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The integrative nature of transcriptional regulation
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https://www.encodeproject.org/

Twitter ] News
- December releases: 48 ChiP-seq from the Reddy Lab

The ENCODE Project Consortium (2011) PLOS Biology 9: 1001046
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DHS and TFBS: DNAse hypersensitive sites and TF Binding
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Three modes of epigenetic regulation

Chromatin conformation
The two main compaonents
of the epigenstic code

Methylation is most often observed in
promoter-proximal CpG islands (which

are flanked by shores). Promoter -
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repression of transcription. Ligata
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ENCODE Nature threads 2012

ENCODE Tople

Transcription Factor Motifs

Chromatin patterns at Transcription Factor Binding Sites
Characterization of Intergenic Regions and Gene definition
RNA and Chromatin Modification patterns around Promoters
Epigenetic regulation of RNA Processing

Non-coding RNA characterization

DNA methylation

Enhancer discovery and characterization

Three-Dimensional connections across the Genome
Characterization of Network Topology

Machine Learning Approaches to Genomics

Impact of Functional Information on understanding Variation
Impact of Evelutionary Selection on functional regions

ENCODE

I o

e
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30 Papers published in June 2012 (Nature, Genome Biology, Genome Research)

http://www.nature.com/encode/#/threads

Roadmap 2 \jﬁ epigenomics
Epigenomics [ vowe T wncwans | meowseoua | puowcas | cownsiesmoenoues | _joas | pumcaions |
Consortium

Natura. 2015: INTEGRATIVE ANALYSIS

OF 111 AEFERENGE HUMAN EPYGENOMES

Unitoemly r-processed Gat, INtegrative analysis
PIOGUCES NG INBrACtive DICWSES BESSIONS CAN be found
a1t SUPRIGMENIANY WBEILS 1o the 2015 Coneomum
paper at hitp2compbio.mit.edu/roadmap

Data Releases

http://www.roadmapepigenomics.org/

GG Lecture 3 4



uQ SISG Module 9 2/14/2017

Model Organism
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24 Papers published in Nov 2016 (Cell, Cell Reports, Cell Stem Cell, Cancer Cell)
http://www.cell.com/consortium/IHEC

419 of these pair with active

40% acting over 250kb and 80% not with the closest gene

20% - 40% show allelic imbalance for chromatin accessibility

Maurano et al (2012) Science 337: 1190-1195 “

Enrichment of regulatory elements at GWAS loci

75% of 5,130 GWAS peak SNPs are in a DHS, many
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Systematic Localization of Common Disease-Associated Variation in Regulatory DNA”

93% of GWAS peak SNPs are located in regulatory regions rather than affecting the protein sequence

chi11 7210000

Maurano et al performed DNAse-Seq on 349 cell and tissue samples, identifying ~ 200,000 DHS per sample (2% of DNA)
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Disease associations cluster in regulatory pathways
(A) Monogenic diabetes locus TFBS are enriched at GWAS / DHS sites for Types 1 and 2 diabetes
(B) Transcription factors associated with multiple autoimmune diseases are enriched at GWAS / DHS sites

Similar results observed for several types of cancer and neurological disorders
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Maurano et al (2012) Science 337: 1190-1195 “Systematic Localization of Common Disease-Associated Variation in Regulatory DNA"

RegulomeDB is an index from the Snyder lab
at Stanford that summarizes evidence from:

* eQTL

e TF binding (ChIP data)

e TF motif informatics

e DHS footprints or peaks

The average human genome has ~25,000
homozygous Category 1 or 2 variants that
potentially affect gene expression

The score can be used to refine credible
intervals by focusing on a few percent of the
candidate SNPs in a locus

RegulomeDB annotation of likely regulatory function

http://regulome.stanford.edu/index

Table 2. RegulomeDB variant classification scheme

Category scheme

Category Description

Likely to affect binding and linked to expression of a gene target
la eQTL + TF binding + matched TF motif + matched DNase footprint + DNase peak
b eQTL + TF binding + any motif + DNase footprint + DNase peak
1c 1% eQTL + TF binding + matched TF motif + DMase peak
1d °  eQTL+TF binding + any motif + DNase peak
le eQTL + TF binding + matched TF motif
11t eQTL + TF binding/DNase peak

Likely to affect binding
2a TF binding + matched TF motif + matched DNase footprint + DNase peak
2b 2% TF binding + any motif + DNase footprint + DNase peak
2c TF binding + matched TF motif + DNase peak

Less likely to affect binding
TF binding + any motif + DNase peak
TF binding + matched TF motif

B

Minimal binding evidence
4 5%  TF binding + DNase peak
5 18% TF binding or DNase peak
6 30% Motif hit

Lower scores indicate increasing evidence for a variant to be located in a functional region.
Category 1 variants have equivalents in other categories with the additional requirement of eQTL
information.

Boyle et al (2012) Genome Research 22: 1790-1797 “Annotation of functional variation in personal genomes using RegulomeDB”
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CADD score annotation of likely deleteriousness

http://cadd.gs.washington.edu/

CADD (combined annotation dependent
depletion) is an index from the Shendure
lab at UW that summarizes evidence from
63 annotations encompassing:

¢ Functional or regulatory annotation
¢ Allele frequency and diversity
e Evolutionary conservation

The raw C-score is scaled to a relative CADD
score as the —10*log10(rank/total), namely:
30 is the top 0.1% of likely deleterious

