Estimating relationship from marker genotypes

Mike Goddard

mike.goddard@ecodev.vic.gov.au

Relationships

We use relationship data to estimate genetic variance to estimate demographic history

Relationships

Additive genetic relationship $G(i, j)$

$$
\begin{aligned}
& \text { = proportion of the genome in } i \text { and } j \text { that } \\
& \text { is IBD }
\end{aligned}
$$

Pedigree relationship $A(i, j)=\operatorname{Prob}(I B D)$

$$
=E(G(i, j))
$$

Actual relationship deviates randomly from this expectation

1

1/4

IDENTITY BY DESCENT

Sib 1

Sib 2

4/16 = $1 / 4$ sibs share BOTH parental alleles $G=1$
$8 / 16=1 / 2$ sibs share ONE parental allele G = $1 / 2$
4/16 = $1 / 4$ sibs share NO parental alleles G = 0

Relationships

Summary of single locus case, full sibs

Pairs of sibs share
0 alleles 25% of the time
1 allele 50\%
2 alleles 25\%
$E(G)=A=0.5$ but actual relationship G varies from 0 to 1

Estimate relationship from markers

G is a more accurate description of relationship than A

G captures unknown pedigree information pedigree can be incorrect
G captures deviations from A

Therefore, can use G in
Random sample of population ("unrelated individuals")
Individuals with same pedigree

Estimate relationship from markers

1. Well defined (recent) base
2. No well defined base
3. Well defined, recent base

Eg Data on families of full-sibs and parents of sibs are the base

Estimating relatedness with markers

- Using:
- Observed data (SNP genotypes)
- Mendelian segregation rules (prior probability of sharing alleles IBD)
- Marker allele frequencies in the population

IBD can be trivial...

Two Other Simple Cases...

A little more complicated...

And even more complicated...

Bayes Theorem for IBD Probabilities

posterior

$$
P(I B D=i \mid \text { Genotypes })=\frac{\mathrm{P}(\mathrm{IBD}=i, \text { Genotypes })}{P(\text { Genotypes })}
$$

$$
\begin{aligned}
\text { prior } & =\frac{P(I B D=i) P(\text { Genotypes } \mid I B D=i)}{P(\text { Genotypes })} \\
& =\frac{P(I B D=i) P(\text { Genotypes } \mid I B D=i)}{\sum_{j} P(I B D=j) P(\text { Genotypes } \mid I B D=j)}
\end{aligned}
$$

Prob(data)

$$
E(G)=1 / 2 P(I B D=1 / \text { Genotypes })+P(I B D=2 / \text { Genotypes })
$$

P(Marker Genotype|IBD State)

Sib	CoSib	IBD		
		0	1	2
(a,b)	(c,d)	$\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}}$	0	0
(a, a)	(b, c)	$\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}$	0	0
(a, a)	(b,b)	$p_{a}{ }^{2} \mathrm{p}_{\mathrm{b}}{ }^{2}$	0	0
(a, b)	(a,c)	$\mathrm{p}_{\mathrm{a}} \mathrm{p}^{2} \mathrm{p}_{\mathrm{c}}$	$\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{c}}$	0
(a,a)	(a, b)	$\mathrm{pa}_{\mathrm{a}}{ }^{3} \mathrm{p}_{\mathrm{b}}$	$\mathrm{p}_{2}{ }^{2} \mathrm{p}_{\mathrm{b}}$	0
$(\mathrm{a}, \mathrm{~b})$	$(\mathrm{a}, \mathrm{~b})$	$\mathrm{pa}^{2} \mathrm{p}_{4}{ }^{2}$	$p_{a} p_{b}^{2}+p_{a}^{2} p_{b}$	$\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}$
(a,a)	(a,a)	pa^{4}	$\mathrm{pa}_{\mathrm{a}}^{3^{3}}$	$\mathrm{pa}_{\mathrm{a}}{ }^{2}$
Prior Probability		$1 / 4$	1/2	1/4

