(Genome-wide) association
analysis

Peter M. Visscher
peter.visscher(@ug.edu.au



Key concepts

Mapping QTL by association relies on linkage
disequilibrium in the population;

LD can be caused by close linkage between a QTL and
marker (= good) or by confounding between a marker and
other effects (= usually bad);

The power of QTL detection by LD depends on the
proportion of phenotypic variance explained at a marker;

Mixed models are good for performing GWAS

Genetic (co)variance can be estimated from GWAS
summary statistics
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LD

 Non-random association between alleles at
different loci

* Many possible causes
— mutation
— drift / inbreeding / founder effects

— population stratification
— selection

* Broken down by recombination



Definition of D

e 2 bi-allelic

— Locus 1, al

0C1

leles A & a, with freq. p and (1-p)

— Locus 2, al

— Haplotype

D =pss -P9q

leles B & b with freq. q and (1-q)

frequencies Pag, Pabs Pag> Pab



2
r> =D/ [pq(1-p)(1-q)]

* Squared correlation between presence and
absence of the alleles 1n the population

* ‘Nice’ statistical properties
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[Hill and Robertson 1968]



Properties of r and r?

* Population in ‘equilibrium’

E(r)=0 LD depends on
E(r?) = var(r) = 1/[1 + 4Nc] + 1/n population size and
N = effective population size recombination

n = sample size (haplotypes) distance
¢ = recombination rate
o 2 2
nr X(l)

e Human population 1s NOT 1in equilibrium

9
[Sved 1971; Weir and Hill 1980]



Analysis

Single locus association
GWAS

Least squares
ML
Bayesian methods
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Falconer model for single biallelic QTL

. i/

bb Bb BB

Var (X) = Regression Variance + Residual Variance
= Additive Variance + Dominance Variance
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Trait Value
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Statistical power (linear regression)

£4

y=u+px+e x=0,1,2 é

c,° =0+t o>  regression + residual w B ee

o2 =2p(1-p) p = allele frequency for indicator x

{HWE: note x 1s usually considered
fixed in regression}

6,2 = B0,2 = [a+d(1-2p)* * 2p(1-p)

q* =0,/ 6, {QTL heritability}
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Statistical Power
v’ test with 1 df:

E(X?)=1+nR?/(1-R?
=1+ng’/(1-¢°)
=1+ NCP

NCP = non-centrality parameter

Power of association proportional to g2
(Power of linkage proportional to g*)
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Statistical Power (R)

alpha= 5e-8

threshold= gchisg(l-alpha,l)

g2= 0.005

n= 10000

ncp= n*qg2/ (1-92)

power= 1l-pchisg(threshold, 1, ncp)
threshold

ncp

power

> alpha= 5e-8

> threshold= gchisg(l-alpha,l)
> g2= 0.005

> n= 10000

> ncp= n*qg2/(1-g2)

> power= l-pchisqg(threshold, 1,ncp)
> threshold

[1] 29.71679

> ncp

[1] 50.25126

> power

[1] 0.9492371
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Figure 1 Statistical power of detection in GWAS
for variants that explain 0.1-0.5% of the variation
at a type | error rate of 5 x 10~/ (calculated using
the Genetic Power Calculator!®). Shown is the
power to detect a variant with a given effect size,

assuming this type | error rate, which is typical for
a GWAS with a sample size of n = 5,000-40,000.
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Power by association with SNP

(small effect; HWE)

NCP(SNP) =n r? ¢?
= 12 * NCP(causal variant)

=n * {r’ ¢°} =n * (variance explained by SNP)

Power of LD mapping depends on the
experimental sample size, variance explained by
the causal variant and LD with a genotyped SNP
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GWAS

* Same principle as single locus association,
but additional information
_ QC
* Duplications, sample swaps, contamination
— Power of multi-locus data
« Unbiased genome-wide association
* Relatedness
 Population structure

* Ancestry
* More powerful statistical analyses
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P(at least 1 false positive)
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(association unlinked genes)

