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Relationships

We	use	relationship	data
to	estimate	genetic	variance
to	estimate	demographic	history
…
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Relationships

Additive	genetic	relationship	G(i,	j)
=	proportion	of	the	genome	in	i and	j	that	

is	IBD

Pedigree	relationship	A(i,j)	=	Prob (IBD)
=	E(G(i,j))

Actual relationship	deviates	randomly	from	this	
expectation
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IDENTITY BY DESCENT
Sib 1

Sib 2

4/16 = 1/4 sibs share BOTH parental alleles  G  =  1

8/16 = 1/2 sibs share ONE parental allele  G  =  ½ 

4/16 = 1/4 sibs share NO parental alleles  G  =  0
5



Relationships
Summary	of	single	locus	case,	full	sibs

Pairs	of	sibs	share
0	alleles 25%	of	the	time
1	allele 50%
2	alleles 25%

E(G)	=	A	=	0.5	but	actual	relationship	G	varies	from	0	to	1
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Estimate	relationship	from	markers
G	is	a	more	accurate	description	of	relationship	than	A

G	captures	unknown	pedigree	information
pedigree	can	be	incorrect
G	captures	deviations	from	A

Therefore,	can	use	G	in
Random	sample	of	population	(“unrelated	individuals”)
Individuals	with	same	pedigree
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Estimate	relationship	from	markers
1. Well	defined	(recent)	base
2. No	well	defined	base

1. Well	defined,	recent	base

Eg Data	on	families	of	full-sibs	and	parents	of	sibs	are	the	base
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Estimating	relatedness	with	markers

• Using:
– Observed	data	(SNP	genotypes)
– Mendelian	segregation	rules	(prior	probability	of	
sharing	alleles	IBD)

– Marker	allele	frequencies	in	the	population
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IBD can be trivial…
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Two Other Simple Cases…
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A little more complicated…

1 2/

G= ½ 
(50% chance)

2 2/

1 2/ 1 2/

G=1
(50% chance)
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And even more complicated…

1 1/G=? 1 1/
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Bayes Theorem for IBD Probabilities

prior

Prob(data)

posterior

14

P(IBD = i |Genotypes) =
P(IBD =  i,Genotypes)

P(Genotypes)

=
P(IBD = i)P(Genotypes | IBD = i)

P(Genotypes)

=
P(IBD = i)P(Genotypes | IBD = i)
P(IBD = j)P(Genotypes | IBD = j)

j
∑

E(G)	=	½P(IBD=1|Genotypes)	+	P(IBD=2|Genotypes)



P(Marker Genotype|IBD State)

[Assumes Hardy-Weinberg proportions of genotypes in the population]
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  IBD 
Sib CoSib 0 1 2 
(a,b) (c,d) papbpcpd 0 0 
(a,a) (b,c) pa

2pbpc 0 0 
(a,a) (b,b) pa

2pb
2 0 0 

(a,b) (a,c) pa
2pbpc papbpc 0 

(a,a) (a,b) pa
3pb pa

2pb 0 
(a,b) (a,b) pa

2pb
2 papb

2+pa
2pb papb 

(a,a) (a,a) pa
4 pa

3 pa
2 

     
Prior Probability ¼ ½ ¼ 
 



Worked Example

1 1/ 1 1/
16E(G)	=	2/3

p1 = 0.5

P(Genotypes | IBD = 0) = p1
4 = 116

P(Genotypes | IBD =1) = p1
3 = 18

P(Genotypes | IBD = 2) = p1
2 = 14

P(Genotypes) = 14 p1
4 + 12 p1

3 + 14 p1
2 = 9 64

P(IBD = 0 |Genotypes) =
1
4 p1

4

P(Genotypes)
= 19

P(IBD =1|Genotypes) =
1
2 p1

3

P(Genotypes)
= 4 9

P(IBD = 2 |Genotypes) =
1
4 p1

2

P(Genotypes)
= 4 9



Estimating IBD from marker data
• Elston-Stewart algorithm 

Handles large pedigrees, but small nr of loci, exact IBD 
distributions (Elston and Stewart, 1971)

• Lander-Green algorithm 
Handles small pedigrees, but large nr of loci, exact IBD 
distributions (Lander and Green, 1987). Software: Merlin

• MCMC methods
Calculates approximate IBD distributions (Heath, 1997). Software: 
Loki

