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Finding genes that are differentially expressed between conditions
is an integral part of understanding the molecular basis of
phenotypic variation.
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Differential Expression

A gene is declared differentially expressed if an observed difference
or change in read counts between two experimental conditions is
statistically significant

o Stats for microarrays are based on numerical intensity values

o Stats for RNA-Seq instead analyze read-count distributions
RNA-seq offers several advantages over microarrays, such as an
increased dynamic range and a lower background level, and the

ability to detect and quantify the expression of previously unknown
transcripts and isoforms
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Microarrays have been used
routinely for differential
expression analysis for over a
decade, and there are
well-established methods
available for this purpose (such
as limma). These methods are
not immediately transferable to
analysis of RNA-seq data.

Ritchie et al. Nucleic Acids
Research, 2015
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With RNA-Seq data we can choose the following levels of data
information

o Exon
o Transcript
o Gene

Your biological questions should probably inform this decision.
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Gene length

Most RNA-Seq protocols use an mRNA fragmentation approach
before sequencing to gain sequence coverage of the whole
transcript. Thus, the total number of reads for a given transcript is
proportional to the expression level of the transcript multiplied by
the length of the transcript.

o Thus a long transcript will have more reads mapping to it
compared to a short gene of similar expression

o For this reason, most RNA-seq analysis involves some sort of
length normalization.

Other obvious sources of technical variation include sequencing
depth, unmatched experimental designs and relative depth of
transcripts across the genome.

Joseph Powell Differential Expression



Data prep
0®000

They're almost the same thing. RPKM stands for Reads Per
Kilobase of transcript per Million mapped reads. FPKM stands for
Fragments Per Kilobase of transcript per Million mapped reads. In
RNA-Seq, the relative expression of a transcript is proportional to
the number of cDNA fragments that originate from it.

These metrics attempt to normalize for sequencing depth and gene
length. Here is how you do it for RPKM:

1. Count up the total reads in a sample and divide that number by
1,000,000

2. Divide the read counts by the per million scaling factor. This
normalizes for sequencing depth, giving you reads per million (RPM)
3. Divide the RPM values by the length of the gene, in kilobases. This
gives you RPKM
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FPKM is very similar to RPKM. RPKM was made for single end
RNA seq, where every read corresponded to a single fragment that
was sequenced. FPKM was made for paired-end RNA seq. With
paired-end RNA seq, two reads can correspond to a single
fragment, or, if one read in the pair did not map, one read can
correspond to a single fragment. The only difference between
RPKM and FPKM is that FPKM takes into account that two
reads can map to one fragment.
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Relative abundance of transcripts

The reason is that even if the library sizes are indeed identical, RNA-seq
counts inherently represent relative abundances of the genes. A few
highly expressed genes may contribute a very large part of the sequenced
reads in an experiment, leaving only a few reads to be distributed among
the remaining genes
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What other types of non-uniformities are seen between samples in
an RNA-seq experiment?

o Sequencing depths or library sizes
o Differences in the conditions or covariates in the cohort.
o Library preparation methods

o Sequencing effects and batchs
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Differential gene expression analysis based on the negative binomial
distribution

Bioconductor version: Release (3.4)

Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for
differential expression based on a model using the negative binomial distribution

Author: Simon Anders, EMBL Heidelberg <sanders at fs.tum.de>
Maintainer: Simon Anders <sanders at fs.tum.de>
Citation (from within R, enter citat ("DE )

Anders S and Huber W (2010). “Differential expression analysis for sequence count data.” Genome
Biology, 11, pp. R106. doi: 10.1186/ab-2010-11-10-r106
http://genomebiology.com/2010/11/10/R106/.
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Count table

> pasillaCountTable = read.table( datafile, header=TRUE, row.names=1 )
> head( pasillaCountTable

treatedl treatedl treated2 treated3
FBga0000003 0 o 0
FBgn0000008 92 161 76 70 140 88 70
FBgn0000014 5 1 0 0 a 0 0
FBgn000001! 0 2 1 2 1 0 0
FBgn0000017 4664 8714 3564 3150 6205 3072 3334
FBgn0000018 583 761 245 310 722 299 308

Here, header=TRUE indicates that the first line contains column names and row.names=1 means that the first column
should be used as row names. This leaves us with a data.frame containing integer count values.

