

Predicting genetic changes with genomic information

Julius van der Werf

Overview

- Genomic information can be used to achieve more genetic change
 can we predict effect on genetic change, and inbreeding
- Combine genotype information with information from phenotypes and pedigree – 'additional value' of a genomic test
- How to best use genetic testing in breeding programs

Genomic breeding values

Good for: Hard to measure, late in life traits HTML

- Lean meat yield, meat quality
- Reproductive Rate
- Adult Weight

But how does it change selection response?

- Overall
- For each trait

Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0$	$.1 = r^2$	$h^2 = 0.3 = r^2$		
Trait Measurability	%∆ Acc	%∆ Gain	%∆ Acc	%∆ Gain	
< 1 year, both sexes	15	7	7	7	
> 1 year, both sexes	68	19	59	37	
>1 year, females only	119	27	112	52	
on Corr. Trait, r _g = 0.9	20	12	20	26	
on Corr. Trait, r _g = 0.5	67	50	76	86	

 \rightarrow More increase inaccuracy when there is limited information

Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0$.1 = r ²	$h^2 = 0.3 = r^2$	
Trait Measurability	%∆ Acc	%∆ Gain	%∆ Acc %∆ Gain	
< 1 year, both sexes	15	7	7	7
> 1 year, both sexes	68	19	59	37
>1 year, females only	119	27	112	52
on Corr. Trait, r _g = 0.9	20	12	20	26
on Corr. Trait, r _g = 0.5	67	50	76	86

Note that: gain = (accuracy * selection intensity/generation interval) * genetic SD

These effects even higher in selected populations (need to account for Bulmer effect)

How is additional response calculated?

Selection index theory

- Index weights for various information sources
- Accuracies of EBV and GEBV -overall index and per trait-
- Response -overall index and per trait-
 - Some traits benefit more than other from GS

Some definitions

Information used to estimate it

- TBV True breeding value
- EBV Estimated breeding value
 Phenotype + Pedigree
- GBV Genomically estimated BV DNA test
- GEBV Genomically enhanced estimated BV
 Phenotype
 + Pedigree
 + DNA test

Selection Index Approach

Genomic Selection:

Predict TBV with Accuracy = x

→ GS explains
$$x^2$$
% of V_A → $V_{qtl} = x^2 V_A$

Lande and Thompson, 1990 Genetics:

Models

Without GS: $V_{Pheno} = V_{AddGen} + V_{error}$ With GS: $V_{Pheno} = V_{polygenic} + V_{qtl} + V_{error}$ Predict from phenotypes pedigree Predict from DNA markers

 $V_{\text{polygenic}} = (1-x^2)V_A$

Selection Index some formal stuff

 $I = b_1 x_1 + b_2 x_2 + \dots + b_n x_n$

Var(H) = σ_a^2

for reference only

Index: X_i = selection criteria b_i = index weight

Breeding Objective

Cov(X,A) = G (a vector with ST objective) Optimal weights are $b = P^{-1}G$

 $Var(I) = var(b'X) = b'var(X)b = b'Pb = \sigma_I^2$

Calculate optimal index weights given the breeding objective

 $Cov(I,H) = cov(b'X,A) = b'cov(X,A) = b'G = b'Pb = \sigma_1^2$

var(X)=P

 $b = P^{-1}G \rightarrow Pb = G$

Single trait breeding objective: H= A (breeding value)

Accuracy of selection index (single trait)

 r_{IA} = correlation between Index (=EBV) and A

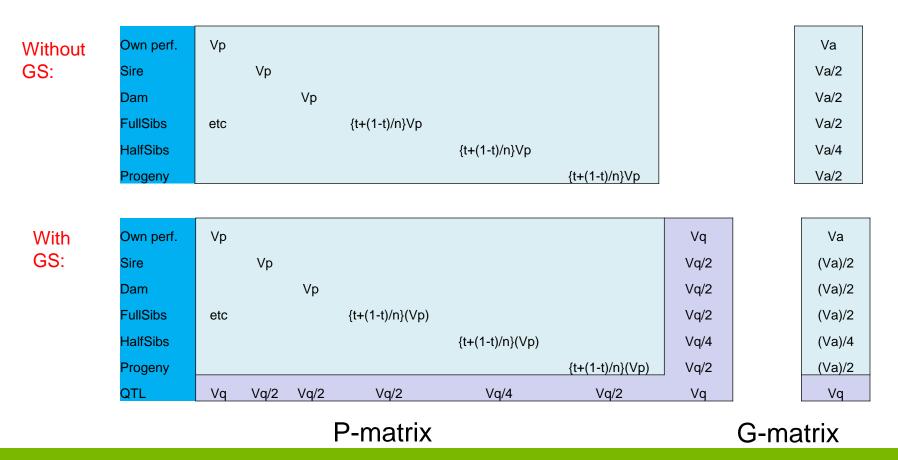
$$= \underline{cov(I,A)} = \underline{\sigma_{I}^{2}} = \underline{\sigma_{I}} / \sigma_{A} = \sqrt{(b'Pb/\sigma_{a}^{2})}$$