[Assumes Hardy-Weinberg proportions of genotypes in the population]

$$
p_{1}=0.5
$$

Worked Example

$$
\begin{aligned}
& P(\text { Genotypes } \mid I B D=0)=p_{1}^{4}=1 / 16 \\
& P(\text { Genotypes } \mid I B D=1)=p_{1}^{3}=1 / 8 \\
& P(\text { Genotypes } \mid I B D=2)=p_{1}^{2}=1 / 4
\end{aligned}
$$

$$
P(\text { Genotypes })=1 / 4 p_{1}^{4}+1 / 2 p_{1}^{3}+1 / 4 p_{1}^{2}=9 / 64
$$

$$
P(I B D=0 \mid \text { Genotypes })=\frac{1 / 4 p_{1}^{4}}{P(\text { Genotypes })}=1 / 9
$$

$$
P(I B D=1 \mid \text { Genotypes })=\frac{1 / 2 p_{1}^{3}}{P(\text { Genotypes })}=4 / 9
$$

$$
P(I B D=2 \mid \text { Genotypes })=\frac{1 / 4 p_{1}^{2}}{P(\text { Genotypes })}=4 / 9
$$

$$
E(G)=2 / 3
$$

Estimating IBD from marker data

- Elston-Stewart algorithm

Handles large pedigrees, but small nr of loci, exact IBD distributions (Elston and Stewart, 1971)

- Lander-Green algorithm

Handles small pedigrees, but large nr of loci, exact IBD distributions (Lander and Green, 1987). Software: Merlin

- MCMC methods

Calculates approximate IBD distributions (Heath, 1997). Software: Loki

- Average sharing methods.

Calculates approximate IBD distributions (Fulker et al., 1995; Almasy and Blangero, 1998). Software: SOLAR

Estimate relationship from markers

1. Well defined, recent base

Eg Data on families of full-sibs and parents of sibs are the base
a) Calculate Bayesian probability of IBD status at each SNP
$\rightarrow \mathrm{E}(\mathrm{G})$ at each SNP
average over SNPs
b) Use haplotypes ?

Estimate relationship from markers

2. Less well defined, less recent base

Eg Data on current population, base = ancestors 1000 years ago and allele frequencies in base are known (p and q)

Consider haploid gametes of SNP alleles instead of genotypes What fraction of the gametes are IBD (G)?
At a single SNP, there are 3 possible data sets and their probabilities are
A and A
A and B
B and B
$p^{2}+p q G$
2pq(1-G)
$q^{2}+p q G$

Estimate relationship from markers

SNP genotypes	A and A	A and B	B and B
Probability	$p^{2}+p q G$	$2 p q(1-G)$	$q^{2}+p q G$
score (x)	q / p	-1	p / q

Estimate $G(i, j)$ from the mean value of x over SNPs
This is a relationship between gametes. Calculate G for individuals from the 4 gametic relationships.
See Yang et al (2010) and Powell et al (2010) for the diploid formulae.

Estimate relationship from markers

E.g. Score (x) for pairs of gametes from population in H-W $p(A)=0.9, q(B)=0.1$

A	B
(0.9)	(0.1)

$\begin{array}{lll}\text { A (0.9) } & 0.11 & -1\end{array}$

B (0.1) $\quad-1 \quad 9$

Mean $G=0.81 * 0.11+0.18 *(-1)+0.01 * 9=0$

Estimate relationship from markers

E.g. Score (x) for pairs of gametes from population in H-W $p(A)=0.9, q(B)=0.1$

AAAAAAAAAAAAAAAAAABB

Estimate relationship from markers

E.g. Score (x) for pairs of gametes from same parent
$p(A)=0.9, q(B)=0.1$

Parent	AA	$A B$	$B B$
Freq.	0.81	0.18	0.01
	$A A(x=0.11)$	$A A(0.11)$	$B B(9)$
		$A B(-1)$	
		$B B(9)$	

Mean $\mathrm{G}=0.81^{*} 0.11+0.18^{*}\left(0.25^{*} 0.11+0.5^{*}(-1)+0.25^{*} 9\right)+0.01$ *9

$$
=0.5
$$

Estimate relationship from markers

E.g. Score (x) for pairs of gametes from population in H-W but after allele frequency has drifted to $p(A)=0.8, q(B)=0.2$

A	B
(0.8)	(0.2)

$\begin{array}{lll}\text { A (0.8) } & 0.11 & -1\end{array}$
$\begin{array}{lll}\mathrm{B}(0.2) & -1 & 9\end{array}$

Mean $G=0.64 * 0.11+0.32 *(-1)+0.04 * 9=0.11$

Estimate relationship from markers

2. No well defined base

Eg random sample from population but don't know allele frequency in the base.
a) Use the current population as the base

Problem: Some G <0
Cannot interpret as probabilities but still interpret as covariances
If $\mathrm{g}=$ genetic value, $\mathrm{V}(\mathrm{g})=\mathbf{G} \mathrm{V}_{\mathrm{A}}$
where G is calculated as above but using allele frequencies in current population.

