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Key concepts

Prediction of phenotypic values is limited by heritability

Accuracy of prediction depends on

— how well marker effects are estimated (sample size)

— how well marker effects are correlated with causal variants (LD)
Estimation of marker effects and prediction in the same data leads to
(severe) bias
Variance explained by a SNP-based predictor is not the same as the
variance explained by those SNPs

Best prediction methods take genetic values as random effects
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Take-home from animal breeding

(1) Don’t need genome-wide significant effects
(2) Don’t need to know causal variants

(3) Don’t need to know function

(4) Use all phenotypic and SNP data
simultaneously
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A guantitative genetics model

vy = fixed effects + G + E
G=A+D+|

Possible predictions:
* Predicty from fixed effects and G
* Predict G from A

* Predicty from A using pedigree (IBD)
* Predict y from A using markers



Fixed effects models

* Linear regression using GWAS data

 Widely used in human genetics (‘profile
scoring’, ‘polygenic risk scores’)

* Properties and pitfall
— chance association can lead to bias

— relationship between prediction accuracy and
heritability
— PLINK implementation



Prediction using linear regression
y=[pBx+e
* Usually, B and x are considered ‘fixed’

* For SNPs, x is random with variance 2p(1-p) assuming
HWE

* Later we will consider the case where 3 is random



Chance association

m markers, sample size N
All =0

Multiple linear regression of y on m markers
E(R%) = m/N {strictly m/(N-1)}
— Variation “explained” by chance

[Wishart, 1931]



Selection bias

e Select m ‘best’ markers out of M in total
* ‘Prediction’ in same sample (in-sample prediction)

E(R2) >> m/N
— Lots of variation explained by chance
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Least squares prediction

R’ =var(a)/var(y)=h’
E(R:))=h /[1+m/{Nh’}]
Even if we knew all m causal variants but needed to

estimate their effect sizes then the variance explained by the
predictor is less than the variance explained by the causal

variants in the population.

[Daetwyler et al. 2008, PLoS Genetics; Visscher, Yang, Goddard 2010, Twin Research Human Genetics 2010]



Take-home

Estimation of variance contributed by (all) loci is
not the same as prediction accuracy

unless the effect sizes are estimated without
error
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Measures of how well a predictor works

e “Accuracy” (animal breeding)

— Correlation between true genome-wide genetic
value and its predictor

* R?from a regression of outcome on predictor
(human genetics)

e Area-under-curve from ROC analyses (disease
classification)



Limits of prediction

* A perfect predictor of A can be a lousy
predictor of a phenotype

* The regression R? has a maximum that
depends on heritability



Predictions from known variants
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PLINK profile scoring

| SNP scoring routine

PLINK provides a simple means to generate scores or profiles for individuals based on an allelic scoring system involving one or more SNPs. One potential use would be to assign a single quantitative index of genetic load, perhaps to build multi-SNP prediction
models, or just as a quick way to identify a list of individuals containing one or more of a set of variants of interest.

Basic usage

The basic command to generate a score is the --score option, e.g.

./plink --bfile mydata --score myprofile.raw

which takes as a parameter the name of a file (here myprofile.raw) that describes the scoring system. This file has the format of one or more lines, each with exactly three fields

SNP ID
Reference allele
Score (numeric)

for example
SNPA A 1.95
SNPB [ 2.04
SNPC [ -0.98
SNPD [ -0.24

These scores can be based on whatever you want. One choice might be the log of the odds ratio for significantly associated SNPs, for example. Then, running the command above would generate a file
plink.profile

with one individual per row and the fields:

m
FID Family ID
IID Individual ID A A
PHENO Phenotype for that
CNT Number of non-missing SNPs used for scoring — ‘ — a
CNT2 The number of named alleles b bl s s

>

SCORE Total score for that individual

The score is simply a sum across SNPs of the number of reference alleles (0,1 or 2) at that SNP multiplied by the score for that SNP. For, example,

.
Variant(1/2) A/T c/c a/c c/c J=1
Freq. of allele 1 0.20 0.43 0.02 0.38
Ind 1 genotype A/A G/G A/C 0/0
# ref alleles 2 0 1 2%0.38 (=expectation)
Score ( 2%1.95 + 0%2.04 + 1%(-0.98) + 2%0.38%(-0.24) ) / 4