$$\sigma_{I} \sigma_{A} = \sigma_{I} \sigma_{A}$$

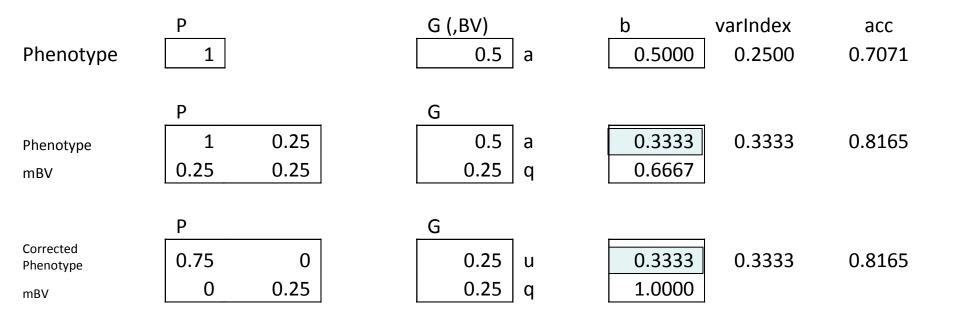
Because cov(I,A) = var(I)

Selection Index = Best Linear Prediction BLP Index (I) is best estimate of breeding value: I = E(A|X) = cov(X,A)/var(X) Same as BLUP, but without fixed effects.

Var(I)= var(EBV) =
$$r_{IA}^2 \cdot var(BV) = r_{IA}^2 \sigma_a^2$$
 r_{IA}^2 also known as reliability


Selection Index Approach with genomic info

use info on various information sources: below for one trait only


	Variance-covariance of information sources P-matrix						cova	_	vith TBV -matrix		
Without	Own perf.	Vp								Va	
GS:	Sire		Vp							Va/2	
	Dam			Vp						Va/2	
	FullSibs	etc			{t-(1-t)/n}Vp					Va/2	
	HalfSibs					{t-(1-t)/n}Vp				Va/4	
	Progeny						{t-(1-t)/n}Vp			Va/2	
With	Own perf.	Vp-Vq						0		Va-Vq	
GS:	Sire		Vp-Vq					0		(Va-Vq)/2	
	Dam			Vp-Vq				0		(Va-Vq)/2	
	FullSibs	etc			{t-(1-t)/n}(Vp-Vq)			0		(Va-Vq)/2	
	HalfSibs					{t-(1-t)/n}(Vp-Vq)	0		(Va-Vq)/4	
	Progeny						{t-(1-t)/n}(Vp-Vq)	0		(Va-Vq)/2	
	QTL	0	0	0	0	0	0	Vq		Vq	

Selection Index Approach with genomic info

Pseudo BLUP: Genomic Breeding value is an additional trait with h²=1

Selection index:example of 2 approachesown phenotype + GBVGBV reliability " x^{2} " = 0.5

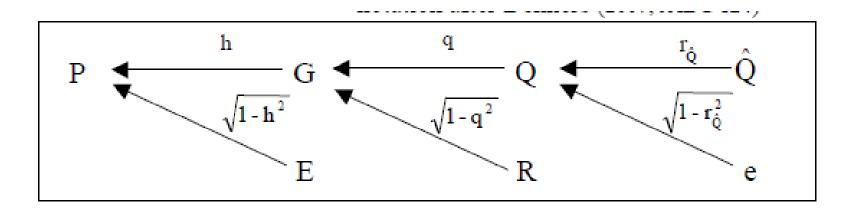
Note weights on QTL info

MBV = GBV = "QTL"

une

Selection index: example of 2 approaches - information from relatives

	Р			G	_	b	VarIndex	accuracy
ownPoly	0.75	0	0.125	0.25		0.3143	0.3429	0.8281
Own GBV	0	0.25	0	0.25		1.0000		
sirepoly	0.125	0	0.75	0.125		0.1143		


