Estimation of quantitative genetic parameters from distant relatives using marker data

Peter M. Visscher peter.visscher@uq.edu.au

Key concepts

- Dense SNP panels allow the estimation of the expected genetic covariance between distant relatives ('unrelateds')
- A model based upon estimated relationships from SNPs is equivalent to a model fitting all SNPs simultaneously
- The total genetic variance due to LD between common SNPs and (unknown) causal variants can be estimated
- Genetic variance captured by common SNPs can be assigned to chromosomes and chromosome segments

ANTHROPOLOGICAL MISCELLANEA.

REGRESSION towards MEDIOCRITY in HEREDITARY STATURE. By FRANCIS GALTON, F.R.S., &c.

1886

3

DIAGRAM I. Probable Stature of Son for given Father's Stature.

PAIR	CORRELATION	SE
Spouse	0.28	0.02
Son-Father	0.51	0.02
Daughter-Father	0.51	0.01
Son-Mother	0.49	0.02
Daughter-Mother	0.51	0.01
Brother-brother	0.51	0.03
Sister-sister	0.54	0.02
Brother-sister	0.55	0.01

ON THE LAWS OF INHERITANCE IN MAN*.

I. INHERITANCE OF PHYSICAL CHARACTERS.

BY KARL PEARSON, F.R.S., assisted by ALICE LEE, D.Sc. University College, London.

On the Laws of Inheritance in Man

4

100 years later Heritability of human height

h² ~ 80%

Disease	Number	Percent of Heritability	Heritability	S BOLOGY
	of loci	Measure Explained	Measure	P103
Age-related macular	5	50%	Sibling recurrence	
degeneration			risk	
Crohn's disease	32	20%	Genetic risk	. 20
			(liability)	Wich rein*
Systemic lupus	6	15%	Sibling recurrence	-mert coldst
erythematosus			risk	reno, avid B.
Type 2 diabetes	18	6%	Sibling recurrence	34 ⁵ , D ²
			risk	thetite arson
HDL cholesterol	7	5.2%	Phenotypic	cuntr. Hakon
			variance	ter Hakon
Height	40	5%	Phenotypic 🔊	(real standard
			variance street	tS nwant
Early onset myocardial	9	2.8%	Phenot BACCEST	an 5
infarction			vari opene Var	10n2 kaiwa
Fasting glucose	4	1.5%	Phenc pare cia	. 0 ¹ 2,1
			varianc	Dickst

Where is the Dark Matter?

Vol 461 8 October 2009 doi:10.1038/nature08494

nature

REVIEWS

Finding the missing heritability of complex diseases

Teri A. Manolio¹, Francis S. Collins², Nancy J. Cox³, David B. Goldstein⁴, Lucia A. Hindorff⁵, David J. Hunter⁶, Mark I. McCarthy⁷, Erin M. Ramos⁵, Lon R. Cardon⁸, Aravinda Chakravarti⁹, Judy H. Cho¹⁰, Alan E. Guttmacher¹, Augustine Kong¹¹, Leonid Kruglyak¹², Elaine Mardis¹³, Charles N. Rotimi¹⁴, Montgomery Slatkin¹⁵, David Valle⁹, Alice S. Whittemore¹⁶, Michael Boehnka¹⁷, Andrew G. Clark¹⁸, Evan E. Eichler¹⁹, Greg Gibson²⁰, Jonathan L. Haines²¹, Trudy F. C. Mackay²², Steven A. McCarroll²³ & Peter M. Visscher²⁴

TURE PERSONAL GENOMES

The case of the missing heritability

Hypothesis testing vs. Estimation

- GWAS = hypothesis testing
 - Stringent p-value threshold
 - Estimates of effects biased ("Winner's Curse")
 - E(bhat | test(bhat) > T) > b {b fixed}
 - var(bhat) = var(b) + var(bhat|b) {b random}

• Can we estimate the total proportion of variation accounted for by all SNPs?

Basic idea

- Estimates of additive genetic variance from known pedigree is unbiased
 - If model is correct
 - Despite variation in identity given the pedigree
 - Pedigree gives correct expected IBD
- Unknown pedigree: estimate genome-wide IBD from marker data
 - Estimate additive genetic variance given this estimate of relatedness
- Idea is not new
 - (Evolutionary) genetics literature (Ritland, Lynch, Hill, others)

Close vs distant relatives

- Detection of close relatives (fullsibs, parent-offspring, halfsibs) from marker data is relatively straightforward
- But close relatives may share environmental factors
 - Biased estimates of genetic variance
- Solution: use only (very) distant relatives

A model for a single causal variant

	AA	AB	BB
frequency	(1-p) ²	2p(1-p)	p ²
x	0	1	2
effect	0	b	2b
$z = [x-E(x)]/\sigma_x$	-2p/v{2p(1-p)}	(1-p)/ √{2p(1-p)}	2(1-p)/ v{2p(1-p)}