Meta data

condition 1ibType
untreatedl untreated single-end
untreated2 untreated single-end
untreated3 untreated paired-end
untreated4 untreated paired-end

treatedl treated single-end
treated2 treated paired-end
treated3 treated paired-end
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As a first processing step, we need to estimate the effective library size. This step is sometimes also called normalisation,
even though there is no relation to normality or a normal distribution. The effective library size information is
called the size factors vector, since the package only needs to know the relative library sizes. If the counts of
non-differentially expressed genes in one sample are, on average, twice as high as in another (because the library
was sequenced twice as deeply), the size factor for the first sample should be twice that of the other sample [1,
4]. The function estimateSizeFactors estimates the size factors from the count data. (See the man page of
estimateSizeFactorsForMatrix for technical details on the calculation.)

> cds = estimateSizeFactors( cds )
> sizeFactors( cds )

untreated3 untreated4 treated2 treated3
0.873 1.011 1.022 1.115

If we divide each column of the count table by the size factor for this column, the count values are brought
to a common scale, making them comparable. When called with normalized=TRUE, the counts accessor function
performs this calculation. This is useful, e.g., for visualization.

> head( counts( cds, normalized=TRUE ) )

untreated3 untreated4 treated2 treated3

FBgn0000003 0.00 0.00 0.0 0.897
FBgn0000008 87.05 69.27 86.1 62.803
FBgn0000014 0.00 0.00 0.0 0.000
FBgn0000015 1.15 1.98 0.0 0.000
FBgn0000017 4082.02 3116.93  3004.5 2991.238
FBgn0000018 280.61 306.75 292.4 276.335
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The dispersion can be understood as the square of the coefficient of biological variation. So, if a gene's expression
typically differs from replicate to replicate sample by 20%, this gene's dispersion is 0.22 = .04. Note that the variance
seen between counts is the sum of two components: the sample-to-sample variation just mentioned, and the uncertainty
in measuring a concentration by counting reads. The latter, known as shot noise or Poisson noise, is the dominating
noise source for lowly expressed genes. The former dominates for highly expressed genes. The sum of both, shot noise
and dispersion, is considered in the differential expression inference.

Hence, the variance v of count values is modelled as

v=su+ asgug,
where p is the expected normalized count value (estimated by the average normalized count value), s is the size factor
for the sample under consideration, and « is the dispersion value for the gene under consideration.

To estimate the dispersions, use this command.

> cds = estimateDispersions( cds )
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res = nbinomTest( cds, "untreated", "treated" )

v

head(res)

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval padj

1 FBgn0000003 0.224 0.00 0.449 Inf Inf 1.000 1.000
2 FBgn0000008  76.296 78.16 74.436 0.952 -0.0704 0.835 1.000
3 FBgn0000014 0.000 0.00 0.000 NaN NaN NA NA
4 FBgn0000015 0.781 1.56 0.000 0.000 -Inf 0.416 1.000
5 FBgn0000017 3298.682  3599.47 2997.890 0.833 -0.2638 0.241 0.881
6 FBgn0000018 289.031 293.68  284.385 0.968 -0.0464 0.757 1.000

log, fold change
0
|

1 100 10000

mean of normalized counts
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Empirical Analysis of Digital Gene Expression Data in R

Bioconductor version: Release (3.4)

Differential expression analysis of RNA-seq expression profiles with biological replication. Implements a
range of statistical methodology based on the negative binomial distributions, including empirical Bayes
estimation, exact tests, generalized linear models and quasi-likelihood tests. As well as RNA-seq, it be
applied to differential signal analysis of other types of genomic data that produce counts, including ChIP-
seq, SAGE and CAGE.

Author: Yunshun Chen <yuchen at wehi.edu.au>, Aaron Lun <alun at wehi.edu.au>, Davis McCarthy
<dmccarthy at wehi.edu.au>, Xiaobei Zhou <xiaobei.zhou at uzh.ch>, Mark Robinson <mark.robinson at
imls.uzh.ch>, Gordon Smyth <smyth at wehi.edu.au>

Maintainer: Yunshun Chen <yuchen at wehi.edu.au>, Aaron Lun <alun at wehi.edu.au>, Mark Robinson
<mark.robinson at imis.uzh.ch>, Davis McCarthy <dmccarthy at wehi.edu.au>, Gordon Smyth <smyth
at wehi.edu.au>

Citation (from within R, enter ci ):

Robinson MD, McCarthy D) and Smyth GK (2010). “edgeR: a Bluconductor package for differential
expression analysis of digital gene expression data.” Bioinformatics, 26,
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We first need to load the required library and data required for this practical. You may use the file previously generated,
or the set of read counts in Day3/Counts.RData.