Selection index: example of 2 approaches - information from relatives

	Р				G	b	VarIndex	accuracy
ownPoly	0.75	0	0.125	0	0.25	0.3143	0.3429	0.8281
ownGBV	0	0.25	0	0.125	0.25	1		
sirepoly	0.125	0	0.75	0	0.125	0.1143		
sireMBV	0	0.125	0	0.25	0.125	0		
	Р			G		 b	varIndex	асс
ownPoly	0.75	0	0.125	0.25		0.3182	0.3409	0.8257
ownGBV	0	0.25	0.125	0.25	;	0.9545		
Sirepheno	0.125	0.125	1	0.25	,	0.0909		

Top: sire is genotyped, bottom: sire not genotyped, not same accuracy Conclusion: Relatives info needs to be 'corrected for markers'

Path coefficient method following

Dekkers Dec 2007 JABG

- P = Phenotype
- G = Breeding Value
- Q = BV component associated with markers (=GBV)
- Q_{hat} = estimate of Q

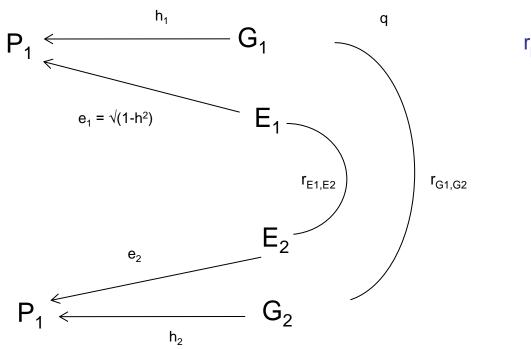
Accuracy GBV = "x" = q.r_{Qhat}

Phenotypic correlation: $r_{P,Qhat} = h.x$

Genetic correlation $r_{G,Qhat} = x$

Conclusion: single trait

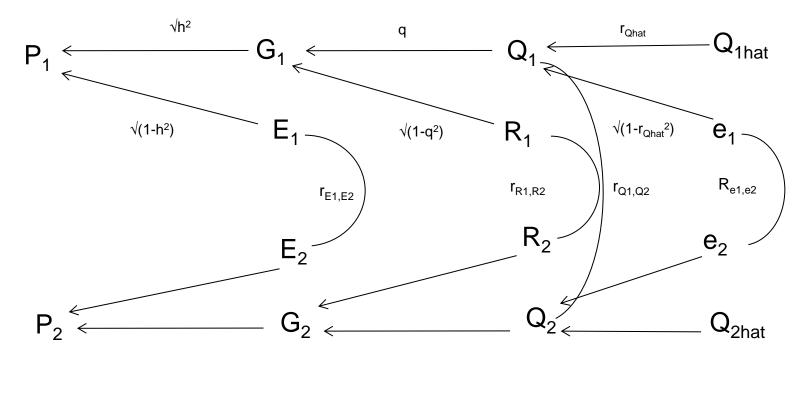
- Can include GBV as a correlated trait
 - And use standard software for selection index
- r_g = accuracy, same as 'x'
- $r_p = h.x$
- econ value for GBV = 0
- This is equivalent to treating it as an extra info source in a single trait multiple info sources approach:


EBV = f(own perf, dam, sire, sibs, progeny, GBV)

Extension to multiple traits

- Some traits may have GBV, others may not
- Need correlations....
 - between GBV and other trait phenotypes
 - between GBV and other trait genotypes
 - between different GBVs

 These can be predicted from genetic correlations between traits, only when assuming infinitesimal model


Path coefficient method Dekkers Dec 2007 JABG

 $r_{P1G2} = h_1 r_{G1,G2}$ $r_{p1p1} = h_1 h_2 r_{G1,G2} + e_1 e_2 r_{E1,E2}$ $e_i = sqrt(1-h_i^2)$

