Estimation of quantitative
genetic parameters from distant
relatives using marker data



Key concepts

Dense SNP panels allow the estimation of the expected
genetic covariance between distant relatives (‘unrelateds’)

A model based upon estimated relationships from SNPs is
equivalent to a model fitting all SNPs simultaneously

The total genetic variance due to LD between common SNPs
and (unknown) causal variants can be estimated

Genetic variance captured by common SNPs can be assigned
to chromosomes and chromosome segments
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Vorume II

NOVEMBER, 1903

No.

ON THE LAWS OF INHERITANCE IN MAN*.
I INHERITANCE OF PHYSICAL CHARACTERS,

Frequency.

By KARL PEARSON, F.R.S., assisted by ALICE LEE, D.Sec.

University College, London.
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Duacram I, Probable Stature of Son for given Father's Stature.
Regression Line: S=33-73+°'516 F. 1078 Cases.
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PAIR

Spouse
Son-Father
Daughter-Father
Son-Mother
Daughter-Mother
Brother-brother
Sister-sister
Brother-sister

CORRELATION
0.28
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0.54
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SE
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0.03
0.02
0.01




Twinl

100 years later
Heritability of human height
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Phenotypic correlation
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Based upon 1000s of twin families

& Virginia twin study
A QIMR twin study

——Linear (Virginia twin study)

——Linear (QIMR twin study)
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Disease

Number

of loci

Percent of Heritability
Measure Explained

Heritability
Measure

Age-related macular 5 50% Sibling recurrence
degeneration risk
Crohn’s disease 32 20% Genetic risk e
(liability) \ ,&-\8*
Systemic lupus 6 15% Sibling recurrence (,o\&
erythematosus risk Ge(\o o.,-\b?"
Type 2 diabetes 18 6% Sibling recurrence C 587
risk X o‘@""o
HDL cholesterol 7 5.2% Phenotypic 5\\(\ (\\,\8“
variance xS Lo
Height 40 5% Phenotypic «@® e
variance <
Early onset myocardial 9 2.8% Phenot
infarction vari o
Fasting glucose 4 1.5% Phenc
varianc.
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The case of the missing heritability



Hypothesis testing vs. Estimation

 GWAS = hypothesis testing
— Stringent p-value threshold

— Estimates of effects biased (“Winner’s Curse”)
* E(bhat]| test(bhat) >T) > b {b fixed}
 var(bhat) = var(b) + var(bhat|b) {b random}

 Can we estimate the total proportion of
variation accounted for by all SNPs?



Basic idea

Estimates of additive genetic variance from known
pedigree is unbiased

— If model is correct

— Despite variation in identity given the pedigree

— Pedigree gives correct expected IBD

Unknown pedigree: estimate genome-wide IBD from
marker data

— Estimate additive genetic variance given this estimate of
relatedness

ldea is not new

— (Evolutionary) genetics literature (Ritland, Lynch, Hill,
others)



Close vs distant relatives

Detection of close relatives (fullsibs, parent-offspring,
halfsibs) from marker data is relatively
straightforward

But close relatives may share environmental factors

— Biased estimates of genetic variance

Solution: use only (very) distant relatives



A model for a single causal variant

AA AB BB
frequency (1-p)? 2p(1-p) p?
X 0 1 2
effect 0 b 2b
z = [x-E(x)]/o, -2p/V{2p(1-p)}  (1-p)/v{2p(1-p)}  2(1-p)/ V{Zp(1-p)}
y, = no+ b+ e x =0, 1, 2 {standard association model}

y, = U+ z;u; + € u=bo,u=pu+bo,
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Multiple (m) causal variants

“+2%W+%
Lu+g+e
ul+g+e
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Equivalence

Let u be a random variable, u ~ N(0, ?)
Then 6,>° = mo,? and

var(y) =2Z'c,% + Ic,?
=2Z'(c,*/m) + lc .’
=Go,’ +lo,’

Model with individual genome-wide additive values using relationships (G) at the
causal variants is equivalent to a model fitting all causal variants

We can estimate genetic variance just as if we would do using pedigree relationships



But we don’t have the causal variants

If we estimate G from SNPs:

— lose information due to imperfect LD between SNPs and
causal variants

— how much we lose depends on
* density of SNPs
 allele frequency spectrum of SNPs vs. causal variants