Population stratification

Both populations are in linkage equilibrium; genes unlinked

Allele frequency Haplotype frequency

PA1 PB1 PAIBI PA1B2 PA2BI1 PA2B2
Pop. 1 0.9 0.9 0.81 0.09 0.09 0.01
Pop. 2 0.1 0.1 0.01 0.09 0.09 0.81
Average 0.5 0.5 0.41 0.09 0.09 0.41

Combined population: D =0.16 and r* = 0.41
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Population stratification
(genes and phenotypes)

Once upon a time, an ethnogeneticist decided to figure
out why some people eat with chopsticks and others
do not. His experiment was simple. He rounded up
several hundred students from a local university, asked
them how often they used chopsticks, then collected
buccal DNA samples and mapped them for a series of
anonymous and candidate genes.

The results were astounding. One of the markers,
located right in the middle of a region previously
linked to several behavioral traits, showed a huge cor-
relation to chopstick use, enough to account for nearly
half of the observed variance. When the experiment
was repeated with students from a different university,
precisely the same marker lit up. Eureka! The delighted
scientist popped a bottle of champagne and quickly
submitted an article to Molecular Psychiatry heralding
the discovery of the ‘successful-use-of-selected-hand-
instruments gene’ (SUSHI).

[Hamer & Sirota 2010 Mol Psych]
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Population stratification
(genes and phenotypes)

It took another 2 years to discover that SUSHI is a
histocompatibility antigen gene that has nothing to do
with chopstick use but just happens to have different
allele frequencies in Asians and Caucasians, who of
course differ in chopstick use for purely cultural rather
than biological reasons. Even though the association
data were highly significant and readily replicated,
they were biologically meaningless.

[Hamer & Sirota 2010 Mol Psych]
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Population stratification
(genes and phenotypes)

The source of confounding in the chopstick example
is better thought of as the environment. The problem
arises because different subgroups have different levels
of exposure to chopsticks. This type of confounding is
extremely familiar to genetic epidemiologists, but it
is unimportant in settings where the environment can be
experimentally controlled or randomized (as is routinely
done in plant breeding, for example).

There is another source of confounding, however,
and that is the genetic background. The estimate of the
effect of a particular locus can be confounded by
the other causal loci in the genome. This genetic back-
ground effect will always be present to some extent, even

[ Vilhjalmsson & Nordborg 2013 Nature Reviews Genetics |
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Demonstrating stratification in a European
American population

Catarina D Campbell'?, Elizabeth L Ogburn!, Kathryn L Lunetta®®, Helen N Lyon!?, Matthew L Freedman*-,

Leif C Groop7, David Altshuler®*?, Kristin G Ardlie’ & Joel N Hirschhorn’®*

Table 2 No evidence for stratification using standard methods

72 values? Estimates of stratification parameters?
SNPs Median Mean Amax I P
Random SNPs 111 0.37 0.96 3.21 1 0.61
AlMs 67 0.58 0.95 - - 0.61
Total 178 0.49 0.95 - - 0.66

Table 3 A strong association of LCT -13910C — T and height is reduced by rematching subjects on the basis of ancestry

Origin of grandparents®

All Four US-born Southeastern Northwestern Combined®

N Total 2,179 1,282 354 543 -

Tall 1,123 645 127 351 -

Short 1,056 637 227 192 -
LCT-13910 genotype counts® Total 392:918:869 142:543:596 182:141:31 68:233:243 -

Tall 161:474:489 66:265:314 54:55:18 41:154:157 -

Short 231:444:380 76:278:282 128:86:13 27:79:86 -
Hardy-Weinberg P Total 56 x 1077 0.57 0.89 0.89 -

Tall 0.03 0.66 0.81 0.92 -

Short 25 x 105 0.86 0.96 0.45 -
Association P 3.6 x 107 0.098 0.0016 0.71 0.0074
OR (95% c.i.)¢ 1.37 (1.22-1.54) 1.15 (0.97-1.36) 1.70 (1.22-2.38) 1.05 (0.81-1.37) 1.19 (1.05-1.36)