Path coefficient method following

Dekkers Dec 2007 JABG

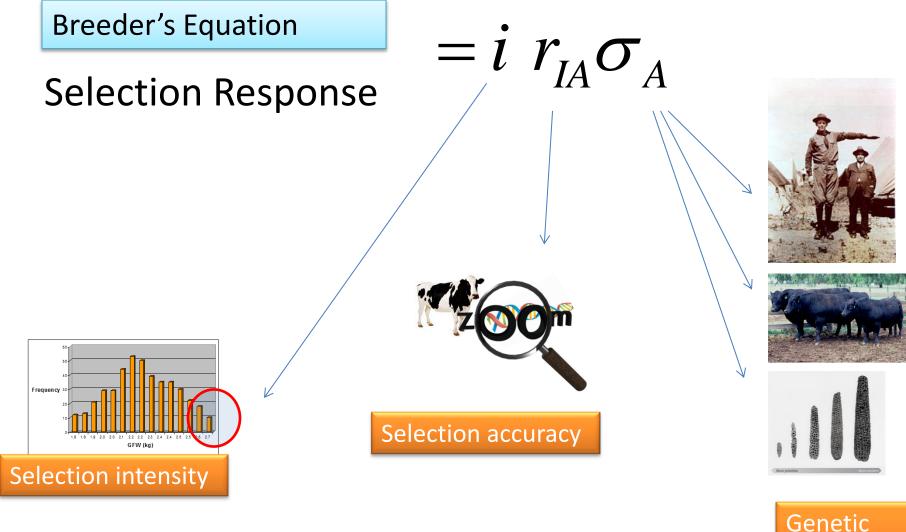
 $\mathbf{r}_{\text{Gi,Qhatj}} = \mathbf{r}_{\text{Q1hat}} \cdot \mathbf{r}_{\text{Q1,Q2}}$

 $\mathbf{r}_{\text{Pi,Qhatj}} = \mathbf{h}_{i} \mathbf{r}_{\text{Q1hat}} \cdot \mathbf{r}_{\text{Q1,Q2}}$

 $\mathbf{r}_{\text{Qhati ,Qhatj}} = \mathbf{r}_{\text{Q1hat}} \cdot \mathbf{r}_{\text{Q2hat}} \cdot \mathbf{r}_{\text{Q1,Q2}}$

une

Summary



To predict accuracy of GEBV we can use selection index approach

- Either: GBV + polygenic (no correlation)
- Or: GBV + P, correlation is r²
- The latter is easier: Genomic BV as a correlated trait.

 r_g = accuracy of GBV = 'x' r_p = h.x Econ value of GBV = 0

How much genetic change?

variation

How much genetic change?

