Single Cell Sequening of the transcriptome

Joseph Powell

Computational and Single Cell Genomics, Institute for Molecular Bioscience

Summer Institute in Statistical Genetics

Brisbane, 14th Feb 2016

What is it?

scRNA-SEQ

Single cell sequencing examines the sequence information from individual cells with optimized NGS technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment

Overview

Local context of the cell

Picking the right cell(s)

- Micromanipulation precise but laborious way to target a single cell
- Microcapillaries extract cell contents directly
- Tissue dissociated to produce cell suspensions, which are easier to handle and allow cells expressing specific markers to be enriched with a cell sorter
- Instruments that trap very rare cells by their surface markers can also be used
- Flow sorting based on markers or viability
- Direct from either suspended cell culture or primary cell-free tissue

Bioinformatics

PolyA vs non-PolyA

Poly(A)

Polyadenylation is the addition of a poly(A) tail to mRNA. The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. It is part of the process that produces mature messenger RNA (mRNA) for translation.

Bioinformatics

Focus on high-throughput methods

DropSeq

Chromium

C1

Introduction

Methods and technology ○●○○○ Bioinformatics

DropSeq - Macosko et al. Cell, 2015

Macosko et al, 2015. http://dx.doi.org/10.1016/j.cell.2015.05.002

Methods and technology $\circ \circ \bullet \circ \circ$

Bioinformatics

Chromium from 10X Genomics

Fluidigm C1

Doublet rate

Multiple cells encapsulated in one droplet Can estimated using a mix of house and human cells

Introd	uction

Alignment, barcode assignment and UMI counting

- Demultiplexing first base on the (8) bp sample index
- Demultiplexing the on the 14bp GemCode barcode
- Extract the Unique Molecular Identifiers
- Remove and filter on quailty of barcode and UMI
- PCR duplicates marked if two sets of read pairs share a barcode, UMI tag, or gene ID

Bioinformatics

Normalisation

One of the first issues is the need for normalization due to amplification biases introduced by scarce amounts of starting RNA. Ideally, this should be addressed using a combination of experimental and computational methods. Often this is not practical.

Prominent features in single-cell RNA-seq data relative to bulk RNA-seq include an abundance of zeros, increased variability, and multi-modal expression distributions.

Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
Arron T. Lum B., Karsen Bekind John C. Marioni B
Genome Biology 2016 1775 | DOI: 10.1186/12059.016.04977 | 0 Lun et al. 2016
Reverse: 3 February 2016 | Acapter 11.2016 | Revender 31.2016

Introduction

Analysis

Deconvoluting heterogeneous cell populations

- PCA and t-distributed Stochastic Neighbor Embedding (tSNE) analysis
- Clustering
- Differential expression

Introduction	

Analysis

Building predictors of subpopulations of cells

PseudoTime or lineage tracing - Trapnell et al. Nature Biotech 2014