- 2.74 / 4 = 0.68

The score 2.74/4 (the average score per non-missing SNP) could then be used, e.g. as a covariate, or a predictor of disease if it is scored in a sample that is independent from the one used to generate the original scoring weights. Obviously, a score profile based on
some effect size measure from a large number of SNPs will necessarily be highly correlated with the phenotype in the original sample: i.e. this in no (straightforward) way provides additional statistical evidence for associations in that sample.
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In class demo

* 180 height variants from Lango-Allen et al.
2010

— Estimation of b from data (N ~ 4000)
— Using b from Lango-Allen paper

* Taking the top 180 SNPs from GWAS



Random effect models



Prediction of genetic value using better
predictors

Model with additive inheritance
y = g + e
V(g) =Go,?% V(e) =lo% Vly) =V = Go,* + lo.?,

Aim is to predict g for individuals
Eg to predict future risk of a disease



Prediction of genetic value
y=g+e
V(g) = Go,?, V(e) =lo.% Vly) =V = Go,* + lo.?,

Best prediction is

g-hat =E(g | y)

If y and g are bivariate normal
E(g|y)=by=0,2GV'y



Prediction of genetic value

Eg Unrelated individuals
V(g) = Ih?, V(e) = I(1-h?), V(y) =1,

Best prediction is
g-hat=E(g|y)=by=0,GV'y=h?y



Prediction of genetic value

y=g+e,g=2u
V(u) =lo 2, V(Zu) = 2Z'c 2

Best prediction is

u-hat =E(u | y)

If y and u are multivariate normal
E(u|y)=by=0,ZV'y



Prediction of genetic value
y=g+e,g=~2u
V(u) = 10,2, V(Zu) = 22’ 2,

u_hat — E(u | Y ) = b’y — O'UZZ’V'l y
g-hat=Zu-hat=0,ZZ'V'y=0,°GV'y



Prediction of genetic value

y=g+e,g=2u
If y and u are multivariate normal
E(u|y)=by=0,22'Vly

The SNP effects are unlikely to be normally
distributed with equal variance



Prediction of genetic value
Best prediction
u-hat = E(u | y)

=[uP(u]y)du

Bayes theorem
P(ul|y)=P(y|u)P(u)/P(data)

T \
Likelihood  prior



Prediction of genetic value

Bayesian estimation
E(uly)=]uP(y|u)P(u)/P(y)du

Distribution of SNP effects

Normal - BLUP
t-distribution - Bayes A
Mixture - Bayes B (Meuwissen et al 2001)

Mixture of N - Bayes R (Erbe et al 2012)

u ~ N(0,02) with probability T,

o#={0, 0.0001, 0.001,0.01} 0,

Accuracy is greatest if assumed distribution matches
real distribution.



mqldpf_chr 7

|
E
20
52
G
] ] ] 1
e L T R o?i”“-. lm
.
- 8
-3
o
- &
- o

15 —

10

(snen d)o1Bol-

28

Chromosome position, Mbp



Prediction of genetic value

Other methods of prediction

Estimate effect of each SNP one at a time and add
g-hat = Z u-hat
u-hat estimated from single SNP regression

Biased E(g | g-hat) # g-hat
Less accurate because ignores LD between SNPs
and treats u as fixed effects



Prediction of genetic value

Real data
4500 bulls and 12000 cows (Holstein and Jersey)
600,000 SNPs genotyped
Train using bulls born < 2005
Test using bulls born >= 2005

Correlation of EBV and daughter average

Protein Stature Milk Fat%
BLUP 0.66 0.52 0.65 0.72
Bayes R 0.66 0.54 0.68 0.82



Genetic architecture

A
Proportion of SNPs from distribution with
variance

Trait 0.01% 0.1% 1% polygenic (%)
RFI 7498 296 6 11
LDPF 1419 254 36 27

Mean4029 271 19 25
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Integration of prediction and mapping
of causal variants
Same Bayesian models as used for prediction

can be used for mapping causal variants of
complex traits
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Application to human disease data

@’PLOS ‘ GENETICS

(WTCCC)

RESEARCH ARTICLE

Simultaneous Discovery, Estimation and
Prediction Analysis of Complex Traits Using a
Bayesian Mixture Model