Selection Differential

$$S = i r_{IA} \sigma_A$$

Mean of selected parents

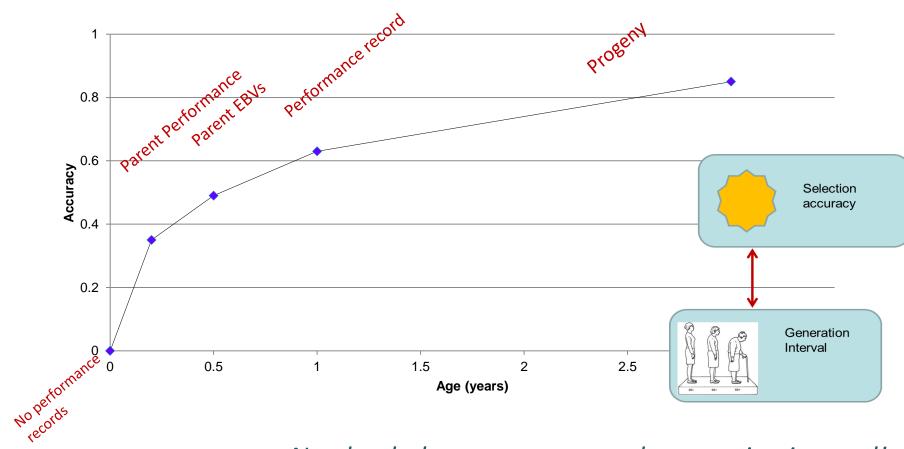
Response per year

Response per generation

Superiority of parents averaged over males and females

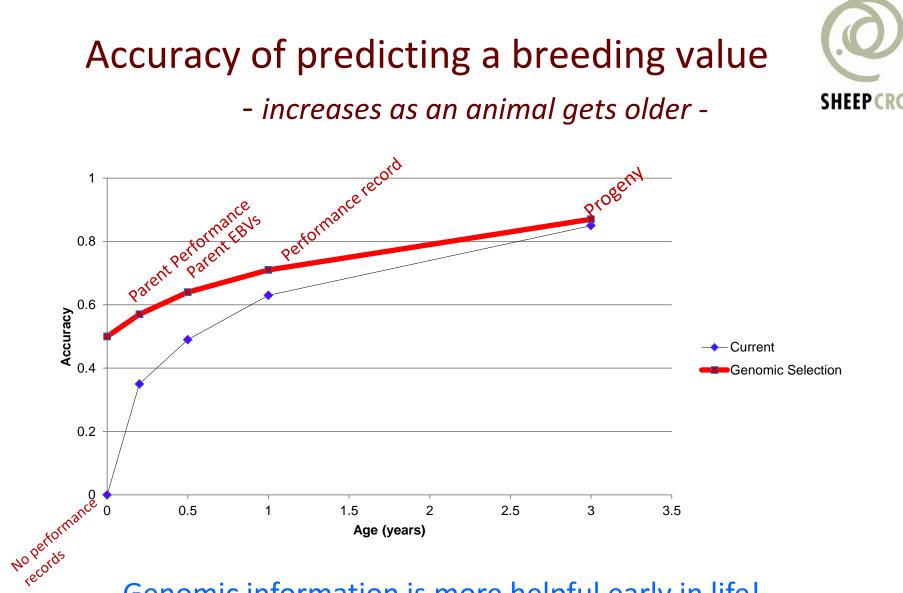
 $S = i r_{IA} \sigma_A$

Response per year

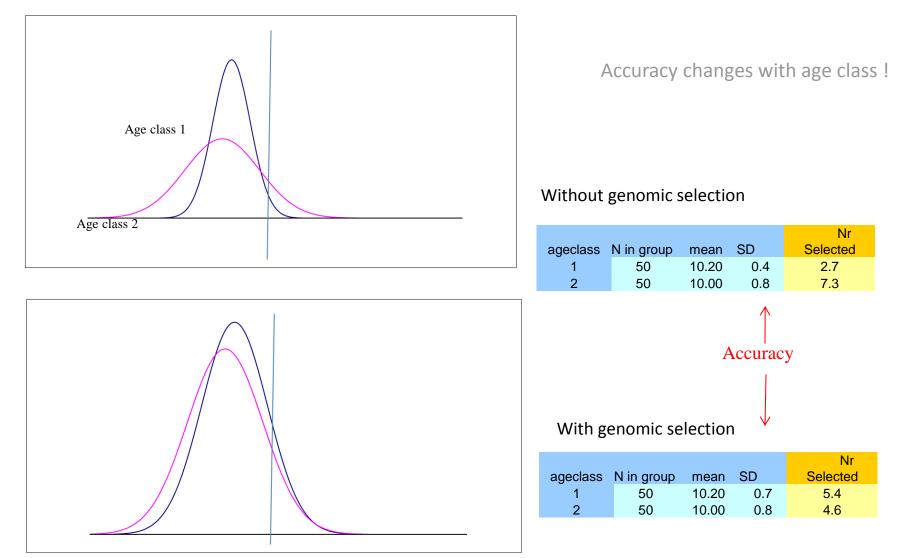

$$\frac{1}{2}$$
 S_{sires} + $\frac{1}{2}$ S_{dams}
 $\frac{1}{2}$ L_{sires} + $\frac{1}{2}$ L_{dams}

 $S_{sires} + S_{dams}$ $L_{sires} + L_{dams}$

Generation interval (in years) averaged over males and females


Generation interval is average age of sires (dams) when their progeny are born

$R = \frac{i_m r_m + i_f r_f}{L_m + L_f} \sigma_A$ Accuracy of predicting a breeding value (r) - increases as an animal gets older


Assumed heritability = 25%

Need to balance accuracy and generation interval!

Genomic information is more helpful early in life!