Estimate relationship from markers

E.g. Score (x) for pairs of gametes from population in H-W but after allele frequency has drifted to $p(A)=0.8, q(B)=0.2$ and using allele frequencies in modern population

A	B
(0.8)	(0.2)

$\begin{array}{lll}A(0.8) & 0.25 & -1\end{array}$
$\begin{array}{lll}B(0.2) & -1 & 4\end{array}$

Mean $G=0.64 * 0.25+0.32 *(-1)+0.04 * 4=0$

Estimate relationship from markers

2. No well defined base
b) Assume SNPs are a random sample of loci as are QTL
$\mathbf{y}=$ mean $+\mathbf{g}+\mathbf{e}$
$\mathbf{y}=$ mean $+\mathbf{Z u}+\mathbf{e}$
$Z_{i j}=0$ for $A A, 1$ for $A B$ or 2 for $B B$
$\mathbf{u} \sim N\left(0, \mathbf{I} \sigma_{u}{ }^{2}\right) \rightarrow \mathbf{g}=\mathbf{Z u} \sim N\left(0, \mathbf{Z Z}{ }^{\prime} \sigma_{u}{ }^{2}\right), \mathbf{Z Z}{ }^{\prime} \sigma_{u}{ }^{2}=\mathbf{G} \sigma_{\mathbf{g}}{ }^{2}$, if $\sigma_{\mathrm{g}}{ }^{2}=N \sigma_{u}{ }^{2}$
where $\mathrm{N}=\Sigma 2 \mathrm{pq}$ across SNPs
Therefore, $\mathbf{G}=\mathbf{Z Z} \mathbf{\prime} / \mathrm{N}$

Estimate relationship from markers

E.g. Score for pairs of gametes from population in $\mathrm{H}-\mathrm{W}$
$p(A)=0.8, q(B)=0.2$

	A	B
	(0.8)	(0.2)
z	0	1

$\begin{array}{lll}\text { A (0.8) 0 } & 0 & 0 \\ B(0.2) 1 & 0 & 1\end{array}$

Mean G = 0.04 * $1=0.04$

Estimate relationship from markers

E.g. Score for pairs of gametes from population in H-W
$p(A)=0.8, q(B)=0.2$

	A	B
	(0.8)	(0.2)
z	-0.2	0.8

$\begin{array}{lll}A(0.8) & -0.2 & 0.04 \\ -0.16\end{array}$
$B(0.2) \quad 0.8 \quad-0.16 \quad 0.64$

Mean $G=0.64 * 0.04+0.32$ * $(-0.16)+0.04 * 0.64=0$

Comparing 2a and 2b

$$
\begin{array}{ccccc}
\text { E.g. } p(A)=0.8, q(B)=0.2 & & & \\
& 2 \mathrm{a} & & \\
& \text { A } & \text { B } & & A \\
& (0.8) & (0.2) & B \\
z & -0.2 & 0.8 & & \\
& & & & \\
\text { A (0.8) -0.2 } & 0.04 & -0.16 & A & 0.25 \\
& & & -1 \\
\text { B (0.2) } 0.8 & -0.16 & 0.64 & \text { B } & -1
\end{array}
$$

Estimate relationship from markers

$2 a$ and $2 b$ compared for gametic relationships

SNP data	A and A	A and B	B and B
score (x)	q / p	-1	p / q
weight (w)	$p q$	$p q$	$p q$

2a) $G=$ mean of x
2b) $G=$ weighted mean of $x=\Sigma w x / \Sigma w$

This could be described as using the IBS status of SNPs instead of IBD

Estimate relationship from markers

E.g. Score (x i.e. method 2a) for pairs of gametes $p(A)=0.8, q(B)$
$=0.2$ and weighting by $\mathrm{pq}=0.16$
A
(0.8)

B
(0.2)

A (0.8)
$\begin{array}{ll}0.25 * 0.16 & -1 * 0.16 \\ =0.04 & =-0.16\end{array}$
$\begin{array}{lll}B(0.2) & -1^{*} 0.16 & 4 * 0.16 \\ & =-0.16 & =0.64\end{array}$
Same as 2b

Estimate relationship from markers

2a) $G=$ mean of x
gives more emphasis to sharing rare alleles

Makes sense because individuals who share rare alleles are more likely to be closely related than individuals who share common alleles.