— estimate of variance = missing heritability

Let A be the estimate of G from N SNPs:

Ajk = (1/N) Z{ Xjj — 2pi)(xik - 2pi) / {2pi(1'pi)}

= (1/N) Z z;z;,



Data

~4000 ‘unrelated’ individuals
Ancestry ~British Isles

Measurement on height (self-report or clinically measured)
GWAS on 300k (‘adults’) or 600k (16-year olds) SNPs

Density
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Methods

« Estimate realised relationship matrix from
SNPs

« Estimate additive genetic variance

A

YV, =8; t¢€

COV(xijai ’ xikai)

. COV(XU' ” xik)

e \/V'ar(xl.jal.)var(xikal.) 2p,(1-p,)

_ 2pi)(xik o 2pi)

e 1 (Xl.j
N Zi

,j#k
2pi(1_pi)

x;—(1+2pi)xl.j + 2pl.2

|
k1+NZZ_

2pi(1_pi)

,J=k

var(y) =V = Ao +1o,

Base population =
current population
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Statistical analysis

var(y) =V = Aag2 +1o7”

y standardised ~N(0,1)
No fixed effects other than mean
A estimated from SNPs

Residual maximum likelihood (REML)
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Partitioning variation

 |f we can estimate the variance captured by
SNPs genome-wide, we should be able to
partition it and attribute variance to regions of

the genome
* “Population based linkage analysis”

20



Genome partitioning

» Partition additive genetic variance according to groups of SNPs
— Chromosomes
— Chromosome segments
— MAF bins
— Genic vs non-genic regions
— Etc.

» Estimate genetic relationship matrix from SNP groups
* Analyse phenotypes by fitting multiple relationship matrices

* Linear model & REML (restricted maximum likelihood)

REPORT

GCTA: A Tool for Genome-wide Complex Trait Analysis

Jian Yang,.* S. Hong Lee,! Michael E. Goddard,23 and Peter M. Visscher!



Application: the GENEVA Consortium

« Data

— ~14,000 European Americans
 ARIC
« NHS
- HPFS

— Affy 6.0 genotype data
« ~600,000 after stringent QC
— Phenotypes on height, BMI, vWF and QT Interval

Genome partitioning of genetic variation for complex
traits using common SNPs

Jian Yang!*, Teri A Manolio?, Louis R Pasquale’, Eric Boerwinkle*, Neil Caporaso®, Julie M Cunningham®,
Mariza de Andrade’, Bjarke Feenstra®, Eleanor Feingold®, M Geoffrey Hayes!?, William G Hill'!,

Maria Teresa Landi'?, Alvaro Alonso'?, Guillaume Lettre!4, Peng Lin!®, Hua Ling'®, William Lowe!”,
Rasika A Mathias'8, Mads Melbye®, Elizabeth Pugh!®, Marilyn C Cornelis!®, Bruce S Weir?",

Michael E Goddard?!:22 & Peter M Visscher!



QC of SNPs

Table 9. Summary of recommended SNP filters. “Broad™ refers to SNPs failed by the
genotyping center and “CC™ refers to filters recommended by the GENEVA

[SHMPs kept  |SMPs lost remowve SHPs with:

B04a,822

0

B4 085 G5,

837] Broad: call rate < 85%

41,820 2,

165] Broad: plate associations (=0 plates with p<1e-10}

30,046 2

CC: one member of each pair of duplicate probes (mostly AFFX
77 4jprobes)

838 715 33N CC: MAF =0 in all samples
B35 483 22 CC: call rate < 25%
B02,025 36,488) CC: =5 discordant calls in 307 pairs of duplicates

CC: sex difference in allelic frequency between sexes = 0.10 in either
801,856 G0|European- or African-ance rou

|CG: sex difference in heterozygosity = 0.3 in either ancesiry group (for

801,856 utosomal or X'

CC: Hardy-Weinberg p-value < 1e-3 in either European- or African
780,062 21, noesiny group

780,062 SNPs after QC steps listed in the table.

Exclude 141,772 SNPs with MAF < 0.02 in European-

ancestry group.

Exclude 36,949 SNPs with missingness > 2% in all samples.

Include autosomal SNPs only.