Optimizing age structure

Potential benefits of GS - some cases

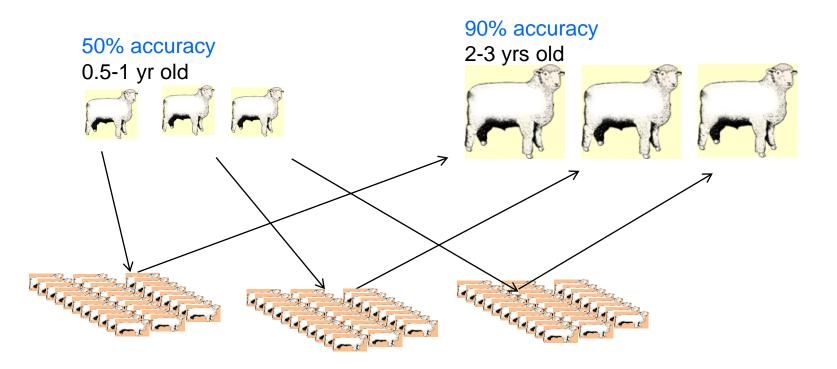
% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0.$	$.1 = r^2$	$h^2 = 0.3 = r^2$		
Trait Measurability	%∆ Acc	%∆ Gain	%∆ Acc	%∆ Gain	
< 1 year, both sexes	15	7	7	7	
> 1 year, both sexes	68	19	59	37	
>1 year, females only	119	27	112	52	
on Corr. Trait, r _g = 0.9	20	12	20	26	
on Corr. Trait, r _g = 0.5	67	50	76	86	

These effects underestimated due to not accounting for Bulmer effect

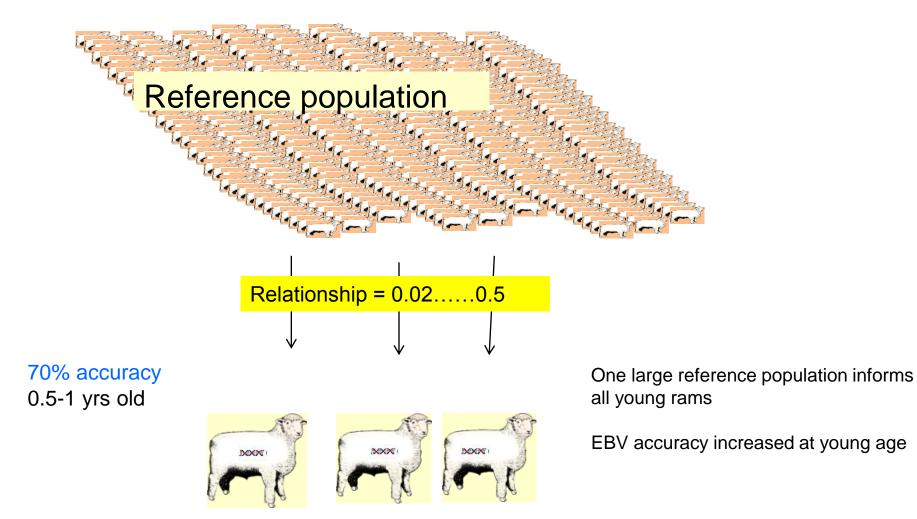
Effect of GS on genetic change

- More accuracy of GEBV,
 - esp younger animals
 - Depends on trait measurability (early/late trat, sex limited)
- More response due to higher accuracy
-Or lower generation interval
- E.g. dairy: accuracy of GBV is lower than of progeny test, but generation interval can be much reduced

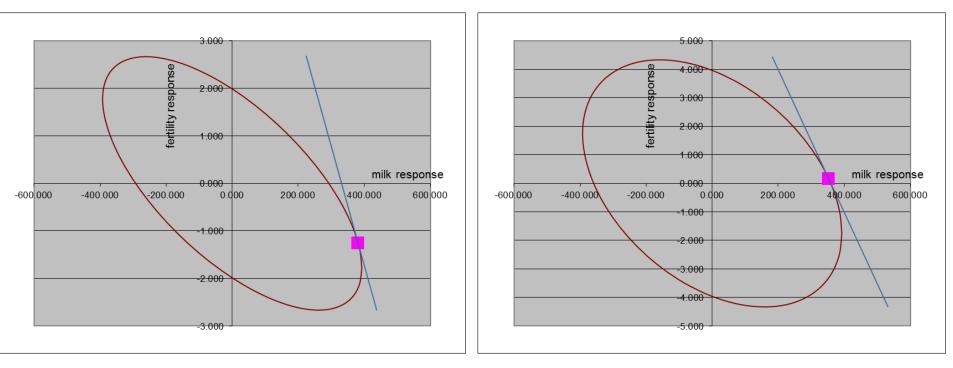


<u>% extra gain impact</u>

- Early trait
 small
 small
 accuracy/ gen int
- Late Trait moderate gen int/acc
- Sex limited trait
 - females only, late
 - Males only early