Gives minimum error variance of relationship under some conditions

Estimate relationship from markers

2. No well defined base
c) Assume SNPs are a random sample of loci as are QTL but effect of SNP decreases as heterozygosity increases
$y=$ mean $+g+e$
$y=$ mean $+Z u+e$
$Z_{\mathrm{ij}}=0$ for AA, 1 for AB or 2 for BB
$\mathbf{u} \sim N\left(0, \mathbf{D} \sigma_{u}{ }^{2}\right) \rightarrow \mathbf{g}=\mathbf{Z u} \sim N\left(0, \mathbf{Z D Z}{ }^{\prime} \sigma_{u}{ }^{2}\right), \mathbf{Z D Z}{ }^{\prime} \sigma_{u}{ }^{2}=\mathbf{G} \sigma_{\mathrm{g}}{ }^{2}$, if $\sigma_{\mathbf{g}}{ }^{2}=N \sigma_{u}{ }^{2}$
where $N=\Sigma\left(p_{i} q_{i}\right)$
Therefore, $\mathbf{G}=\mathbf{Z D Z} / \mathbf{N}$
$D_{i i}=1 /\left(p_{i} q_{i}\right)$
That is, assume the effect of SNPs is proportional to $V\left(p_{i} q_{i}\right)$
So variance explained by SNPs is not affected by allele frequency $2 \mathrm{c}=2 \mathrm{a}$

Estimate relationship from markers

Relationship depends on the markers or QTL

Eg QTL are due to recent mutations
AQ Aq

Marker is the same but QTL is different
Rare SNP alleles tend to be a recent mutation
Therefore, treat SNPs differently according to MAF

Estimate relationship from markers

Relationship depends on the markers or QTL
Therefore, treat SNPs differently according to MAF
$y=m e a n+g 1+g 2+g 3+g 4+g 5+e$
$V\left(g_{i}\right)=\left(Z Z^{\prime} / N\right) \sigma_{i}^{2}$ for SNPs in MAF bin i

Estimate relationship from markers Summary

1. In families
2. In the general population

Express relationship relative to current population
G can be negative
G is not a probability
$\mathrm{V}(\mathrm{g})=\mathbf{G} \sigma_{\mathrm{g}}{ }^{2}$
two formulae (2a and 2b)
Same except 2 a gives more weight to rare alleles

Application: estimation of SNPheritability from GWAS data

- Background
- 2008: GWAS was perceived by many to have failed as an experimental design
- Missing heritability: discrepancy between pedigree heritability and variance captured by associated SNPs
 Augustine Kong ${ }^{11}$, Leonid Kruglyak ${ }^{12}$, Elaine Mardis ${ }^{13}$, Charles N. Rotimi ${ }^{14}$, Montgomery Slatkin ${ }^{15}$, David Valle ${ }^{9}$, Alice S. Whittemore ${ }^{16}$, Michael Boehnke ${ }^{17}$, Andrew G. Clark ${ }^{18}$, Evan E. Eichler ${ }^{19}$, Greg Gibson ${ }^{20}$, Jonathan L. Haines ${ }^{21}$, Trudy F. C. Mackay ${ }^{22}$, Steven A. McCarroll ${ }^{23}$ \& Peter M. Visscher ${ }^{24}$

The case of the missing heritability

Hypothesis testing vs. Estimation

- GWAS = hypothesis testing
- Stringent p-value threshold
- Estimates of effects biased ("Winner's Curse")
- Can we estimate the total proportion of variation accounted for by all SNPs?

A model for a single causal variant

	$A A$	$A B$	$B B$
frequency	$(1-p)^{2}$	$2 p(1-p)$	p^{2}
x	0	1	2
effect	0	b	$2 b$
$z=[x-E(x)] / \sigma_{x}$	$-2 p / v\{2 p(1-p)\}$	$(1-p) / v\{2 p(1-p)\}$	$2(1-p) / v\{2 p(1-p)\}$
$y_{j}=\quad \mu^{\prime}+x_{i j} b_{i}+e_{j}$	$x=0,1,2\{$ standard association model $\}$		
$y_{j}=\quad \mu+z_{i j} u_{j}+e_{j}$	$u=b \sigma_{x} ; \mu=\mu^{\prime}+b \sigma_{x}$		

Multiple (m) causal variants

$$
\begin{aligned}
y_{j} & =\mu+\sum z_{i j} u_{j}+e_{j} \\
& =\mu+g_{j}+e_{j} \\
y & =\mu 1+g+e \\
& =\mu \mathbf{1}+Z u+e
\end{aligned}
$$

Equivalence

Let u be a random variable, $u \sim N\left(0, \sigma_{u}{ }^{2}\right)$

Then $\sigma_{g}{ }^{2}=m \sigma_{u}{ }^{2}$ and

$$
\begin{aligned}
\operatorname{var}(\mathbf{y}) \quad & =\mathbf{Z Z} \mathbf{Z}^{\prime} \sigma_{\mathrm{u}}^{2}+\mathbf{I} \sigma_{\mathrm{e}}^{2} \\
& =\mathbf{Z Z} \mathbf{Z}^{\prime}\left(\sigma_{\mathrm{g}}^{2} / \mathrm{m}\right)+\mathbf{I} \sigma_{\mathrm{e}}^{2} \\
& =\mathbf{G} \sigma_{\mathrm{g}}{ }^{2}+\mathbf{I} \sigma_{\mathrm{e}}^{2}
\end{aligned}
$$

