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Key	concepts
• Prediction	of	phenotypic	values	is	limited	by	heritability
• Accuracy	of	prediction	depends	on

– how	well	marker	effects	are	estimated	(sample	size)
– how	well	marker	effects	are	correlated	with	causal	variants	(LD)

• Estimation	of	marker	effects	and	prediction	in	the	same	data	leads	to	
(severe)	bias

• Variance	explained	by	a	SNP-based	predictor	is	not	the	same	as	the	
variance	explained	by	those	SNPs

• Best	prediction	methods	take	genetic	values	as	random	effects
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3“Genomic	selection”	=	
‘precision	medicine’	for	cows



Take-home	from	animal	breeding

(1)Don’t	need	genome-wide	significant	effects
(2) Don’t	need	to	know	causal	variants
(3) Don’t	need	to	know	function
(4)Use	all	phenotypic	and	SNP	data	

simultaneously
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A	quantitative	genetics	model

y	=	fixed	effects	+	G	+	E
G	=	A	+	D	+	I

Possible	predictions:
• Predict	y	from	fixed	effects	and	G
• Predict	G	from	A
• Predict	y	from	A	using	pedigree	(IBD)
• Predict	y	from	A	using	markers
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Fixed	effects	models

• Linear	regression	using	GWAS	data
• Widely	used	in	human	genetics	(‘profile	
scoring’,	‘polygenic	risk	scores’)

• Properties	and	pitfall
– chance	association	can	lead	to	bias
– relationship	between	prediction	accuracy	and	
heritability

– PLINK	implementation
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Prediction	using	linear	regression

y	=	bx +	e

• Usually,	b and	x	are	considered	‘fixed’

• For	SNPs,	x	is	random	with	variance	2p(1-p)	assuming	
HWE

• Later	we	will	consider	the	case	where	b is	random
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Chance	association

mmarkers,	sample	size	N
All	b =	0
Multiple	linear	regression	of	y on	mmarkers

E(R2)	=	m/N {strictly	m/(N-1)}

à Variation	“explained”	by	chance

9[Wishart, 1931]



Selection	bias
• Select	m ‘best’	markers	out	of	M in	total
• ‘Prediction’	in	same	sample	(in-sample	prediction)

E(R2)	>>	m/N
à Lots	of	variation	explained	by	chance

10~15 best markers selected from 2.5 million markers



Least	squares	prediction
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Rm
2 = var(a) / var(y) = h2

E(R̂y, ŷ
2 ) ≈ h2 / [1+m / {Nh2}]

Even if we knew all m causal variants but needed to 
estimate their effect sizes then the variance explained by the 
predictor is less than the variance explained by the causal 
variants in the population.

[Daetwyler et al. 2008, PLoS Genetics; Visscher, Yang, Goddard 2010, Twin Research Human Genetics 2010]



Take-home

Estimation	of	variance	contributed	by	(all)	loci	is	
not	the	same	as	prediction	accuracy

unless	the	effect	sizes	are	estimated	without	
error
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SNPs explain 45% of variation
Prediction R2 ~ 10%



Measures	of	how	well	a	predictor	works

• “Accuracy”	(animal	breeding)
– Correlation	between	true	genome-wide	genetic	
value	and	its	predictor

• R2 from	a	regression	of	outcome	on	predictor	
(human	genetics)

• Area-under-curve	from	ROC	analyses	(disease	
classification)
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Limits	of	prediction

• A	perfect	predictor	of	A	can	be	a	lousy	
predictor	of	a	phenotype

• The	regression	R2 has	a	maximum	that	
depends	on	heritability
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Predictions	from	known	variants
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PLINK	profile	scoring
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ŷi = xijb̂j
j=1

m

∑ = âi

var(ŷ) = var(x j )b̂
2
j

j=1

m

∑ = var(â)

cov(ŷi, ŷk ) = cov(xij, xkj )b̂
2
j

j=1

m

∑ = cov(âi, âk )



In	class	demo

• 180	height	variants	from	Lango-Allen	et	al.	
2010
– Estimation	of	b	from	data	(N	~	4000)
– Using	b	from	Lango-Allen	paper

• Taking	the	top	180	SNPs	from	GWAS
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Random	effect	models
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Prediction	of	genetic	value	using	better	
predictors