- very large gen i small to modest acc/g
 - gen int acc/gen int

Compare: Progeny Testing


Each progeny group only informs one sire

Genomic Testing

Genomic Selection also changes the balance between traits

Selection for milk Yield and Fertility

	economic w		geny sured	response (4 yrs)		
	milk	fertility	milk	fertility	milk	feed
left	0.2	8	50	10	381	-1.25
right	0.2	8	50	50	352	0.17

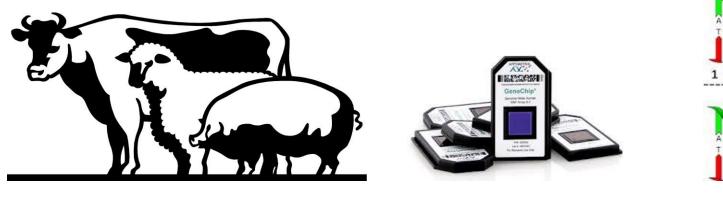
Shifting the *trait* balance with genomic selection

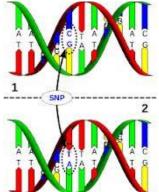
		Current
	S	election
	Accuracy	Response
Weight kg	0.71	0.79
Dressing % Saleable meat	0.26	0.23
yield %	0.33	0.29
Overall Merit		
\$Index	0.58	2.03

Shifting the *trait* balance with genomic selection

	Current S	Selection	Genomi	Difference	
	Accuracy	Response	Accuracy	Response	
Weight kg	0.71	0.79	0.75	0.76	-4%
Dressing % Saleable meat	0.26	0.23	0.59	0.42	83%
yield %	0.33	0.29	0.60	0.46	59%
Overall Merit					
<mark>\$Index</mark>	0.58	2.03	0.69	2.43	20%

Note: not only more gain overall, but shift to HTML traits


Effect of GS on genetic change


With multiple trait selection:

The accuracy of hard to measure trait will improve more, and as a result, these traits get more pushed,

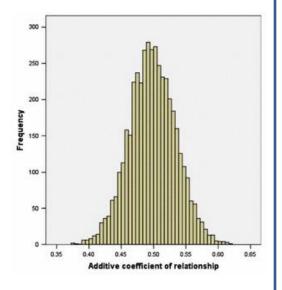
possibly at the expense of the easy to measure traits (but these were 'overemphasized' response before GS)

Genomic information and inbreeding

Relationships between Individuals

• Estimated using:

- Expected relatedness from PEDIGREE
- 'Observed' relatedness from proportion of genome shared
 - Thousands of genetic markers (SNPs)


Estimates of relationship using genotypes:

- The expectations A
- Replaced by the estimated G

 Genomic relationship matrix

- But which half?
- Variation around the expectation?

There is variation in actual relationship, e.g. 0.40-0.50 in FS

We can see this with genomic relationships

What information is used in BVs?