Note that the genes in this file are identified by their Entrez gene ids.

library(edgeR)

load("Day3/Counts.RData")

Counts <- tmp$counts

colnames(Counts) <- c("16N", "16T", "18N", "18T", "19N", "19T")

dim(Counts)
head(Counts)
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We will now create a DGEList object to hold our read counts. This object is a container for the counts themsleves, and
also for all the associated metadata - these include, for example, sample names, gene names and normalisation factors
once these are computed. The DGEList is an example of the custom task-specific structures that are frequently used in
Bioconductor to make analyses easier.

dglist <- DGEList(counts=Counts, genes=rownames(Counts))

dgList
dglist$samples
head(dgList$counts)
head(dgList$genes)
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There are approximately 26000 genes in this dataset. However, many of them will not be expressed, or will not be
represented by enough reads to contribute to the analysis. Removing these genes means that we have ultimately have
fewer tests to perform, thereby reducing the problems associated with multiple testing. Here, we retain only those genes
that are represented at least 1cpm reads in at least two samples (cpm=counts per million).

countsPerMillion <- cpm(dgList)

summary (countsPerMillion)

countCheck <- countsPerMillion > 1
head (countCheck)

keep <- which(rowSums (countCheck) >= 2)

dgList <- dgList[keep,]
summary (cpm(dgList))
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We are now ready to set up the model! We first need to specify our design matrix, which describes the setup of the
experiment.

sampleType<- rep("N", ncol(dgList))
sampleType [grep("T", colnames(dgList))] <- "T"

sampleReplicate <- paste("S", rep(1:3, each=2), sep="")

designMat <- model.matrix(“sampleReplicate + sampleType)
designMat
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As disucssed, we need to estimate the dispersion parameter for our negative binomial model. As there are only a few
samples, it is difficult to estimate the dispersion accurately for each gene, and so we need a way of 'sharing’ information
between genes. Possible solutions include:

o Using a common estimate across all genes.

o Fitting an estimate based on the mean-variance trend across the dataset, such that genes similar abundances have

similar variance estimates (trended dispersion).

o Computing a genewise dispersion (tagwise dispersion)
In edgeR, we use an empirical Bayes method to 'shrink’ the genewise dispersion estimates towards the common dispersion
(tagwise dispersion).
Note that either the common or trended dispersion needs to be estimated before we can estimate the tagwise dispersion.
n=designMat)
esignMat)
esignMat)

dglist <- estimateGLMCommonDisp(dgList, de
dglist <- estimateGLMTrendedDisp(dgList, de
dglist <- estimateGLMTagwiseDisp(dgList, de

We can plot the estimates and see how they differ. The biological coefficient of variation (BCV) is the square root of
the dispersion parameter in the negative binomial model.

plotBCV(dgList)
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Differential Expression Analysis using edgeR 4

fit <- glmFit(dgList, designMat)
1rt <- glmLRT(fit, coef=4)

edgeR_result <- topTags(lrt)
?topTags

save (topTags (1rt,n=15000) $table, file='Day3/edgeR_Result.RData')

Finally, we can plot the log-fold changes of all the genes, and the highlight those that are differentially expressed.
?decideTests

deGenes <- decideTestsDGE(lrt, p=0.001)

deGenes <- rownames (1lrt) [as.logical(deGenes)]

plotSmear (1rt, de.tags=deGenes)

abline(h=c(-1, 1), col=2)
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What is a p-value? J

What is the literal meaning of p < 0.057 J
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What is a p-value? J

Definition

The p-value is the probability of obtaining a test statistic at least
as extreme as the one that was observed, assuming that the null
hypothesis is true. (Wikipedia)
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What is a p-value? )

Definition

The p-value is the probability of obtaining a test statistic at least
as extreme as the one that was observed, assuming that the null
hypothesis is true. (Wikipedia)

What is the literal meaning of p < 0.057 J

This means that if we performed 100 random tests where we knew
the null hypothesis was true, we'd see a test statistic at least this
extreme five times.
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o If we set our threshold at p < 0.05 and we perform 50,000
tests, we would expect to get 2,500 ‘significant’ results

Joseph Powell Differential Expression



Interpreting results
fole] To)

o If we set our threshold at p < 0.05 and we perform 50,000
tests, we would expect to get 2,500 ‘significant’ results

o To be sure that there is only a 5% chance of a false positive
we must adjust our threshold
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o If we set our threshold at p < 0.05 and we perform 50,000
tests, we would expect to get 2,500 ‘significant’ results

o To be sure that there is only a 5% chance of a false positive
we must adjust our threshold

o Bonferroni correction for multiple testing: set the threshold to:

p < 0.05/50000
p<1x107°
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FD R = E [V/R] (Benjamini and Hochberg, 1995)
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