• Average sharing methods.
Calculates approximate IBD distributions (Fulker et al., 1995; Almasy 
and Blangero, 1998). Software: SOLAR
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Estimate	relationship	from	markers
1. Well	defined,	recent	base

Eg Data	on	families	of	full-sibs	and	parents	of	sibs	are	the	base

a)	Calculate	Bayesian	probability	of	IBD	status	at	each	SNP
à E(G)	at	each	SNP
average	over	SNPs

b)	Use	haplotypes	?
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Estimate	relationship	from	markers
2.	Less	well	defined,	less	recent	base

Eg Data	on	current	population,	base	=	ancestors	1000	years	ago	
and	allele	frequencies	in	base	are	known	(p	and	q)

Consider	haploid	gametes	of	SNP	alleles	instead	of	genotypes
What	fraction	of	the	gametes	are	IBD	(G)?
At	a	single	SNP,	there	are	3	possible	data	sets	and	their	
probabilities	are
A	and	A A	and	B	 B	and	B
p2 +pqG 2pq(1-G) q2+pqG
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Estimate	relationship	from	markers
SNP	genotypes A	and	A A	and	B	 B	and	B
Probability p2 +pqG 2pq(1-G) q2+pqG
score	(x) q/p -1 p/q

Estimate	G(i,j)	from	the	mean	value	of	x	over	SNPs
This	is	a	relationship	between	gametes.	Calculate	G	for	
individuals	from	the	4	gametic relationships.
See	Yang	et	al	(2010)	and	Powell	et	al	(2010)	for	the	diploid	
formulae.
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Estimate	relationship	from	markers
E.g.	Score	(x)	for	pairs	of	gametes	from	population	in	H-W	
p(A)		=	0.9,	q(B)	=	0.1

A B
(0.9) (0.1)

A	(0.9) 0.11 -1

B	(0.1) -1 9

Mean	G	=		0.81	*	0.11	+	0.18	*(-1)	+	0.01	*9	=	0
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Estimate	relationship	from	markers
E.g.	Score	(x)	for	pairs	of	gametes	from	population	in	H-W	
p(A)		=	0.9,	q(B)	=	0.1

AAAAAAAAAAAAAAAAAABB

A	and	A	or	A	and	A B	and	B
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Estimate	relationship	from	markers
E.g.	Score	(x)	for	pairs	of	gametes	from	same	parent	
p(A)		=	0.9,	q(B)	=	0.1

Parent AA AB BB
Freq. 0.81 0.18 0.01

AA	(x	=	0.11) AA	(0.11) BB	(9)
AB	(-1)
BB	(9)

Mean	G	=	0.81*0.11	+	0.18*(0.25*0.11+0.5*(-1)+0.25*9)	+	0.01	*9
=	0.5
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Estimate	relationship	from	markers
E.g.	Score	(x)	for	pairs	of	gametes	from	population	in	H-W	but	
after	allele	frequency	has	drifted	to	p(A)		=	0.8,	q(B)	=	0.2

A B
(0.8) (0.2)

A	(0.8) 0.11 -1

B	(0.2) -1 9

Mean	G	=		0.64	*	0.11	+	0.32	*(-1)	+	0.04	*9	=	0.11
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Estimate	relationship	from	markers
2.	No	well	defined	base

Eg random	sample	from	population	but	don’t	know	allele	frequency	in	
the	base.

a)	Use	the	current	population	as	the	base

Problem:	Some	G	<0
Cannot	interpret	as	probabilities	but	still	interpret	as	covariances
If	g	=	genetic	value,	V(g)	=	G VA
where	G	is	calculated	as	above	but	using	allele	frequencies	in	current	
population.
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Estimate	relationship	from	markers
E.g.	Score	(x)	for	pairs	of	gametes	from	population	in	H-W	but	
after	allele	frequency	has	drifted	to	p(A)		=	0.8,	q(B)	=	0.2	and	
using	allele	frequencies	in	modern	population

A B
(0.8) (0.2)