Gerhard Moser'*, Sang Hong Lee', Ben J. Hayes®?, Michael E. Goddard®*, Naomi
R. Wray’, Peter M. Visscher'®
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Model

e Assumes true SNP effects are derived from a series of normal distributions

* Prior assumptions
— Effects size of SNP k

(11, X N(0,0 X agz)

m, X N(0,107*X o
my X N(0,1073% x 02)
(7, X N(0,107% X )

— Mixing proportion, 1t
e Dirichlet distribution, P(my, ..., ms) ~ D(S, ..., 8),with§ = 1

— Genetic variance
« hyper-parameter estimated from data, gZ~x~2(v,,S;)
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Figure 4. Comparison of performance of BayesR, BSLMM, LMM and GPRS in WTCCC data. (A) Estimates of
SNP-based heritability on the observed scale. Antennas are standard deviations of posterior samples for BayesR and
BSLMM or standard errors for LMM. GPRS does not provide estimates of heritability. (B) Distribution of the area under
the curve (AUC). The single boxplots display the variation in estimates among 20 replicates. In each replicate, the
data set was randomly split into a training sample containing 80% of individuals and a validation sample containing the
remaining 20%.



Expected proportion of total SNP
variance explained by each mixture

(Number of SNPs in class x variance assigned to SNP) / sum of marker variance
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Figure 6. Proportion of genetic variance on each chromosome explained by SNPs with different effect sizes
underlying seven traits in WTCCC. Proportion of additive genetic variation contributed by individual chromosomes and
the proportion of variance on each chromosome explained by SNPs with different effect sizes. For each chromosome we
calculated the proportion of variance in each mixture component as the sum of the square of the sampled effect sizes of
the SNPs allocated to each component divided by the sum of the total variance explained by SNPs. The colored bars
partition the genetic variance in contributions from each mixture class.
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Prediction of genetic value

Summary

Best prediction is g-hat = E(g | y)
Genetic values treated as random effects
Eg g~ N(0, Go,?)

Equivalent model to predict SNP effects u
E(u | y) depends on prior distribution of u
— Bayesian models
g-hat = Z u-hat gives higher accuracy than assuming
g~ N(0, Go,?)
Bayesian models integrate prediction and mapping of
causal variants



Key concepts

Prediction of phenotypic values is limited by heritability

Accuracy of prediction depends on

— how well marker effects are estimated (sample size)

— how well marker effects are correlated with causal variants (LD)
Estimation of marker effects and prediction in the same data leads to
(severe) bias
Variance explained by a SNP-based predictor is not the same as the
variance explained by those SNPs

Best prediction methods take genetic values as random effects



Supplementary derivations



Theory (additive model)
m unlinked causal variants

m
y, = Exijbj +e =a; +e,
=1

J

var(y) = ivar(x b’ +var(e) = var(a) + var(e)

J

m
2
cov(y;,y,) = Ecov(xij,xkj)b ;tcovie,e,)
j=1

=cov(a,,a,)+cov(e;,e,)

=cov(a;,a,) 1t cov(e, e, )=0



Prediction

m
Vi =E'xij i =Y
=1

var(y) = ivar(x )b2 = var(a)

j=1

>

m
cov(y,,y,) = > cov(x,, X, )b2 =cov(a,,a,)
=]

J=



- theory -

cov(F,,y,) = cov{E(xU b.), Ex b +e}

m m

= E var(x; )b b+ E X;; cov(b ;)

j=1 j=1

If b estimated from the same data in which prediction is
made, then the second term is non-zero



Effect of errors in estimating SNP effects
(least squares; single SNP)

y.=xb+e,

b=b+e

E(b)=b

var(b) = var(e) = 0> / Zx* = var(y) / {N var(x)}
var(x) =2p(l - p) under HWE

Define R}, = var(x)b” / var(y)

= contribution of single SNP to heritability



- effects of errors -

R = cov(y,3)" / {var(y) var(9)}

E[cov(y,y)]|=E [cov(xb,xl;)] = var(x,)E (l;)b

= var(x)b’

E[var($)] = E[var(xb)] = var(x)E[b*]

= var(x)[b” + Val”(é)] ~ var(x)b” + var(x)var(y) /[ N var(x)]
= var(x)b” + var(y)/ N

E(R} )=~ Rjyp /[1+1/{NRG, }]