Clark et al, 2013 GSE

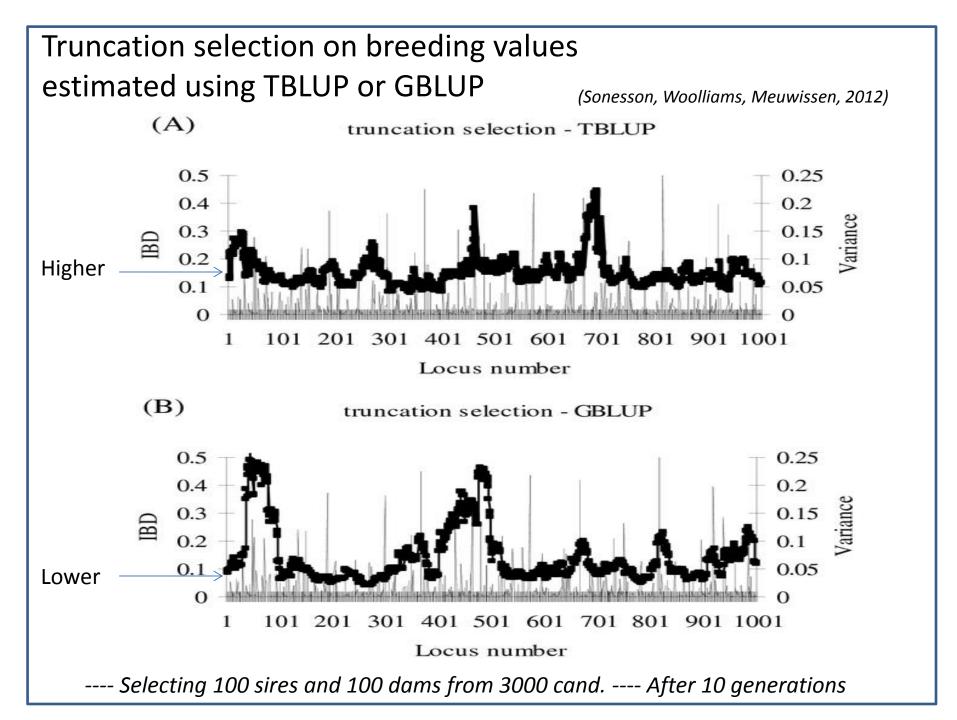
Va= ¼ sire + ¼ dam + ½ MS

Across family

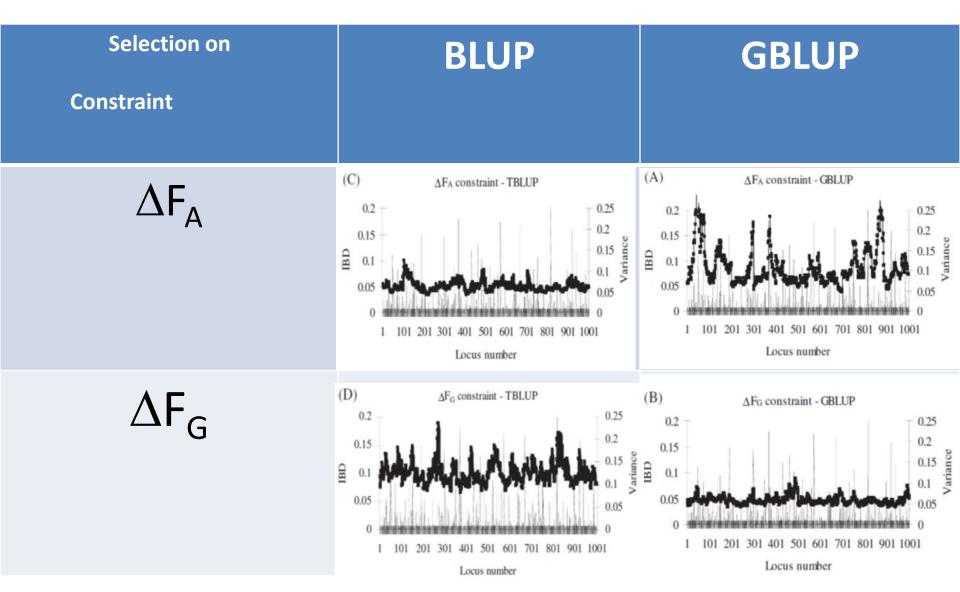
Within Family

 Table 2- The proportion of variation in breeding value explained by between family (Sire and Dam) and within family (MS) information.

		N	Z dairy	, bulls		Australian dairy bulls				
	BV	Sire	Dam	MS+e	Prop. of PT	BV	Sire	Dam	MS+e	Prop. of PT
Parent Ave	erage	0.56	0.44	0.001	0.001	PA EBV	0.44	0.52	0.04	0.05
Genomic E	BV	0.43	0.26	0.31	0.56	GEBV	0.33	0.37	0.30	0.36
Progeny Te	est	0.21	0.31	0.48	1.0	РТ	0.16	0.32	0.52	1.0


Correlation of breeding values and co-selection of relatives

Breeding value type	Half sib correlation	Full Sib correlation	Accuracy
Parent Average	0.55	1.0	0.45
Genomic BV	0.50	0.85	0.57
Progeny Test	0.26	0.53	1.0


Full Sibs - share the same Parent average BV (½ sire ½ dam)
- no longer the case with genomics

Half Sibs

- Share different PA breeding values
- Small advantage of using G to restrict inbreeding

Constraining Inbreeding: Pedigree or Genomics, Optimal contributions

Genomic selection and inbreeding

- Effect on IBD and variance at loci is different between GBLUP and BLUP
- GBLUP could give more 'local inbreeding'
- Can constrain inbreeding: better use G when applying GBLUP and use A when applying BLUP

• When constraining with G, can exploit some more variation within family (useful for large FS families)