20 is in the top 1%

10is in the top 10%

The score attempts unbiased prediction of
“deleteriousness”, based on machine
learning comparison of 15M observed and
simulated human variants
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Kircher et al (2014) Nature Genetics 46: 310-315 “A general framework for estimating the relative pathogenicity of human genetic variants”
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CATO annotation of likely regulatory function - |

http://www.uwencode.org/proj/CATO/

CATO (contextual analysis of transcription
factor occupancy) is an index from the
Stomatoyannopoulos lab at UW that
summarizes evidence from allelic imbalance
of DHS assays for 493 samples

e 114 cell types in 166 people
e 60,000 variants imbalanced at 5% FDR
e >2/5 of sites cell-type dependent

Matched imbalance to 2203 TFBS motifs for
825 genes, 44 of which are enriched

Interestingly, most SNPs do not disrupt DHS,
implying that there is buffering that reduces
the impact of polymorphism, particularly
near the TSS
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Maurano et al (2015) Nature Genetics 47: 1393-1402 “Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo”
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CATO annotation of likely regulatory function - II

http://www.uwencode.org/proj/CATO/

Based on the training set of SNPs in TFBS
that show allelic imbalance, Maurano et al
used machine learning to predict the
likelihood that regulatory SNPs affect
enhancer occupancy.

¢ Cell-type specific imbalance
e Location of DHS

¢ Evolutionary conservation

¢ TF-specific profiles

Used this to predict almost 500,000 SNPs
genome-wide that are likely to affect TF
occupancy and hence influence transcription

The CATO (contextual analysis of
transcription factor occupancy) score
highlights about 1.5% of all non-coding SNPs,
but has not yet been validated with respect
to RNASeq data and GWAS
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Maurano et al (2015) Nature Genetics 47: 1393-1402 “Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo”

Some (concise) definitions

GWAS:
TWAS:

EpiWAS:

Genome-wide association study — search for SNPs significantly associated with a trait (eSNPs)
Transcriptome-wide association study — search for transcripts significantly associated with a trait (QTT)

Epigenome-wide association study — search for epigenetic marks significantly associated with a trait

(EWAS also used, but earlier used to refer to Environment-wide association study)

eQTL:

eGene:

meQTL:

a gene whose transcript abundance is regulated by a locally-acting SNP

a genotype which is associated with the degree of methylation at a CpG site

a SNP which influences the abundance of a transcript. Cis-eQTL act locally (~ within £ 500kb)

Methyl R: typical measure of the degree of methylation, ranging from 0 to 1 (none to complete)

hQTL:

ccQTL:

a genotype that influences the level of chromatin conformation / cross-linking

a genotype that is associated with the intensity of a histone mark (may be acetylation or methylation)
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Epigenome-Wide Association Studies (EpiWAS) for Metabolic Disease

Methyl450 array study of whole blood DNA for 5,387 Europeans and Asians
Identified 278 CpG sites in 207 genes associated with BMI at p<107: consistent across ethnicities, 90% replicated

Similar effects observed in T cells and neutrophils in independent sample of 60 adults,
about half of the sites also associated with BMI in fat, liver, muscle

However, Mendelian randomization of SNPs that associate with both BMI and methylation level (meQTL)
implies that only a single site is causal — the majority are responsive to obesity
and in turn are explained by variation in blood glucose and lipids which may mediate the methylation
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Wahl et al (2016) Nature 541: 81-85 “Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity”

meQTL for Inflammatory Bowel Disease - |

121 CD, 119 UC, 191 Healthy whole blood samples

Whole genome bisulfite sequencing (WGBS) of
significantly improves resolution over arrays, and
contrasts DMRs (regions with >2 CpG within 2kb)
with DMPs (CpG positions) at the VMP1 locus

This association was not alleviated by
immunotherapy treatment

There was a significant enrichment of DMPs in the
vicinity of IBD GWAS loci, and 74 of the 439 DMPs
have meQTL (next slide), some of which are cell-
type specific

Multi-CpG composite Methylation Risk Scores
strongly predicts CD
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Ventham et al (2016) Nature Communications 7: 13507 “Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in IBD”

GG Lecture 3

2/14/2017

10



uQ SISG Module 9 2/14/2017

meQTL for Inflammatory Bowel Disease - ||
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Ventham et al (2016) Nature Communications 7: 13507 “Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in IBD”

Epigenetics of Blood Gene Expression

Genomic DNA ——= WGS 7X depth
“Variance Decomposition Models”: - / 5 TomlPNA  soM reads
Genetic effects explain more of the gene m\ <7
. A Monocyles £%  Methylation M450 array
expression variance (14% on avg) than cOi4: CDIE- i‘
epigenetic effects (2% me, 3% ha, 3% hm) N=200 HaKamat 300 eads

At around a third of all loci

Malecular Data Traits

Gcllc.L- -
EpiWAS asspociations are thus slightly more -
than half the time due to genotypes _ ) =
influencing both the epi mark and the Foam —
phenotype ' —
eQTL tend to map near TSS . T T rYTTY
meQTL tend to map near repressed TSS Mstone modifcaions o
haQTL tend to map near active enhancers L& & 2
Variance Quantitative Alleles-specific Disease
Decomposition Trait Loci Analysis Integration

Chen et al (2016) Cell 167: 1398-1414 “Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells”
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epiQTL for Gene Expression in monocytes, neutrophils, and T-cells
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Chen et al (2016) Cell 167: 1398-1414 “Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells”

eQTL and
epiQTL are
enriched in
cell types with
autoimmune
disease risk
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epiQTL for autoimmune disease in monocytes, neutrophils, and T-cells

Use “Coloc” to map SNPs that jointly
associate with the disease or with an eQTL
or epiQTL
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At least two thirds of 345 disease-colocalized loci involved a DNA methylation or histone modification QTL without
a corresponding Eqtl — implies independent regulatory mechanisms, but how?!

Chen et al (2016) Cell 167: 1398-1414 “Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells”
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