A	(0.8) 0.25 -1

B	(0.2) -1 4

Mean	G	=		0.64	*	0.25	+	0.32	*(-1)	+	0.04	*4	=	0
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Estimate	relationship	from	markers
2.	No	well	defined	base
b)	Assume	SNPs	are	a	random	sample	of	loci	as	are	QTL

y =	mean	+	g +e
y =	mean	+	Zu +	e

Zij =	0	for	AA,	1	for	AB	or	2	for	BB
u ~	N(0,Iσu2)	à g =	Zu ~	N(0,ZZ’σu2 ),	ZZ’σu2 =	Gσg2,	if	σg2 =	Nσu2

where	N=Σ2pq	across	SNPs
Therefore,	G =	ZZ’/N
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Estimate	relationship	from	markers
E.g.	Score	for	pairs	of	gametes	from	population	in	H-W	
p(A)		=	0.8,	q(B)	=	0.2

A B
(0.8) (0.2)

z	 0 1

A	(0.8) 0 0 0

B	(0.2) 1 0 1

Mean	G	=		0.04	*1	=	0.04
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Estimate	relationship	from	markers
E.g.	Score	for	pairs	of	gametes	from	population	in	H-W	
p(A)		=	0.8,	q(B)	=	0.2

A B
(0.8) (0.2)

z	 -0.2 0.8

A	(0.8) -0.2 0.04 -0.16

B	(0.2) 0.8 -0.16 0.64

Mean	G	=		0.64*0.04	+	0.32	*	(-0.16)	+	0.04	*0.64	=	0
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Comparing	2a	and	2b
E.g.		p(A)		=	0.8,	q(B)	=	0.2

2b 2a
A B A B
(0.8) (0.2)

z	 -0.2 0.8

A	(0.8) -0.2 0.04 -0.16 A 0.25 -1

B	(0.2) 0.8 -0.16 0.64 B -1 4
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Estimate	relationship	from	markers
2a	and	2b	compared	for	gametic relationships

SNP	data	 A	and	A	 A	and	B B	and	B
score	(x) q/p -1 p/q
weight (w) pq pq pq

2a)	G	=	mean	of	x
2b)	G	=	weighted	mean	of	x	=	Σwx/Σw

This	could	be	described	as	using	the	IBS	status	of	SNPs	instead	of	
IBD
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Estimate	relationship	from	markers
E.g.	Score	(x	i.e.	method	2a)	for	pairs	of	gametes	p(A)		=	0.8,	q(B)	
=	0.2	and	weighting	by	pq =	0.16

A B
(0.8) (0.2)

A	(0.8) 0.25*0.16 -1*0.16
=0.04 =	-0.16

B	(0.2) -1*0.16 4*0.16
=	-0.16 =	0.64

Same	as	2b
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Estimate	relationship	from	markers
2a)	G	=	mean	of	x

gives	more	emphasis	to	sharing	rare	alleles

Makes	sense	because	individuals	who	share	rare	alleles	are	more	
likely	to	be	closely	related	than	individuals	who	share	common	
alleles.

Gives	minimum	error	variance	of	relationship	under	some	
conditions

33



Estimate	relationship	from	markers
2.	No	well	defined	base
c)	Assume	SNPs	are	a	random	sample	of	loci	as	are	QTL	but	effect	of	SNP	
decreases	as	heterozygosity increases

y =	mean	+	g +	e
y =	mean	+	Zu +	e

Zij =	0	for	AA,	1	for	AB	or	2	for	BB
u ~	N(0,Dσu2)	à g =	Zu ~	N(0,ZDZ’σu2 ),	ZDZ’σu2 =	Gσg2,	if	σg2 =	Nσu2
where	N=	Σ(piqi)
Therefore,	G =	ZDZ’/N
Dii =	1/(piqi)
That	is,	assume	the	effect	of	SNPs	is	proportional	to	√(piqi)
So	variance	explained	by	SNPs	is	not	affected	by	allele	frequency
2c	=	2a
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Estimate	relationship	from	markers
Relationship	depends	on	the	markers	or	QTL

Eg QTL	are	due	to	recent	mutations
AQ

AQ Aq

Marker	is	the	same	but	QTL	is	different
Rare	SNP	alleles	tend	to	be	a	recent	mutation
Therefore,	treat	SNPs	differently	according	to	MAF
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Estimate	relationship	from	markers
Relationship	depends	on	the	markers	or	QTL
Therefore,	treat	SNPs	differently	according	to	MAF

y	=	mean	+	g1	+	g2	+g3	+	g4	+g5	+e

V(gi)	=	(ZZ’/N)σi2 for	SNPs	in	MAF	bin	i
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Estimate	relationship	from	markers
Summary