Model	with	additive	inheritance

y	=	g	+	e

V(g)	=	Gσg2,	V(e)	=	Iσe2,	V(y)	=	V	=	Gσg2 +	Iσe2,

Aim	is	to	predict	g	for	individuals
Eg to	predict	future	risk	of	a	disease
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Prediction	of	genetic	value

y	=	g	+	e

V(g)	=	Gσg2,	V(e)	=	Iσe2,	V(y)	=	V	=	Gσg2 +	Iσe2,

Best	prediction	is
g-hat	=	E(g	|	y)
If	y	and	g	are	bivariate	normal
E(g	|	y	)	=	b’y =	σg2 GV-1 y
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Prediction	of	genetic	value

Eg Unrelated	individuals

V(g)	=	Ih2,	V(e)	=	I(1-h2),	V(y)	=	I,

Best	prediction	is
g-hat	=	E(g	|	y	)	=	b’y =	σg2 GV-1 y	=	h2 y
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Prediction	of	genetic	value

y	=	g	+	e,	g	=	Zu

V(u)	=	Iσu2,	V(Zu)	=	ZZ’σu2,	

Best	prediction	is
u-hat	=	E(u	|	y)
If	y	and	u	are	multivariate	normal
E(u	|	y	)	=	b’y =	σu2Z’V-1 y
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Prediction	of	genetic	value

y	=	g	+	e,	g	=	Zu

V(u)	=	Iσu2,	V(Zu)	=	ZZ’σu2,	

u-hat	=	E(u	|	y	)	=	b’y =	σu2Z’V-1 y
g-hat	=	Z	u-hat	=	σu2ZZ’V-1 y	=	σg2GV-1 y
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Prediction	of	genetic	value

y	=	g	+	e,	g	=	Zu
If	y	and	u	are	multivariate	normal
E(u	|	y	)	=	b’y =	σu2Z’V-1 y

The	SNP	effects	are	unlikely	to	be	normally	
distributed	with	equal	variance
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Best prediction

u-hat = E(u | y)

= ∫ u P(u | y) du

Bayes theorem
P(u | y) = P(y | u) P(u) / P(data)

Likelihood prior

Prediction	of	genetic	value	
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Bayesian estimation

E(u | y) = ∫ u P(y | u) P(u) / P(y) du

Distribution of SNP effects

Normal à BLUP
t-distribution à Bayes A
Mixture à Bayes B (Meuwissen et al 2001)

Mixture of N à Bayes R (Erbe et al 2012)
u ~ N(0,σi

2) with probability πi
σi

2 = {0, 0.0001, 0.001,0.01} σg
2

Accuracy is greatest if assumed distribution matches
real distribution.

Prediction	of	genetic	value	
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Prediction equations
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Prediction	of	genetic	value
Other	methods	of	prediction

Estimate	effect	of	each	SNP	one	at	a	time	and	add
g-hat	=	Z	u-hat
u-hat	estimated	from	single	SNP	regression

Biased	E(g	|	g-hat)		≠	g-hat
Less	accurate	because	ignores	LD	between	SNPs

and	treats	u	as	fixed	effects
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Real data
4500 bulls and 12000 cows (Holstein and Jersey)
600,000 SNPs genotyped
Train using bulls born < 2005
Test using bulls born >= 2005

Correlation of EBV and daughter average
Protein Stature Milk Fat%

BLUP 0.66 0.52 0.65 0.72
Bayes R 0.66 0.54 0.68 0.82

Prediction of genetic value 
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Genetic architecture

Proportion	of	SNPs	from	distribution	with	
variance

Trait 0.01% 0.1% 1% polygenic		(%)

RFI 7498 296 6 11
LDPF 1419 254 36 27

Mean4029 271 19 25
31



Integration	of	prediction	and	mapping	
of	causal	variants

Same	Bayesian	models	as	used	for	prediction	
can	be	used	for	mapping	causal	variants	of	
complex	traits
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Prediction equations
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Mapping QTL – Milk on BTA5 

34



Mapping QTL 
– Milk on BTA5 



Application	to	human	disease	data
(WTCCC)
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Model
• Assumes	true	SNP	effects	are	derived	from	a	series	of	normal	distributions
• Prior	assumptions

– Effects	size	of	SNP	k

– Mixing	proportion,	π
• Dirichlet distribution,	

– Genetic	variance
• hyper-parameter	estimated	from	data,	 !!!~!!! !! , !!! !
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Figure 4.  Comparison of performance of BayesR, BSLMM, LMM and GPRS in WTCCC data. (A) Estimates of 
SNP-based heritability on the observed scale. Antennas are standard deviations of posterior samples for BayesR and 
BSLMM or standard errors for LMM. GPRS does not provide estimates of heritability. (B) Distribution of the area under 
the curve (AUC).  The single boxplots display the variation in estimates among 20 replicates. In each replicate, the 
data set was randomly split into a training sample containing 80% of individuals and a validation sample containing the 
remaining 20%. 



