuracy			
N_1	breed (N1)	flock 400	relatives 50	all info	breed only	diff	
2,000	16%	52%	21%	0.43	0.22	95%	
5,000	31%	39%	15%	0.47	0.32	48%	
10,000	45%	26%	10%	0.53	0.42	26%	
N_1	breed (N1)	flock 100	relatives 10	all info	breed only	diff	
2,000	48%	36%	48%	0.28	0.21	36%	
5,000	68%	19%	68%	0.36	0.31	15%	
10,000	79%	11%	79%	0.45	0.41	7 %	

With fewer relatives the reliance on the reference population increases


1000

$NE_1 = 1000$							
		Value of information source			GBV accuracy		
N_1	1	reed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000		16%	52%	21%	0.43	0.22	95%
5,000		31%	39%	15%	0.47	0.32	48%
10,000	•	45%	26%	10%	0.53	0.42	26%
$NE_1 = 200$)						
N_1	<u> </u>	oreed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000	•	45%	26%	10%	0.53	0.45	18%
5,000		62%	12%	5%	0.64	0.60	7%
10,000	•	72%	5%	2%	0.74	0.72	3%

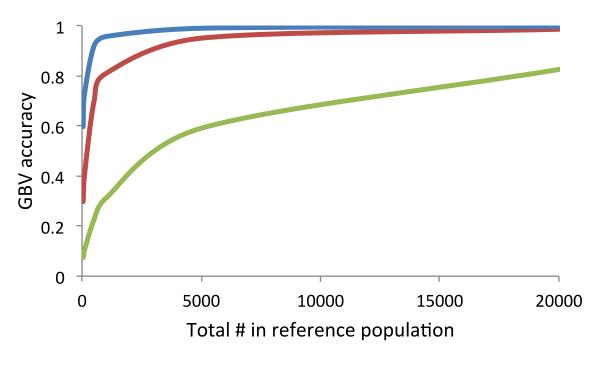

With less diverse populations the relatives matter a lot less


NE - 1000

The effect of a larger reference population

The effect of denser marker panels

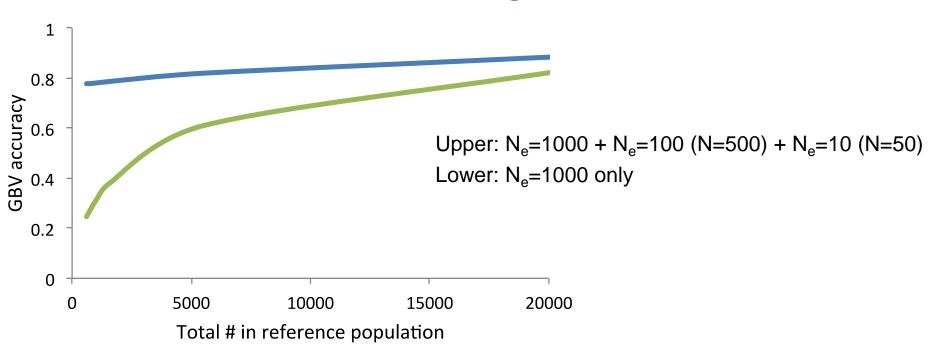
No relatives


With relatives

Conclusion

- Theory exists to predict genomic prediction accuracy in advance: depends on population diversity, nr records
 - Reference populations are heterogeneous, with closer as well as distant relatives
 - Relatives and flock/herd mates will increase accuracy and decrease reliance on wider reference population (and denser marker panels)

Sample availability


Upper: N_e=10 only

Middle: N_e=100 only

Lower: N_e=1000 only

- $h^2=0.25$
- $N_e = 10$ would have < N = 100 (maximum acc. = 0.73)
- $N_e = 100$ would have < N = 1,000 (maximum acc. = 0.81)
- $N_e = 1,000$ can have N = 20,000 (acc. = 0.83)

Composite design

Implication

- Marker density
 - For beef cattle or sheep, very dense markers (e.g. 600K) may not be cost-effective, compared to 50K
 - For N_e = 1000, accuracy is similar between 50K and 600K
- Marker density is not a critical design parameter
 - when > 50K with $N_e = 1000$ (livestock)
 - when > 200K with N_e = 10,000 (human)
- But, it may matter with very large N_e
 - Multi-breeds or multi-ethnicities

Implication

- To maximise prediction accuracy
 - give a priority to genotype reference sample of smaller N_e,
 - e.g. close relatives > flocks (local, village) > states > country >...
 - When h² is lower, reference sample of smaller N_e is more important

Note that N_e can be changed, depending on the target sample

Implication

■ MTG2

https://sites.google.com/site/honglee0707/mtg2

Given design parameters, MTG2 can provide the expected accuracy and power

See section 7 and 9 in the manual