$y_j = \mu' + x_{ij}b_i + e_j$	x = 0, 1, 2 {standard association model}
--------------------------------	--

 $y_j = \mu + z_{ij}u_j + e_j$ $u = b\sigma_x; \mu = \mu' + b\sigma_x$

Multiple (m) causal variants

 $y_j = \mu + \Sigma z_{ij}u_j + e_j$

 $= \mu + g_j + e_j$

 $y = \mu 1 + g + e$

= μ**1** + **Zu** + **e**

Equivalence

Let u be a random variable, u ~ N(0, σ_u^2) Then $\sigma_g^2 = m\sigma_u^2$ and

var(y) =
$$ZZ'\sigma_u^2 + I\sigma_e^2$$

= $ZZ'(\sigma_g^2/m) + I\sigma_e^2$
= $G\sigma_g^2 + I\sigma_e^2$

Model with individual genome-wide additive values using <u>relationships</u> (G) at the causal variants is equivalent to a model fitting all causal variants

We can estimate genetic variance just as if we would do using pedigree relationships

But we don't have the causal variants

If we estimate **G** from SNPs:

- lose information due to imperfect LD between SNPs and causal variants
- how much we lose depends on
 - density of SNPs
 - allele frequency spectrum of SNPs vs. causal variants

– estimate of variance \rightarrow missing heritability

Let **A** be the estimate of **G** from N SNPs:

$$A_{jk} = (1/N) \Sigma \{ x_{ij} - 2p_i \} (x_{ik} - 2p_i) / \{ 2p_i (1-p_i) \}$$

= (1/N) $\Sigma z_{ij} z_{ik}$

Data

- ~4000 'unrelated' individuals
- Ancestry ~British Isles
- Measurement on height (self-report or clinically measured)
- GWAS on 300k ('adults') or 600k (16-year olds) SNPs

Lack of evidence for population stratification within the Australian sample

Methods

- Estimate realised relationship matrix from SNPs $y_i = g_i + e_i$ $var(\mathbf{y}) = \mathbf{V} = \mathbf{A}\sigma_g^2 + \mathbf{I}\sigma_e^2$
- Estimate additive genetic variance

$$A_{ijk} = \frac{\text{cov}(x_{ij}a_i, x_{ik}a_i)}{\sqrt{\text{var}(x_{ij}a_i) \text{var}(x_{ik}a_i)}} = \frac{\text{cov}(x_{ij}, x_{ik})}{2p_i(1-p_i)}$$

Base population = current population

$$A_{jk} = \frac{1}{N} \sum_{i} A_{ijk} = \begin{cases} \frac{1}{N} \sum_{i} \frac{(x_{ij} - 2p_i)(x_{ik} - 2p_i)}{2p_i(1 - p_i)}, \ j \neq k \\ 1 + \frac{1}{N} \sum_{i} \frac{x_{ij}^2 - (1 + 2p_i)x_{ij} + 2p_i^2}{2p_i(1 - p_i)}, \ j = k \end{cases}$$

Statistical analysis

$$\operatorname{var}(\mathbf{y}) = \mathbf{V} = \mathbf{A}\sigma_g^2 + \mathbf{I}\sigma_e^2$$

y standardised $\sim N(0,1)$

No fixed effects other than mean

A estimated from SNPs

Residual maximum likelihood (REML)

Partitioning variation

- If we can estimate the variance captured by SNPs genome-wide, we should be able to partition it and attribute variance to regions of the genome
- "Population based linkage analysis"

Genome partitioning

- Partition additive genetic variance according to groups of SNPs
 - Chromosomes
 - Chromosome segments
 - MAF bins
 - Genic vs non-genic regions
 - Etc.
- Estimate genetic relationship matrix from SNP groups
- Analyse phenotypes by fitting multiple relationship matrices
- Linear model & REML (restricted maximum likelihood)

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,^{1,*} S. Hong Lee,¹ Michael E. Goddard,^{2,3} and Peter M. Visscher¹

Application: the GENEVA Consortium

- Data
 - ~14,000 European Americans
 - ARIC
 - NHS
 - HPFS
 - Affy 6.0 genotype data
 - ~600,000 after stringent QC
 - Phenotypes on height, BMI, vWF and QT Interval

Genome partitioning of genetic variation for complex traits using common SNPs

Jian Yang^{1*}, Teri A Manolio², Louis R Pasquale³, Eric Boerwinkle⁴, Neil Caporaso⁵, Julie M Cunningham⁶, Mariza de Andrade⁷, Bjarke Feenstra⁸, Eleanor Feingold⁹, M Geoffrey Hayes¹⁰, William G Hill¹¹, Maria Teresa Landi¹², Alvaro Alonso¹³, Guillaume Lettre¹⁴, Peng Lin¹⁵, Hua Ling¹⁶, William Lowe¹⁷, Rasika A Mathias¹⁸, Mads Melbye⁸, Elizabeth Pugh¹⁶, Marilyn C Cornelis¹⁹, Bruce S Weir²⁰, Michael E Goddard^{21,22} & Peter M Visscher¹ Table 9. Summary of recommended SNP filters. "Broad" refers to SNPs failed by the genotyping center and "CC" refers to filters recommended by the GENEVA Coordinating Center.