Model with individual genome-wide additive values using relationships (\mathbf{G}) at the causal variants is equivalent to a model fitting all causal variants

We can estimate genetic variance just as if we would do using pedigree relationships

But we don't have the causal variants

If we estimate \mathbf{G} from SNPs:

- lose information due to imperfect LD between SNPs and causal variants
- how much we lose depends on
- density of SNPs
- allele frequency spectrum of SNPs vs. causal variants
- estimate of variance \rightarrow missing heritability

Let \mathbf{A} be the estimate of \mathbf{G} from \mathbf{N} SNPs:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{jk}} \quad & =(1 / \mathrm{N}) \sum\left\{\mathrm{x}_{\mathrm{ij}}-2 \mathrm{p}_{\mathrm{i}}\right)\left(\mathrm{x}_{\mathrm{ik}}-2 \mathrm{p}_{\mathrm{i}}\right) /\left\{2 \mathrm{p}_{\mathrm{i}}\left(1-\mathrm{p}_{\mathrm{i}}\right)\right\} \\
& =(1 / \mathrm{N}) \sum \mathrm{z}_{\mathrm{ij}} z_{\mathrm{ik}}
\end{aligned}
$$

Methods

- Estimate realised relationship matrix from SNPs
- Estimate additive genetic variance

$$
\begin{aligned}
& y_{i}=g_{i}+e_{i} \\
& \operatorname{var}(\mathbf{y})=\mathbf{V}=\mathbf{A} \sigma_{g}^{2}+\mathbf{I} \sigma_{e}^{2} \\
& A_{i k k}=\frac{\operatorname{cov}\left(x_{i j} a_{i}, x_{i k} a_{i}\right)}{\sqrt{\operatorname{var}\left(x_{i j} a_{i}\right) \operatorname{var}\left(x_{i k} a_{i}\right)}}=\frac{\operatorname{cov}\left(x_{i j}, x_{i k}\right)}{2 p_{i}\left(1-p_{i}\right)} \\
& \text { Base population = } \\
& \text { current population } \\
& A_{j k}=\frac{1}{N} \sum_{i} A_{i j k}=\left\{\begin{array}{l}
\frac{1}{N} \sum \frac{\left(x_{i j}-2 p_{i}\right)\left(x_{i k}-2 p_{i}\right)}{2 p_{i}\left(1-p_{i}\right)}, j \neq k \\
1+\frac{1}{N} \sum_{i j}^{x_{i j}^{2}-\left(1+2 p_{i}\right) x_{i j}+2 p_{i}^{2}} 2 p_{i}\left(1-p_{i}\right)
\end{array}, j=k\right.
\end{aligned}
$$

Statistical analysis

$$
\operatorname{var}(\mathbf{y})=\mathbf{V}=\mathbf{A} \sigma_{g}^{2}+\mathbf{I} \sigma_{e}^{2}
$$

y standardised $\sim N(0,1)$
No fixed effects other than mean
A estimated from SNPs
Residual maximum likelihood (REML)

Checking for population structure

Table 1
Estimates of the Variance Explained by the SNPs on Even Chromosomes from 10 Simulation Replicates

Replicate	h^{2}	SE
1	0.045	0.055
2	0.025	0.057
3	0.0	0.058
4	0.0	0.057
5	0.0	0.059
6	0.0	0.056
7	0.057	0.056
8	0.0	0.062
9	0.0	0.057
10	0.0	0.054

Note: A total of 1,000 causal variants were simulated on the odd chromosomes, with a total heritability of 0.8 . Genetic variance was estimated from a relationship matrix constructed from all SNPs on the even chromosomes. The same genotypes were used as in Yang et al. (2010). If there is population structure then estimated relatedness on the even chromosomes is correlated with relatedness on the odd chromosomes (where the causal variants are simulated) and therefore genetic variance will be associated with the even chromosomes.

Conclusions

- Genetic variance associated with all SNPs can be estimated from GWAS data
- use SNPs to estimate G
- use phenotypes on "unrelated" individuals and G to estimate genetic variance
- Empirical results: most additive genetic variation for height is captured by common SNPs
- little 'missing' heritability
- GWAS works fine