End up with 577,778 SNPs.
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Results (genome-wide)

Table 1 Estimates of the variance explained by all autosomal SNPs for height, BMI, vWF
and QTi

No PC2 10 PCsb
Trait n hé (s.e.)C P hé (s.e.) [= Heritabilityd ~ GWAS®
Height 11,576 0.448 (0.029) 4.5x 10%° 0.419(0.030) 7.9 x 1048 80-90%32 ~10%323
BM| 11,558 0.165(0.029) 3.0 x 1010 0.159(0.029) 5.3 x 109 42-80%2%26 ~1.5%!4
vWF 6,641 0.252(0.051) 1.6x107 0.254(0.051) 2.0x107 66-75%333% ~13%1°
QTi 6,567 0.209 (0.050) 3.1 x10° 0.168(0.052) 5.0x10% 37-60%3%36  ~7%16
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Genome-partitioning:
longer chromosomes explain more variation

Variance explained by each chromosome
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Results are consistent
with reported GWAS

Variance explained by chromosome

(adjusted for the FTO SNP)
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Inference robust with respect to genetic architecture

Variance explained by each chromosome
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Genic regions explain variation disproportionately
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Using imputed sequence data

 How much information is gained by using
SNP array data imputed to a fully
sequenced reference?

 How much is lost relative to whole genome
sequencing?

29
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Accounting for LD and MAF spectrum allows unbiased
estimation of genetic variance (GREML-LDMS)

1.0  7MAF_4LD

0.8 - _ - . ®7MAF_3LD
7MAF_2LD
0.6 - ‘ ‘ ‘ —
2MAF_2LD
0.4 - ‘ ‘ ‘ =
0.2 1 ‘ ‘ ‘ —
0.0 T T T Y

Random More common Rarer Rarer & DHS

Heritability estimate

Yang et al. 2015 (Nature Genetics)

Heritability estimate
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LDres
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GREML-LDMS

Random More common Rarer Rarer & DHS
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Very little difference in “taggability” between
SNP chips

1.0 \ Common - Affymetrix 6

s Common - Affymetrix Axiom
S
g_ 0.8 Common - lllumina OmniExpress
® | T e,
: R N Common - lllumina Omni2.5
o =Y .
B 0.6 \\\ Common - lllumina CoreExome
2 N
g e Rare - Affymetrix 6
S
S 04 ‘
c \ Rare - Affymetrix Axiom
o ~
< N\, - Rare - lllumina OmniExpress
2 0.2 N
° ’ = — = = Rare - lllumina Omni2.5
a.
Rare - lllumina CoreExome
0.0

0 01 02 03 04 05 06 07 08 09

Imputation R2 threshold

Genetic variation captured after
imputation

96% due to common variants
73% due to rare variants
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n = 45k data on height and BMI

Variance explained
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Yang et al. 2015 (Nature Genetics)
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Partitioning variance of height

h2 overestimation?

missing heritability untagged rare variants?

better tagging of
ungenotyped variants

sample size / power

Total variance

Heritability (based on Twin or family studies)

SNP heritability from imputation to sequenced reference
SNP-heritability (variance explained by all genotyped SNPs on the Chip)
Variance explained by genome wide significant SNPs

Slide by Robert Maier
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Scaling revisited

u = bo, ~ N(0, 6,°) implies

b2 proportional to ¢,%/[2p(1-p)], so rare variants have larger allelic effect: natural
selection

If b%=c_,2then no relationship between frequency and effect size: neutral
model

In between: b? = 6,2 [2p(1-p)] S

Variance explained by SNP: 2p(1-p)c,2[2p(1-p)] S
=0, [2p(1-p)]"*

s = 0: common SNPs explain more variation
s = 1: all SNPs explain the same amount of variation
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Multiple methods to estimate
additive genetic variance

 Individual-level data
— GREML
— Haseman-Elston regression
(YY) = 1 + BA;
« Summary data
LDscore regression

« Consideration:
— data avalilability
— model assumptions
— computation
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Key concepts

Dense SNP panels allow the estimation of the expected
genetic covariance between distant relatives
(‘'unrelateds’)

A model based upon estimated relationships from SNPs
IS equivalent to a model fitting all SNPs simultaneously

The total genetic variance due to LD between common
SNPs and (unknown) causal variants can be estimated

Genetic variance captured by common SNPs can be
assigned to chromosomes and chromosome segments
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