Table 4 No association of LCT -13910C/T and height in other European populations

Polish Scandinavian Combined
Genotypes (CC:CT:TT) Tall 166:251:86 - -
Short 174:235:96 - -
Transmissions of T allele (T:U)? Tall - 65:68 -
Short - 76:66 -
P 0.92 0.43 0.58
OR (95% c.i.)® 0.99 (0.83-1.18) 0.91 (0.72-1.15) 0.96 (0.83-1.11)
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Stratification
y = 2g; + 2¢;

r(Yﬂgi) due to
* causal association with g

* correlation g; and g; and causal association with g;
(LTC and height)

» correlation g; and environmental factor ¢;
(chopsticks)
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How to deal with structure?

* Detect and discard ‘outliers’
* Detect, analysis and adjustment
— E.g. genomic control

* Account for structure during analysis

— Fit a few principal components as covariates
— Fit GRM
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GWAS using mixed linear models
y=Xb+pBx+g+e

var(g) = Go,’
G = genetic relationship matrix (GRM)

Model conditions on effects of all other variants

Power depends on whether x 1s included (MLMi) or
excluded (MLMe) from the construction of G.

26
[Yang et al. 2014 Nature Genetics]



GWAS using mixed linear models:
statistical power

For linear regression (LR), the expected mean of x? association sta-
tistics (Aean) 18
(LR)=1+Nh3/M (1)

)\mean

regardless of the genetic architecture of the trait*%.

For MLMj, the A .,, Value at markers used to construct the GRM is
)\'mean (MLMi) =1 (2)

Equation (2) highlights the dangers of using A .., (0T Apedian) tO
assess the presence of population stratification or other artifacts. A
researcher who observeslower A ... (OF A . 4ian) Values for MLMi than
for linear regression might conclude that this difference is due to cor-
rection for confounding, but this result is in fact expected, even in the

absence of any confounding.

Finally, for MLMe, N2/ M 1 here is the squared
Apean (MLMe) = 1 +—2 correlation between g-hat
1—7r°h g2 and g
27

[Yang et al. 2014 Nature Genetics]



How does LD shape association

A set of markers along a chromosome region:

—_——————

Superimpose LD between markers
Lonely SNPs [no LD]

LD blocks

Consider causal SNPs

| Lonely SNPs [no LD]
[ ] LD blocks
* Causal variants

Association &

All markers correlated with a causal variant show
association

28



How does LD shape association

Consider causal SNPs

| Lonely SNPs [no LD]
[ LD blocks
* Causal variants

Association &

Association |

All markers correlated with a causal variant show association.
Lonely SNPs only show association if they are causal
The more you tag the more likely you are to tag a causal variant

Assuming all SNPs gave an equal probability of association given LD status,
we expect to see more association for SNPs with more LD friends.

This is a reasonable assumption under a polygenic genetic architecture 29



LD score regression

_ 2
l. — z T)'k Quantifies local LD for SNP j
k+]j

E[xz | ('J] = th('] /M + Na +1 Test statistic is linear in LD score

—> regression of test statistic on LD score provides an
estimate of SNP heritability

Use GWAS summary statistics and reference sample for
LD score estimation
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[Yang 2011 EJHG; Bulik-Sullivan 2015]



Same principle for genetic

covariancce
N. 1s the number of
,/N N s )
E[z jzz|€j] = 17Y2 Cg (:+ overlapping samples

i /NlNz

z = test statistics from GWAS summary statistics
N = sample size

M = number of markers

p, = genetic covariance between traits

p = phenotypic correlation between traits
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[Bulik-Sullivan 2015 Nature Genetics]



Key concepts

Mapping QTL by association relies on linkage
disequilibrium in the population;

LD can be caused by close linkage between a QTL and
marker (= good) or by confounding between a marker and
other effects (= usually bad);

The power of QTL detection by LD depends on the
proportion of phenotypic variance explained at a marker;

Mixed models are good for performing GWAS

Genetic (co)variance can be estimated from GWAS
summary statistics
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