Expected	proportion	of	total	SNP	
variance	explained	by	each	mixture
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Figure 6.  Proportion of genetic variance on each chromosome explained by SNPs with different effect sizes 
underlying seven traits in WTCCC. Proportion of additive genetic variation contributed by individual chromosomes and 
the proportion of variance on each chromosome explained by SNPs with different effect sizes. For each chromosome we 
calculated the proportion of variance in each mixture component as the sum of the square of the sampled effect sizes of 
the SNPs allocated to each component divided by the sum of the total variance explained by SNPs. The colored bars 
partition the genetic variance in contributions from each mixture class.



Posterior	mean	of	number	of	SNPs	
estimated	by	BayesR
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Prediction	of	genetic	value
Summary

Best	prediction	is	g-hat	=	E(g	|	y)
Genetic	values	treated	as	random	effects

Eg g	~	N(0,	Gσg2)

Equivalent	model	to	predict	SNP	effects	u
E(u	|	y)		depends	on	prior	distribution	of	u

à Bayesian	models
g-hat	=	Z	u-hat	gives	higher	accuracy	than	assuming	

g	~	N(0,	Gσg2)
Bayesian	models	integrate	prediction	and	mapping	of	
causal	variants
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Key	concepts
• Prediction	of	phenotypic	values	is	limited	by	heritability
• Accuracy	of	prediction	depends	on

– how	well	marker	effects	are	estimated	(sample	size)
– how	well	marker	effects	are	correlated	with	causal	variants	(LD)

• Estimation	of	marker	effects	and	prediction	in	the	same	data	leads	to	
(severe)	bias

• Variance	explained	by	a	SNP-based	predictor	is	not	the	same	as	the	
variance	explained	by	those	SNPs

• Best	prediction	methods	take	genetic	values	as	random	effects
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Supplementary	derivations
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Theory	(additive	model)
m unlinked	causal	variants

45

yi = xijbj + ei
j=1

m

∑ = ai + ei

var(y) = var(x j )b
2
j + var(e)

j=1

m

∑ = var(a)+ var(e)

cov(yi, yk ) = cov(xij, xkj )b
2
j

j=1

m

∑ + cov(ei,ek )

= cov(ai,ak )+ cov(ei,ek )
= cov(ai,ak ) if cov(ei,ek ) = 0



Prediction
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ŷi = xijb̂j
j=1

m

∑ = âi

var(ŷ) = var(x j )b̂
2
j

j=1

m

∑ = var(â)

cov(ŷi, ŷk ) = cov(xij, xkj )b̂
2
j

j=1

m

∑ = cov(âi, âk )



- theory	-
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cov(ŷi, yi ) = cov{ (xijb̂j ), xijbj + ei
j=1

m

∑ }
j=1

m

∑

= var(xij )b̂jbj + xij cov(b̂j,
j=1

m

∑ ei )
j=1

m

∑

If b estimated from the same data in which prediction is 
made, then the second term is non-zero



Effect	of	errors	in	estimating	SNP	effects
(least	squares;	single	SNP)
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yi = xib+ ei
b̂ = b+ε

E(b̂) = b

var(b̂) = var(ε) =σ e
2 / Σx2 ≈ var(y) / {N var(x)}

var(x) = 2p(1− p) under HWE
Define RSNP

2 = var(x)b2 / var(y)

= contribution of single SNP to heritability



- effects	of	errors	-
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R̂y, ŷ
2 = cov(y, ŷ)2 / {var(y)var(ŷ)}

E[cov(y, ŷ)]= E[cov(xb, xb̂)]= var(xi )E(b̂)b
= var(x)b2

E[var(ŷ)]= E[var(xb̂)]= var(x)E[b̂2 ]

= var(x)[b2 + var(b̂)] ≈ var(x)b2 + var(x)var(y) / [N var(x)]
= var(x)b2 + var(y) / N

E(R̂y, ŷ
2 ) ≈ RSNP

2 / [1+1/ {NRSNP
2 }]