1. In	families

2. In	the	general	population
Express	relationship	relative	to	current	population

G	can	be	negative
G	is	not	a	probability
V(g)	=	Gσg2

two	formulae	(2a	and	2b)
Same	except	2a	gives	more	weight	to	rare	alleles
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Application:	estimation	of	SNP-
heritability	from	GWAS	data

• Background
– 2008:	GWAS	was	perceived	by	many	to	have	failed	
as	an	experimental	design

– Missing	heritability:	discrepancy	between	
pedigree	heritability	and	variance	captured	by	
associated	SNPs
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Disease Number 
of loci 

Percent of Heritability 
Measure Explained 

Heritability  
Measure 

Age-related macular 
degeneration 

5 50% Sibling recurrence 
risk 

Crohn’s disease 32 20% Genetic risk 
(liability) 

Systemic lupus 
erythematosus 

6 15% Sibling recurrence 
risk 

Type 2 diabetes 18 6% Sibling recurrence 
risk 

HDL cholesterol 7 5.2%  Phenotypic 
variance 

Height 40 5% Phenotypic 
variance 

Early onset myocardial 
infarction 

9 2.8% Phenotypic 
variance 

Fasting glucose 4 1.5% Phenotypic 
variance 

Where	is	the	Dark	Matter?
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Hypothesis	testing	vs.	Estimation

• GWAS	=	hypothesis	testing
– Stringent	p-value	threshold
– Estimates	of	effects	biased	(“Winner’s	Curse”)

• Can	we	estimate the	total	proportion	of	
variation	accounted	for	by	all	SNPs?
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A	model	for	a	single	causal	variant
AA AB BB

frequency (1-p)2 2p(1-p) p2

x 0 1 2
effect 0 b 2b
z	=	[x-E(x)]/sx -2p/√{2p(1-p)} (1-p)/	√{2p(1-p)} 2(1-p)/	√{2p(1-p)}

yj = µ’	 +	xijbi +	ej x	=	0,	1,	2	{standard	association	model}

yj = µ +	zijuj +	ej u	=	bsx;	µ =	µ’	+	bsx
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Multiple	(m)	causal	variants

yj = µ +	Szijuj +	ej

= µ +	gj +	ej

y = µ1 +	g +	e

= µ1 +	Zu +	e
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Weighting	scheme	2a



Equivalence

Let	u	be	a	random	variable,	u	~	N(0,	su
2)

Then	sg
2 =	msu

2 and

var(y)	 =	ZZ’ su
2 +	Ise

2

=	ZZ’ (sg
2/m)	+	Ise

2

=	Gsg
2 +	Ise

2
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Model	with	individual	genome-wide	additive	values	using	relationships (G)	at	the	causal	
variants	is	equivalent	to	a	model	fitting	all	causal	variants

We	can	estimate	genetic	variance	just	as	if	we	would	do	using	pedigree	relationships



But	we	don’t	have	the	causal	variants
If	we	estimate	G from	SNPs:

– lose	information	due	to	imperfect	LD	between	SNPs	and	
causal	variants

– how	much	we	lose	depends	on
• density	of	SNPs
• allele	frequency	spectrum	of	SNPs	vs.	causal	variants

– estimate	of	variance	àmissing	heritability
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Let	A be	the	estimate	of	G from	N	SNPs:

Ajk =	(1/N)	S {	xij – 2pi)(xik – 2pi)	/	{2pi(1-pi)}

=	(1/N)	S zijzik



Methods

• Estimate	realised	relationship	matrix	from	SNPs
• Estimate	additive	genetic	variance
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Statistical	analysis

	 22)var( eg ss IAVy +==

y standardised	~N(0,1)

No	fixed	effects	other	than	mean

A estimated	from	SNPs

Residual	maximum	likelihood	(REML)
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h2 ~	0.5	(SE	0.1)
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Results

Yang	et	al.	2010,	Nature	Genetics,	~	2000	citations



Checking	for	population	structure

48Visscher et	al.	2010,	Twin	Research	and	Human	Genetics



Conclusions	

• Genetic	variance	associated	with	all	SNPs	can	be	
estimated	from	GWAS	data
– use	SNPs	to	estimate	G
– use	phenotypes	on	“unrelated”	individuals	and	G to	
estimate	genetic	variance

• Empirical	results:	most	additive	genetic	variation	
for	height	is	captured	by	common	SNPs
– little	‘missing’	heritability
– GWAS	works	fine
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