QC of SNPs

SNPs kept	SNPs lost	remove SNPs with:
909,622	0	
843,985	65,637	Broad: call rate < 95%
841,820	2,165	Broad: plate associations (>6 plates with p<1e-10)
		CC: one member of each pair of duplicate probes (mostly AFFX
839,046	2,774	probes)
838,715	331	CC: MAF = 0 in all samples
838,493	222	CC: call rate < 95%
802,025	36,468	CC: >5 discordant calls in 307 pairs of duplicates
801,956	69	CC: sex difference in allelic frequency between sexes > 0.10 in either European- or African-ancestry groups
801,956	0	CC: sex difference in heterozygosity > 0.3 in either ancestry group (for autosomal or XY)
780,062	21,894	CC: Hardy-Weinberg p-value < 1e-3 in either European- or African ancestry group

- 780,062 SNPs after QC steps listed in the table.
- Exclude 141,772 SNPs with MAF < 0.02 in Europeanancestry group.
- Exclude 36,949 SNPs with missingness > 2% in all samples.
- Include autosomal SNPs only.
- End up with 577,778 SNPs.

Results (genome-wide)

Table 1 Estimates of the variance explained by all autosomal SNPs for height, BMI, vWF and QTi

		No PC ^a		10 PCs ^b			
Trait	п	h _G ² (s.e.) ^c	Р	h_{G}^{2} (s.e.)	Р	Heritability ^d	GWAS ^e
Height	11,576	0.448 (0.029)	4.5×10^{-69}	0.419 (0.030)	7.9×10^{-48}	80–90% ³²	~10% ²³
BMI	11,558	0.165 (0.029)	3.0×10^{-10}	0.159 (0.029)	5.3 × 10 ^{_9}	42-80% ^{25,26}	$\sim 1.5\%^{14}$
vWF	6,641	0.252 (0.051)	1.6×10^{-7}	0.254 (0.051)	2.0×10^{-7}	66–75% ^{33,34}	~13% ¹⁵
QTi	6,567	0.209 (0.050)	3.1×10^{-6}	0.168 (0.052)	5.0×10^{-4}	37–60% ^{35,36}	~7% ¹⁶

Genome-partitioning: longer chromosomes explain more variation

Results are consistent with reported GWAS

Inference robust with respect to genetic architecture

Genic regions explain variation disproportionately

Using imputed sequence data

- How much information is gained by using SNP array data imputed to a fully sequenced reference?
- How much is lost relative to whole genome sequencing?

Accounting for LD and MAF spectrum allows unbiased estimation of genetic variance (GREML-LDMS)

Very little difference in "taggability" between SNP chips

Genetic variation captured after imputation 96% due to common variants 73% due to rare variants

n = 45k data on height and BMI

32

Partitioning variance of height

Total variance Heritability (based on Twin or family studies) SNP heritability from imputation to sequenced reference SNP-heritability (variance explained by all genotyped SNPs on the Chip) Variance explained by genome wide significant SNPs

Scaling revisited

 $u = b\sigma_x \sim N(0, \sigma_u^2)$ implies

 b^2 proportional to $\sigma_u^2/[2p(1-p)]$, so rare variants have larger allelic effect: natural selection

If $b^2 = \sigma_u^2$ then no relationship between frequency and effect size: neutral model

In between: $b^2 = \sigma_u^2 [2p(1-p)]^{-s}$

Variance explained by SNP: $2p(1-p)\sigma_u^2[2p(1-p)]^{-s}$ = $\sigma_u^2 [2p(1-p)]^{1-s}$

s = 0: common SNPs explain more variations = 1: all SNPs explain the same amount of variation

Multiple methods to estimate additive genetic variance

- Individual-level data
 - GREML
 - Haseman-Elston regression
 - $(y_j y_j) = \mu + \beta A_{ij}$
- Summary data
 LDscore regression
- Consideration:
 - data availability
 - model assumptions
 - computation

Key concepts

- Dense SNP panels allow the estimation of the expected genetic covariance between distant relatives ('unrelateds')
- A model based upon estimated relationships from SNPs is equivalent to a model fitting all SNPs simultaneously
- The total genetic variance due to LD between common SNPs and (unknown) causal variants can be estimated
- Genetic variance captured by common SNPs can be assigned to chromosomes and chromosome segments